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Abstract 

A highly constrained temporal pattern search (“TEPS”) based multiple channel heartbeat detector is described.  TEPS 

generates sequences of peaks and statistically scores them according to: 1) peak time coherence across channels; 2) peak 

prominence; 3) temporal regularity; and 4) number of skipped beats.  TEPS was tested on 31 records of three channel 

capacitive electrode data from the UnoViS automobile database.  TEPS showed a sensitivity (SE) of 91.3% and a false 

discovery rate (FDR) of 3.0% compared to an SE and FDR of 75.3% and 65.0% respectively for a conventional single 

channel detector (OSEA) applied separately to the three channels.  The peak matching window was 30ms.  The percentage 

of 5 second segments with average heart rates within 5 beats/minute of reference was also measured.  In 6 of the 31 records, 

TEPS’ percentage was at least 30% greater than OSEA’s.  TEPS was also applied to synthetic data comprising a known 

signal corrupted with calibrated amounts of noise.  At a fixed SE of 85%, increasing the number of channels from one to 

two resulted in an improvement of approximately 5dB in noise resistance, while increasing the number of channels from 

two to four resulted in an improvement of approximately 3dB in noise resistance.  The quantification of noise resistance as 

a function of the number of channels could help guide the development of wearable electrocardiogram monitors. 

 

 

1. Introduction 

 Frequently encountered noise sources confound electrocardiogram heart beat detection methods that rely solely on size 

or shape criteria to distinguish QRS complexes from noise peaks.8  A single channel convolutional neural network (CNN) 

described by Cai and Hu has shown some promise in overcoming the limitations of conventional peak size/shape based 

QRS detectors by implicitly exploiting temporal patterns in single channel normal sinus rhythm cardiac signals.3  However, 

CNNs often don’t generalize well, and the Cai and Hu detector has relatively poor temporal resolution, with each output 

node corresponding to 16 ms. 3   

Antink1 and Ravichandran10 independently extended neural networks to QRS detection in 3 channel capacitive electrode 

recordings from the UnoViS automobile database14 (described further below).  Antink’s CNN architecture achieved a 

sensitivity of 88.0% with a false discovery rate of 4.8% based on a 150ms peak matching window.  Ravichandran10 

described an encoder-decoder architecture that generates from the 3 channels a single denoised signal, which is then 

provided to a conventional QRS detector.  Ravichandran performed a heart rate variability analysis on a test set that 

consisted of 7 of the 31 UnoViS automobile records and reported that the resulting heart rate variability metrics were similar 

to the ground truth metrics.  Again, it is not clear how these multiple channel neural network approaches will generalize to 

other data sets.   

Hopenfeld6 described a scheme that overcomes the size/shape limitation by exploiting the relative temporal regularity of 

the true peaks in sinus rhythm.  In particular, a search through a set of peak times generates temporally regular sequences, 

which are scored according to temporal regularity likelihood.  However, Hopenfeld did not describe the application of this 

method to real world noise signals.  Further, this method was not applied to multiple-channel signals. 

Conventional multiple-channel QRS detectors improve on single channel detectors by providing some degree of 

redundancy but will tend not to perform much better than single channel detectors when high noise corrupts all channels.  

The redundancy results from performing QRS detection separately in each channel, and creating a consistent final sequence 

from the resulting single channel sequences through a variety of techniques.12,13  However, if all of the channels suffer from 
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high noise such that none of the individual sequences has high quality, the fusion of these sequences according to existing 

methods will tend not to improve the final sequence compared to the individual sequences. 

Figure 1 illustrates of a scenario that would likely confound conventional multiple-channel QRS detectors.  The left 

panels in Figure 1 show a 5-second-long segment, comprising two signals recorded from capacitive electrodes, from the 

UnoViS automobile database.14   In particular, there are many relatively large noise peaks that have similar shapes as true 

peaks (indicated by triangles) in the right panels, which show filtered and differenced versions of the raw signals.   

