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ColabFold offers accelerated protein structure and complex predictions by combining the fast homology search of MMseqs2 with AlphaFold2
or RoseTTAFold. ColabFold’s 40−60× faster search and optimized model use allows predicting close to a thousand structures per day
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Predicting the three-dimensional structure of a protein from1

its sequence alone remains an unsolved problem. However,2

by exploiting the information in multiple sequence alignments3

(MSAs) of related proteins as raw input features for end-to-4

end training, AlphaFold2 [1] was able to predict the 3D atomic5

coordinates of folded protein structures at a median GDT-TS6

of 92.4% in the latest CASP14 [2] competition. The accuracy7

of many of the predicted structures was within the error mar-8

gin of experimental structure determination methods. Many9

ideas of AlphaFold2 were independently reproduced and im-10

plemented in RoseTTAFold [3]. Additionally to single chain11

predictions, RoseTTAFold was shown to model protein com-12

plexes. Evans et al. [4] released AlphaFold-multimer, a re-13

fined version of AlphaFold2 for complex prediction. Thus,14

two highly accurate open-source prediction methods are now15

publicly available.16

In order to leverage the power of these methods re-17

searchers require powerful compute-capabilities. First, to18

build diverse MSAs, large collections of protein sequences19

from public reference [5] and environmental [1, 6] databases20

are searched using the most sensitive homology detection21

methods HMMer [7] and HHblits [8]. These environmental22

databases contain billions of proteins extracted from metage-23

nomic and -transcriptomic experiments, which often comple-24

ment databases dominated by isolate genomes. Due to their25

large size searches can take up to hours for a single protein,26

while requiring over two terabyte of storage space alone. Sec-27

ond, to execute the deep neural networks GPUs with a large28

amount of GPU RAM are required even for relatively common29

protein sizes of ∼1000 residues. Though, for these the MSA30

generation dominates the overall run-time.31

To enable researchers without these resources to use Al-32

phaFold2, independent solutions based on Google Colabora-33

tory were developed. Colaboratory is a proprietary version34

of Jupyter Notebook hosted by Google. It is accessible for35

free to logged-in users and includes access to powerful GPUs.36

Tunyasuvunakool et al. [9] developed an AlphaFold2 Jupyter37
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FIG. 1. (a) ColabFold has a web and a command line interface,
that (b) send FASTA input sequence(s) to a MMseqs2 server
searching two databases UniRef100 and a database of environmen-
tal sequences with three profile-search iterations each. The sec-
ond database is searched using a sequence-profile generated from
the UniRef100 search as input. The server generates two MSAs
in A3M format containing all detected sequences. (c1) For single
structure predictions we filter both A3Ms using a diversity aware
filter and return this to be provided as the MSA input feature to
the AlphaFold2 models. (c2) For complex prediction we pair the
top hits within the same species to resolve the inter-complex con-
tacts and additionally add two unpaired MSAs (same to c1) to
guide the structure prediction. (d) To help researchers judge the
prediction quality we visualize MSA depth and diversity and show
the AlphaFold2 confidence measures (pLDDT and PAE).