This paper describes a methodology, “TEmporal Pattern Search” or “TEPS,” that can accurately detect the true peaks in 

this segment.  The contributions of this paper include: 

• The extension of sequence search and likelihood scoring to real world electrocardiogram signals 

• The extension of sequence search and likelihood scoring to multiple channel signals 

• The introduction of a likelihood score that depends on peak prominence 

• The introduction of a likelihood score for multiple channel signals that depends on peak time coherence across 

channels 

• Accurate detection of QRS complexes, with good temporal resolution (within 4ms of reference), in signals 

corrupted by high levels of noise characterized by many noise peaks that cannot be distinguished from QRS 

complexes based on peak size/shape criteria 

• A demonstration of how detection sensitivity as a function of noise level depends on the number of channels 

Octave (ver. 5.2.0) code for the below described algorithm is available for research purposes at 

https://github.com/Hopenfeld/Teps.      

 

2. Algorithm 

Figure 2 is a high-level block diagram of TEPS, which processes data in non-overlapping five second segments.  For 

each segment, after pre-processing, it selects a certain number of peaks (“Candidate Peaks”) in each of multiple channels 

and creates a set of global peaks (“Global Peaks”) by grouping all the channels’ Candidate Peaks together, merging peaks 

that are temporally close across channels. It scores the likelihood of each Global Peak and selects the highest scoring ones 

(“Quality Peaks”) and then searches within these peaks for sinus rhythm sequences (“Parent Sequences”).  Next, it fills in 

the gaps in the Parent Sequences with the remainder of the (lower quality) Global Peaks, thereby generating a set of 

Offspring Sequences, which are scored for quality.  The final score of each Offspring Sequence is a weighted sum of its 

raw score (“SC”) and the raw scores of temporally matching sequences in the prior and next segment.  The Offspring 

Sequence with the highest final score is selected. 

 

 
Figure 1. Raw (left panels) and filtered/differenced versions (right panels) of a five second segment from subject 6 of the UnoViS 

automobile database.  The 5 second segment starts at 405 seconds from the beginning of the record.  The top panel shows the average of 

the signals from channels 1 and 3, which were highly correlated; the bottom panel shows the signal from channel 2.  The 30 most 

(negatively) prominent peaks are labelled by red asterisks and referred to as Candidate Peaks.  The dashed black lines indicate Candidate 

Peaks in separate channels that temporally align, which suggests these peaks are more likely to be true beats. 
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As described above, an assessment of likelihood is involved in both the selection of the Quality Peaks and the raw scoring 

of Offspring Sequences.  The Quality Peak selection likelihood comprises two factors: 1) peak temporal coherence across 

channels; 2) peak prominence.  The peak timing coherence score component is a Bayesian measure based on the tendency 

of true heart beats to occur close in time across channels whereas uncorrelated noise peaks will exhibit less coherence across 

channels.  Figure 1 shows an example of this phenomenon.  The peak prominence score component is based on the tendency 

of true heart beats to have greater magnitude than nearby peaks when compared to noise peaks.   

Both factors also play a role in the scoring of each Offspring Sequence, which are further scored according to: 3) temporal 

regularity; and 4) the number of skipped beats.  The temporal regularity score component is a measure that quantifies the 

change in between peak time intervals over a sequence.  (The time between a sequence’s consecutive peaks will be referred 

to as an “RR interval.”) 

Equations 1-8 below formalize the above mentioned four factors and set forth some of the statistically based motivation 

for aspects of the algorithm.  However, as will be described, relevant probability distributions were generated based on 

limited data, and the search aspects of the algorithm complicate typical assumptions of independent events (in this case 

peaks).  Although the generated probability distributions appeared to produce reasonable results for relatively high 

probability values, low probability values tended not to be reliable.  For this reason, probability estimates are often summed, 

not multiplied together as would be mathematically appropriate given complete probability distributions.  (For the purposes 

of obtaining a maximum probability solution, a multiplication rule corresponds to a logarithm summing rule, which 

penalizes low probability events compared to a regular summing rule.)  

Returning to the selection of Quality Peaks from the set of Candidate Peaks, the likelihood score SCP for peak X is:  

   

SCP(X) =  Pr(X ∈ TP│𝐝𝐧)  +  Pr(X ∈ TP│ZP) 1 

 

where TP indicates a true heart beat, Pr(X ∊ TP |dn) is the Bayesian peak timing coherence probability based on a set of 

peak time differences dn, and Pr(X ∊ TP |ZP) is the Bayesian peak  prominence probability based on a peak prominence 

measure ZP.  For each Offspring Sequence, the raw score SC is set equal to:  

 

SC = a ∑ Pr(Xi ∈ TP|𝐝𝐧i)

i ∈ QP

+ b ∗ ∑ Zij  +  c ∗ ∑ f(dRRijl, skipsijl)

i,j,l ∈ pk triples

+ d ∗ ∑ skips

ij∈pk pairs

 2 

 

where Z is the prominence ratio for each peak pair in a sequence, dRRijl is the change in RR intervals between 3 

consecutive peaks with corresponding skipped beats skipsijl, f() is a Gaussian with a standard deviation that depends on 

skipsijl.  Thus, the peak coherence score of an Offspring Sequence, the first term on the right side of Equation 2, is simply 

the sum of the corresponding peak coherence scores of the Quality Peaks within the sequence.  However, the sequence 

based peak prominence score, the second right hand side term, is based on a sequence level measure that is the sum peak 

pair prominence measures (Zij).  The relationship between the peak likelihood measure ZP and the peak pair ratios Zij will 

be described below.  
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Figure 2.  High level TEPS flowchart. 

 

A local peak will be referred to by “xa,α” where the first subscript indicates channel number and the second subscript 

labels a Candidate Peak within a channel.  A Global Peak will be referred by X or Xi.  Global Peaks are the union of the 

channels’ Candidate Peaks, with peak times set equal to the mean of the closely aligned local peak times:  

 

 
T(Xi) = mean{T(𝑥1,α), T(𝑥2,β) … T(𝑥𝑁,γ)} 3 

 

where T(x) is the peak time of peak x, and all of the local peak times T(xa,α) are separated by less than a time limit (e.g. 

24 ms or 6 samples at a 256Hz sampling rate).  If there are no local peaks in other channels within the time limit for a 

particular local peak, the global peak time is simply the local peak time.   

 

2.1. Peak Coherence  

Heart beats will occur close in time across channels whereas noise peaks (in uncorrelated channels) will tend to 

temporally align across channels only by chance.  A Bayesian analysis of peak time coherence can therefore help to 

distinguish heart beats from noise.   In the case of completely uncorrelated signals, the posterior probability of a Global 

Peak X corresponding to local peaks that are closest in time in respective channels occurring with time differences dn being 

heart beat peaks (TP=true peak) is approximately:  
 

 Pr(X ∈ TP| 𝐝𝐧, NC, NL,  NCP)~
 Pr(𝐝𝐧|X ∈ TP, NC) ∗  Pr(X ∈ TP)

Pr(𝐝𝐧| X ∈ TP, NC) ∗ Pr(X ∈ TP) + Pr(𝐝𝐧| X ∈ NS, NC,  NL,  NCP) ∗ Pr(X ∈ NS)
 

4 

 

 

where NS denotes a noise peak, NC is the number of channels, NL is noise level, and NCP is the number of candidate peaks 

in each channel.  The probability also depends on the number of samples in the search window, but since this quantity is 

held constant (5 seconds = 1280 samples), it is excluded from Equation 4 for convenience.  The a priori probabilities of a 

peak being a true beat or noise depends in turn on NCP, NL and the heart rate.  The noise level NL is not known although 

it can be estimated.  The heart rate is not known although there may be a good estimate of it from another source or a recent, 

high quality prior segment.  However, due to the limited amount of available noise data and to reduce algorithm complexity, 

the dependence on NL and heart rate is ignored.   

Instead, the probability of interest is taken as Pr(X ∊ TP|dn, NC, NCP), the distribution of which was estimated by 

simulations.  Specifically, as will be further described in Section 2.6, calibrated amounts of noise from channel 1 of the 30 

minute long electromyogram noise record from Physionet Noise Tress Test Database3,7 (‘NSTDB’) was added to clean 
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electrocardiogram signals, with known peak times, divided into 2, 3 and 4 channels.  The resulting percentage of true peaks 

as a function of dn, NC and NCP was then tabulated.  