Notebook for Google Colaboratory (referred to as AlphaFold-38

Colab), where the input MSA is built by searching with HM-39

Mer against a clustered UniProt and an eight-fold reduced en-40

vironmental databases. Resulting in less accurate predictions,41

while still requiring long search times.42

Here, we present ColabFold, a fast and easy to use software43

for protein structure and homo- and heteromer complex pre-44

diction, for use as a Jupyter Notebook inside Google Colabora-45

tory, on researchers’ local computers as a notebook or through46

a command line interface. ColabFold speed-ups the predic-47

tion by replacing AlphaFold2’s homology search with a 40-6048
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FIG. 2. (a) Structure prediction comparison of AlphaFold2 (yellow), AlphaFold-Colab (green) and ColabFold-AlphaFold2 with
BFD/MGnify (blue) and with the ColabFoldDB (magenta), and ColabFold-RoseTTAFold with BFD/MGnify (purple) using predictions
of 91 domains of 65 CASP14 targets. The 28 domains from the 20 free-modeling (FM) targets are shown first. FM targets were used to
optimize MMseqs2 search parameters. Each target was evaluated for each individual domain (in total 91 domains). (b) MSA generation
and model inference times for each CASP14 FM target sorted by protein length (same colors as before). Blue shows MSA runtimes
for ColabFold-AlphaFold2-BFD/MGnify and ColabFold-RoseTTAFold-BFD/MGnify. (c) Comparison of ColabFold complex predictions
in residue-index- (dark blue) and AlphaFold-multimer (light blue) mode, and to AlphaFold-multimer (yellow). (d) Runtime of colab-
fold_batch proteome prediction at three optimization levels: (dark blue) Always recompile, (blue) default, (light blue) stop model/recycle
evaluation after first prediction with a pLDDT of ≥85. Extrapolated line based on 50 AlphaFold2 predictions shown in yellow.

times faster MMseqs2 [10, 11] search. It additionally imple-49

ments speed-ups for batch predictions of structures by avoid-50

ing recompilation and adding early stop criteria. ColabFold’s51

batch mode with early stopping can compute the proteome of52

Methanocaldococcus jannaschii in 48 h on a consumer GPU –53

a ∼ 90 times speedup over AlphaFold2. We show that Colab-54

Fold outperforms AlphaFold-Colab and matches AlphaFold255

on CASP14 targets and also matches AlphaFold-multimer on56

the ClusPro [4, 12] dataset in prediction quality.57

ColabFold (Fig. 1) consists of three parts: (1) An MMseqs258

based homology search server to build diverse MSAs and to59

find templates. The server efficiently aligns input sequence(s)60

against the UniRef100, the PDB70 and an environmental se-61

quence set. (2) A Python library that communicates with the62

MMseqs2 search server, prepares the input features for (single63

or complex) structure inference, and visualizes of results. This64

library also implements a command line interface. (3) Jupyter65

notebooks for basic, advanced and batch use (Methods “Co-66

labFold notebooks”) using the Python library.67

In ColabFold we replace the sensitive search methods HM-68

Mer and HHblits by MMseqs2. We optimized the MSA gener-69

ation by MMseqs2 to have the following three properties: (1)70

MSA generation should be fast. (2) The MSA has to capture71

diversity well and (3) it has to be small enough to run on72

computers with limited RAM. Reducing the memory require-73

ment is especially helpful in Google Colaboratory where the74

provided system is selected from a pool with widely differing75

capabilities. While (1) is achieved through the fast MMseqs276

prefilter for (2 and 3) we developed a search workflow to maxi-77

mize sensitivity (Methods “MSA generation”) and a new filter78

that samples the sequence space evenly (Methods “New diver-79

sity aware filter” and Supplementary Fig. 1). Prediction80

quality highly depends on the input MSA. However, often an81

MSA with only a few (∼30) sufficiently diverse sequences is82

enough to produce high quality predictions (see Jumper et al.,83

Fig. 5a).84

Additionally, we combined the BFD and MGnify databases85

that are used in AlphaFold2 by HHblits and HMMer respec-86
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tively into a combined redundancy reduced version we refer to87