 

 
Figure 3.  Examples of the peak pair prominence ratio Z.  Channels 1 and 2 from the synthetic data are shown in the top and bottom 

panels respectively.  The 7 peaks in a particular sequence are labelled 1 through 7.  (Peak 1 does not exist in Channel 1 so is not labelled 

there.)  The z ratio for a local peak pair is the ratio of the amplitudes of the lower and upper black bars respectively.  Although only three 

z ratios are shown, the z ratio is calculated for every peak pair in the sequence for a total of 11 z ratios.  As an example, the Z ratio for 

global peaks 6 and 7, Z(6,7), is z1(6,7)+z2(6,7). 

 

2.2. Peak Pair Prominence  

Compared to noise peaks, pairs of heart beats are more likely to be separated from one another by “smaller” peaks.  

Therefore, a Bayesian analysis of peak pair prominence can help to distinguish heart beats from noise.  Figure 3 shows an 

example of the peak prominence of true beat pairs relative to noise pairs.  The top and bottom panels of the figure show 

simultaneous differenced signals corresponding to first and second channels. True beats are designated by triangles and 

numbered by their order of occurrence.  In channel 1, true beats 2 and 3 are more prominent than the intervening peaks.  

Likewise with true beats 6 and 7 in channel 2.  Noise peaks separated by physiologically possible RR interval limits (e.g. 

between 300ms and 2000ms) tend to occur within bursts of noise and therefore tend to lack prominence relative to 

intervening noise peaks.   

The posterior probability of peak X characterized by a peak prominence measure ZP is approximately:    
 

 Pr(X ∈ TP| ZP, NL,  RR, NC)~
 Pr(ZP| ∈ TP,  NL, RR, NC) ∗  Pr(X ∈ TP)

Pr(ZP| X ∈ TP, NL, RR, NC) ∗ Pr(X ∈ TP) + Pr(ZP| X ∈ NS,  NL,  RR, NC) ∗ Pr(X ∈ NS)
 5 

 

  
ZP  = max(PP(X, : )) + max(PP(: , X)) 6 

  

PP(Xi, Xj)  =  Zij = ∑ zk(xk,α, xk,β)

k∈channel

  7 

 

zk(xk,α, xkβ)  =
 mean({A(xk,α), A(xk,β)})

mean (A(𝐑(𝟏: 𝟓)))
 

8 

 

where xk,α and xk,β are the local peaks that correspond to global peaks Xi and Xj respectively, R is the set of the five largest 

peaks (not necessarily Candidate Peaks) in between xk,α and xk,β; A() maps peak labels to peak amplitude (of the differenced 

signal); and sort indicates sorting in descending order.  Again, to estimate the posterior probability, in this case Pr(X ∊ TP  

|ZP, NC, NCP), calibrated amounts of noise from channel 1 of the electromyogram noise record from the NSTDB was 

added to a clean signal.   

The likelihoods are conditioned on the RR interval because the greater the time between peaks (RR interval), the more 

likely that larger noise peaks will occur between Xi and Xj, so that Z will tend to be smaller.  However, the conditioning on 
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RR is not considered because of the relatively small size of the simulation data set.  Instead, to take account of this RR 

effect, as will be described below, the probability of low average RR sequences is reduced according to a simple function. 

The prominence based peak likelihood (Equation 5) affects selection of Quality Peaks according to Equation 1.  In 

contrast, the sequence level summed Z scores, which is not a probability measure, factors directly into a sequence’s raw 

score according to the second term on the right-hand side of Equation 2.  A sequence level Bayesian analysis of peak 

prominence is not performed due to the relatively small amount of training noise, which is nonetheless sufficient to produce 

reasonably smooth probability distributions at the peak level. 

Summing Z scores across peak pairs will tend to benefit sequences with many peaks, which correspond to high heart 

rate sequences.  Instead of normalizing summed Z scores based on the number of peaks, sequences with relatively low RR 

intervals are penalized by linearly decreasing Pr(X ∊ TP  |ZP) with decreasing RR interval after it drops below a specified 

value (550ms).   

The noise level NL, which is required for the estimate of Pr(X ∊ TP  |ZP, NC, NCP), is not known a priori.  For each 

segment in each channel, NL is estimated by analysing the distribution of peak prominences.  The details are omitted 

because the algorithm’s results did not seem to be greatly affected by the accuracy of the noise estimate. 

  

2.3. Temporal Regularity and Skipped Beats  

The regularity of sinus rhythm can help distinguish true heart beat sequences from sequences of noise.6  The probability 

of finding a temporally regular noise sequence increases with the number of candidate peaks NCP and further depends on 

the characteristics of the noise: more uniformly distributed heart beat mimicking noise peaks will tend to result in sinus 

rhythm like sequences than more sporadically distributed noise.  The a posteriori probability based on temporal regularity 

is thus a function of the noise type, NCP, and the a priori temporal regularity of sinus rhythm, which generally depends on 

RR interval. 

Instead of implementing a Bayesian temporal regularity scheme, a temporal regularity measure TR, the third term on the 

right-hand side of Equation 2, forms a direct component of a sequence’s raw score according to Equation 2.  In practice, it 

is not clear that a Bayesian measure would greatly improve the algorithm since the TR score, along with the skipped beats, 

tended to serve as a tie breaker amongst sequences whose primary quality was dictated by peak coherence probability and 

peak prominence. 

To account for the greater temporal variability of low heart rate (high average RR interval) sequences,11 the TR scores 

for these sequences are increased according to a scaling factor that increases with RR interval above a certain threshold 

(e.g. 850 ms).  

The Gaussian f(dRRijl, skipsijl) for RR interval changes (=T(x3)-2*T(x2)+T(x1) for consecutive sequence peaks x1, x2, and 

x3) was generated6 from the Physionet Normal Sinus Rhythm RR Interval Database3 (‘NSRDB’), which consists of 24 h 

recordings of 54.  The distributions for various numbers of skipped beats were generated by randomly eliminating peaks 

from the NSRdb records. 

 

2.4 Channel Correlation 

The correlation coefficient is computed for each pair of preprocessed signals.  If the coefficient exceeds a threshold for 

a pair of signals, they are combined into one signal (and NC reduced by 1).  Otherwise, the correlation coefficient linearly 

reduces the peak coherence probabilities Pr(X ∊ TP  |ZP, NC, NCP) to reflect the relative lack of independence between 

channels.  

 

2.5 Processing Details 

Raw signals are preprocessed by low pass filtering with a 5th order Butterworth filter with a cutoff frequency of 45Hz.  

The filtered signals are downsampled to 256Hz, and the resulting signal x() is differenced according to: y(i) = x(i-12)-2*x(i-

6)+x(i).   All computations were performed on a 2017 Hewlett Packard Laptop with an Intel Core i3-8130U CPU, base 

frequency 2.20GHz, with 8GB of RAM.  The number of candidate peaks (NCP) is set equal to 25, 30, 35 and 40 for 1 

through 4 channels, respectively.  Candidate Peaks must meet broad minimum and maximum peak width criteria. 
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Figure 4.  Examples of SNR values for the synthetic data.  Triangles indicate true beats.  Each panel is based on the same underlying 

clean segment. 

 

2.6 Databases; Testing and Parameter Fitting 

The algorithm was tested on the UnoViS automobile dataset14 created by researchers at Medical Information Technology 

(MedIT), Helmholtz-Institute for Biomedical Engineering at RWTH Aachen University.  This dataset consists of 3 channel 

ECG signals recorded from capacative electrodes attached to a car seat, along with a reference channel recorded from 

contact electrodes.  The total duration of all records is over 13 hours.   