as BFD/MGnify (Methods “Reducing size of BFD/MGnify”).88

The environmental search database presented an opportunity89

to improve structure predictions of non-bacterial sequences,90

as e.g., eukaryotic protein diversity is not well represented in91

the BFD and MGnify databases. Limitations in assembly and92

gene calling due to complex intron/exon structures result in93

under representation in reference databases. We therefore ex-94

tended the BFD/MGnify with additional metagenomic protein95

catalogues containing eukaryotic proteins [13, 14, 15], phage96

catalogues [16, 17] and an updated version of MetaClust [18].97

We refer to this database as ColabFoldDB (Methods “Colab-98

FoldDB”). In Supplementary Fig. 2 we show that the Co-99

labFoldDB in comparison to the BFD/MGnify produces more100

diverse MSAs for PFAM [19] domains with < 30 members.101

To compare the accuracy of predicted structures we102

compared AlphaFold2 (default settings with templates),103

AlphaFold-Colab (no templates), ColabFold-RoseTTAFold-104

BFD/MGnify, ColabFold-AlphaFold2-BFD/MGnify and105

ColabFold-AlphaFold2-ColabFoldDB on TM-scores for all106

targets from the CASP14 competition (Fig. 2a). All three107

ColabFold modes were executed without templates. We show108

the targets split by free modeling (FM) on the left and the109

remaining ones on the right, since we used the FM-targets for110

optimization of search workflow parameters.111

The mean TM-scores for the FM targets are 0.826,112

0.818, 0.79, 0.744 and 0.62 for ColabFold-AlphaFold2-113

BFD/MGnify, ColabFold-AlphaFold2-ColabFoldDB, Al-114

phaFold2, AlphaFold-Colab and ColabFold-RoseTTAFold-115

BFD/MGnify respectively. Over all CASP14 targets the116

TM-scores are 0.887, 0.886, 0.888 and 0.754 for the respective117

methods, excluding AlphaFold-Colab as it cannot be used118

stand-alone.119

ColabFold could not predict T1084 well as MMseqs2 sup-120

presses all databases hits as false positives due to its amino121

acid composition filter and masking procedure. If these filters122

are deactivated T1084 can be predicted with an TM-score of123

0.872 (Supplementary Fig. 3). Supplementary Table 1124

contains a list of further targets where ColabFold differed sig-125

nificantly from AlphaFold2.126

ColabFold is on average 5x faster for single predictions than127

AlphaFold2 and AlphaFold-Colab, when taking both MSA128

generation (Fig. 2b) and model inference into account.129

AlphaFold2 was initially released without capabilities to130

model complexes. However, we found that by combining two131

sequences with a glycine linker [20] it could often successfully132

model complexes. Shortly afterwards, Baek [21] found that in-133

crementing the model-internal residue index - the method that134

was used in RoseTTAFold - could also be used in AlphaFold2.135

For high quality predictions it was shown that sequences136

should be provided in paired-form to AlphaFold2 [22]. We im-137

plemented a similar pairing procedure (Methods “MSA pair-138

ing for complex prediction”) and show the complex prediction139

capabilities of ColabFold in Fig. 2c. ColabFold achieves the140

highest accuracy in complex prediction on the ClusPro [4, 12]141

dataset with the AlphaFold-multimer model, however, some142

targets performed better using the residue-index mode.143

Fig. 3 shows two examples of ColabFold’s complex predic-144
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FIG. 3. Anecdotal examples showcasing the capabilities of ad-
vanced ColabFold features. (a) Setting the homo-oligomer set-
ting to 6, allows modeling of the homo-6-mer structure of 4-
Oxalocrotonate Tautomerase. Colored by chain (top), pLDDT
(predicted Local Distance Difference Test, bottom). The inter PAE
(Predicted Aligned Error) between chains is very low indicating a
confident prediction. (b) Providing three different proteins with
2:1:2 homo-oligomer setting allows modeling a hetero-complex with
mismatching symmetries of the D-methionine transport system.

tion capabilities: (a) shows a homo-six-mer and (b) shows145

a D-methionine transport system composed of three different146

proteins. For single structure prediction AlphaFold2 provides147

a pLDDT measure to indicate the prediction quality. A high148

pLDDT does not necessarily indicate a correct complex pre-149

diction, though the inter-complex predicted alignment error150

(PAE) helps to rank complexes. We visualize plots of PAE151

and complex conformation to help users judge the prediction152

quality of a complex. An example for heteromer complex pre-153

diction is shown in Supplementary Fig. 4 with its PAE plot.154

Furthermore, ColabFold complexes were successfully used to155

aid the cryo-EM structure determination of the 120 MDa hu-156

man nucleopore complex [23].157

In ColabFold we expose many internal parameters of Al-158

phaFold2 to aid users to model difficult targets, such as the159

recycle count (default 3). It controls the number of times160

the prediction is repeatedly fed through the model. For dif-161

ficult targets as well as for designed proteins without known162

homologs additional recycling iterations can result in a high163

quality prediction (Supplementary Fig. 5). Rerunning the164

CASP14 benchmark using 12 recycles resulted in an improve-165

ment of average TM-score from 0.887 to 0.898 (Supplemen-166

tary Fig. 6). The largest improvement was in targets with167

little MSA information.168

To meet the demand for high throughput structure predic-169
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tion we introduced several features in ColabFold. (1) MSA170