To assess the relationship between detection performance, noise level, and number of channels, a synthetic data set was 

created.  Specifically, channel 2 of the NSTDB electromyogram noise record was added to 1 to 4 copies of a synthesized 

clean signal whose RR intervals matched those of the first 30 minutes of record 1 of the NSRDB.  (The NSTDB also 

contains a motion artifact noise record but this data was not considered suitable for the reasons described in Appendix 1.) 

These RR intervals range from approximately 450 ms to 735 ms.  Because each segment of the noise data was added to a 

corresponding synthetic signal segment in a single channel, the durations of the 1-4 channel recordings were approximately 

30, 15, 10 and 7.5 minutes respectively.  Figure 4 shows examples of various noise levels.  The noise level was determined 

by applying the Physionet nst script methodology (https://physionet.org/physiotools/wag/nst-1.htm) to a signal’s second 

difference (rather than the raw signal).  

The MedIT database has reference beat annotations that were generated by applying the open-source ECG analysis 

algorithm5 (OSEA) to the reference channel and the capacitive electrode channels.  For the reference channel, a measure of 

the average RR interval over a 5 second segment was obtained from the annotations by (a) computing the interval between 

successive peaks, eliminating the intervals less than 500ms and greater than 1100ms, and taking the median of the resulting 

intervals if there were at least four of them; if so, the intervals were selected if (b) their standard deviation was less than 

170ms.  If these conditions were not satisfied, simple search of the peaks was carried out to find a regular sequence.  If such 

could be found, then its mean RR interval was computed.  (The data was exhaustively inspected to ensure that it was 

unlikely that any RR intervals were actually less than 500ms.  TEPS is not limited to this RR interval range.) 

To determine the difference between the OSEA heart rate in three channels and the reference heart rate, the channel that 

produced the closest match was taken.  This likely at least somewhat overstates the match between the OSEA capacitive 

electrode annotations and the reference. 

For all data, a peak was considered a match if it was within 15ms of the reference beat time. 

The coefficients b,c, and d in Equation 2 were determined by performing a least squares fit of the data from record 

number 6 of the UnoViS automobile database.  This record was chosen because it has a reliable reference signal and a good 

distribution of noise in the capacitive electrode channels.  However, due to the frequent correlation of two of the three 

channels, there were frequently effectively only two channels available, which was not sufficient to generate good statistics 

for peak coherence probability (Equation 4).  The corresponding coefficient “a” in Equation 2 was chosen heuristcally with 

reference to approximately 5 (5 second long) segments from the synthetic test data. 
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Figure 5.  The left panel shows the fraction of average segment heart rates estimated by TEPS (blue) and OSEA (red) within 5 

beats/minute of the reference value.  The asterisk indicates that the sixth record was used to fit three TEPS coefficients and is therefore 

not strictly an appropriate test set record.   The right panel shows sensitivity as a function of noise and number of channels for the synthetic 

data as processed by TEPS.   

 

3. Results 

The left panel in Figure 5 shows the fraction of 5 second segments with average heart rates within 5 beats/minute of the 

reference as estimated by both TEPS and OSEA for each of the 31 subjects in the UnoViS automobile data.  In 6 of the 31 

records (excluding record 6, which was used to fit coefficients as previously described), TEPS’ percentage was at least 30% 

greater than OSEA’s.  For all the records excluding the 6th, (Equation 2), Sensitivity (“SE”) and False Discovery Rate 

(“FDR”) were as follows:  

 

Test Metric  TEPS OSEA 

Sensitivity  91.0% 75.3% 

False Discovery Rate 3.0% 65.0% 

 

The mean time difference between TEPS and the reference for matching peaks was 1.26ms.   

The right panel in Figure 5 shows the sensitivity of TEPS, as a function of SNR (Figure 4) for 1-4 channels of the 

synthetic noise data.  In all cases, the FDR was approximately 1-SE, except for 1 channel at SNR levels below approximately 

12dB, where the FDR was substantially larger.  At a fixed SE of 85%, going from one to two channels resulted in an 

improvement of approximately 5dB in noise resistance, while going from two to four channels resulted in an improvement 

of approximately 3dB in noise resistance. The mean time difference between TEPS and the reference for matching peaks 

was 3-4 ms, depending on noise level. 

 

4. Discussion 

TEPS can accurately detect heart beats in conditions that would likely prove too noisy for conventional size/shape-based 

algorithms.  The superior noise resistance of TEPS results from its exploitation of information that conventional algorithms 

either ignore or utilize in a superficial manner.  Specifically, TEPS takes advantage of both heart rhythm and peak coherence 

across channels, which enables it to find patterns apart from peak size/shape.   
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Figure 6. A stylized depiction of the pattern finding approach.  Peaks are represented by circles whose diameters reflect peak size.  The 

horizontal axis represents time while the vertical axis represents 3 different channels.  Arrows point to the columns of true beats. 

 

Figure 6 is a stylized depiction of the benefit of the pattern finding approach.  As shown, peaks are represented by circles 

whose diameters reflect peak size.  The horizontal axis represents time while the vertical axis represents 3 different channels.  

Arrows point to the columns of true beats, whose regular pattern distinguishes them from noise peaks, despite the large 

overlap in size between the two types of peaks.  Of course, if a size pattern exists, for example between the second and third 

true peaks in Channel 1, it can further help discriminate true beats from noise. 

The temporal regularity of sinus rhythm and other heart rhythms implies a lower information entropy than irregular heart 

rhythms, which in turn means that regular rhythms can be detected in noisier channels than irregular rhythms.  An optimal 

detector must take advantage of this regularity.  However, TEPS can still detect irregular rhythms by performing another 

search after an initial search for sinus rhythm has failed to detect a high-quality sequence.  The quality of the irregular 

rhythm sequence will depend on peak coherence likelihood and peak pair prominence, and possibility, characteristics of 

the rhythm to the extent it can be distinguished from noise. 

Clinically valuable measures of heart rate variability can be extracted from somewhat noisy RR interval time series.9  

With regard to TEPS, generation of a reliable RR time series would require excluding low quality segments, which in turn 

would benefit from an estimate of the accuracy of a detected sequence as a function of its final score.  Assessing the 

relationship between detection accuracy and the final TEPS score is an area for future work. 

It is somewhat difficult to compare the results of the present study with those of Antink1 (SE: 88.0%; FDR: 4.8%) because 

of the 120 ms difference in the peak time matching windows of the two studies.  With regard to Ravichandran,10 it is simply 

not clear how well a denoising scheme would perform in very high noise conditions (e.g. 5dB in Figure 4) that TEPS can 

handle.  Indeed, Ravichandran emphasized the applicability of the denoising system to cases where morphological 

information can be derived from the ECG,10 whereas TEPS is directed to high noise situations where only peak detection is 

feasible.   

TEPS was tested on a very small data set, which limits the conclusions that can be drawn from this work.  Yet, the 

minimal amount of parameter fitting that was done bodes well for its generalizability.     

TEP was not tested on more than 2 channels in real world conditions since the UnoViS data often effectively comprised 

only 2 independent channels due to correlation.  With only 2 independent channels, the peak prominence score (the second 

term in Equation 2) is frequently more important than the peak coherence score (the first term in Equation 2).  The peak 

coherence score (and having more than 2 channels) becomes critical in extreme noise conditions, for example less than 5 

dB (Figure 4), but TEPS was effectively tested against only the synthetic data in these conditions.  For the synthetic data, 

the timing between peaks across channels between channels was a known quantity, 0 samples.  Testing TEPS in real world, 

extreme noise conditions would require either calibration to ascertain this offset or additional processing to estimate it on 

the fly.  These procedures may not produce a highly accurate estimate of this offset, which would degrade TEPS’ 

performance. 

Yet another limitation of this study pertains to the comparison of TEPS with a single conventional algorithm, OSEA, 

which serially detects peaks.  A search-based scheme that attempts to optimize the overall size and shape quality of detected 

beats1 may process this data more accurately than OSEA.  Further, a more sophisticated multi-channel algorithm13 may 

have been able to reduce the FDR. However, for noisy segments such as those shown in Figure 1, any algorithm that ignores 

temporal information will likely fail.    

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 16, 2021. ; https://doi.org/10.1101/2021.08.15.456413doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.15.456413
http://creativecommons.org/licenses/by/4.0/


Acknowledgements 

The author would like to thank James Hopenfeld and Dr. Hiroshi Ashikaga for comments on the manuscript. 

 

References 

1. Antink, C. H.; Breuer, E.; Uguz, D. U.; Leonhardt, S. Signal-Level Fusion with Convolutional Neural Networks for 

Capacitively Coupled ECG in the Car.  2018 Computing in Cardiology Conference (CinC) 2018, 45, 1-4. 

2. Börjesson, P.O.; Pahlm, O.; Sörnmo, L.; Nygårds, M.E.  Adaptive QRS detection based on maximum a posteriori 

estimation. IEEE Transactions on Biomedical Engineering 1982, 29, 341–351. 

3. Cai, W.; Hu, D. QRS Complex Detection Using Novel Deep Learning Neural Networks. IEEE Access 2020, 8, 97082–

97089.  

4. Goldberger, A.L.; Amaral, L.A.N.; Glass, L.; Hausdorff, J.M.; Ivanov P.Ch.; Mark RG; Mietus JE; Moody GB; Peng 

C-K; Stanley HE. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex 

Physiologic Signals. Circulation  2000,101(23), e215-e220. 

5. Hamilton, P. (2002) Open source ECG analysis. Computers in Cardiology 2002, 22–25 Sept.,101–104. 

6. Hopenfeld, B. Sinus rhythm heart rate estimation in high noise environments by application of a priori RR interval 

statistics. J Med Eng Technol. 2014, 38(6), 317-27. 

7. Moody, G.B.; Muldrow, W.E.; Mark, R.G. A noise stress test for arrhythmia detectors. Computers in Cardiology 1984, 

11, 381-384. 

8. Mohd Apandi, Z.F.; Ikeura, R.; Hayakawa, S.; Tsutsumi, S. An Analysis of the Effects of Noisy Electrocardiogram 

Signal on Heartbeat Detection Performance. Bioengineering 2020, 7(2), 53. 

9. Natarajan, A. et al. Heart rate variability with photoplethysmography in 8 million individuals: a cross-sectional study. 

The Lancet Digital Health 2, 2020, 12, e650 - e657. 

10. Ravichandran, V.; Murugesan, B.; Shankaranarayana, S.; Ram, K.; Preejith, S.P.; Joseph, J.; Sivaprakasam, M. Deep 

Network for Capacitive ECG Denoising. arXiv preprint 2019, 1903.12536v1. 

11. Shaffer, F; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front Public Health 2017, 5, 

258. 

12. Tejedor, J.; García, C.A.; Márquez, D.G.; Raya, R.; Otero, A. Multiple physiological signals fusion techniques for 

improving heartbeat detection: A review. Sensors 2019, 19(21), 4708. 

13. Yu, Q.; Guan, Q.; Li, P. et al. Fusion of detected multi-channel maternal electrocardiogram (ECG) R-wave peak 

locations. BioMed Eng OnLine 2016, 15, 4. 

14. Wartzek, T.; Czaplik, M.; Antink, C. H.; Eilebrecht, B.; Walocha, R.; Leonhardt, S. Unovis: the medit public 

unobtrusive vital signs database.  Health Information Science and Systems 2015, 3, 1. 

 
 

 

 

 

 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 16, 2021. ; https://doi.org/10.1101/2021.08.15.456413doi: bioRxiv preprint 

http://ecg.mit.edu/george/publications/nst-cinc-1984.pdf
http://ecg.mit.edu/george/publications/nst-cinc-1984.pdf
https://doi.org/10.1101/2021.08.15.456413
http://creativecommons.org/licenses/by/4.0/


Appendix 1 
 

TEPS was applied to both channels of the motion artifact noise record (‘em’) in the Physionet Noise Stress Test Database.7  A heart beat 

signal, with a normal rhythm in the range of 60 beats/minute, was detected throughout the entirety of both channels.  A screen capture of 

a relatively clean 10 second segment shows a heart beat like signal in channel 1.   
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