generation can be executed in batch-mode independently from171

model batch-inference. (2) We compile only one of the five Al-172

phaFold2 models and reuse weights. (3) We provide a batch173

execution mode, that avoids recompilation for sequences of174

similar length. (4) We implement early stop criteria, to avoid175

running additional recycles or models if a sufficiently accurate176

structure was already found. (5) We developed the command177

line tool colabfold_batch to predict structures on local ma-178

chines. All together, we show that the proteome of 1762 pro-179

teins shorter than 1000 aa of M. jannaschii can be predicted in180

48 h with early stopping at pLDDT of ≥85 on one Nvidia Titan181

RTX (Fig. 2d), while sacrificing little-or-no prediction accu-182

racy (Methods “Proteome Benchmark”). The average pLD-183

DTs of AlphaFold2 and ColabFold Stop ≥ 85 were 89.75 and184

88.78 in a subsampled set of 50 proteins.185

ColabFold builds beyond the initial offerings of Alphafold2186

by improving its sequence search, providing tools for model-187

ing homo- and heteromer complexes, exposing advanced func-188

tionality, expanding the environmental databases and enabling189

large-scale batch prediction of protein structures – at a ∼90190

times speedup over AlphaFold2.191
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MATERIALS AND METHODS
Executing ColabFold227

ColabFold is available as a set of Jupyter notebooks, to use228

on Google Colaboratory or users’ local machines, as well as an229

easily installable command line application.230

ColabFold notebooks ColabFold has four main Jupyter231

notebooks [24]: AlphaFold2_mmseqs2 for basic use that sup-232

ports protein structure prediction using (1) MSAs gener-233

ated by MMseqs2, (2) custom MSA upload, (3) using tem-234

plate information, (4) relaxing the predicted structures us-235

ing amber force fields [25], and (5) complex prediction.236

AlphaFold2_advanced for advanced users additionally sup-237

ports (6) MSA generation using HMMer (same as AlphaFold-238

Colab), (7) the sampling of diverse structures by iterat-239

ing through a series of random seeds (num_samples), and240

(8) control of AlphaFold2 model internals, such as chang-241

ing the number of recycles (max_recycle), number of en-242

sembles (num_ensemble), and enabling the stochastic part of243

the models via the (is_training) option. The latter enables244

dropout during inference, allowing the user to sample solu-245

tions from the uncertainty of the model [26] or the ambigu-246

ity of co-evolution constraints derived from the input MSA.247

AlphaFold2_batch for batch prediction of multiple sequences248

or MSAs. The batch notebook saves time by avoiding recom-249

pilation of the AlphaFold2 models (“Avoid recompiling dur-250

ing batch computation”) for each individual input sequence.251

RoseTTAFold for basic use of RoseTTAFold that supports pro-252

tein structure prediction using (1) MSAs generated by MM-253

seqs2, (2) custom MSAs and (4) sidechain prediction using254

SCWRL4 [27]. The RoseTTAFold notebook also has an op-255

tion use a slower but more accurate PyRosetta [28] folding256

protocol for structure prediction, using constraints predicted257

by RoseTTAFold’s neural network.258

ColabFold command line interface We initially focused259

on making ColabFold as widely available as possible through260

our Notebooks running in Google Colaboratory. To meet the261

demand for a version that runs on local users’ machines, we262

released “LocalColabFold”. LocalColabFold can take com-263

mand line arguments to specify an input FASTA file, an out-264

put directory, and various options to tweak structure predic-265

tions. LocalColabFold runs on wide range of operating sys-266

tems, such as Windows 10 or later (using Windows Subsys-267

tem for Linux 2), macOS, and Linux. The structure inference268

and energy minimization are accelerated if a CUDA 11.1 or269

later compatible GPU is present. LocalColabFold is available270

as free open-source software at github.com/YoshitakaMo/271

localcolabfold.272

Recognizing the limitations of Google Colaboratory, we273

provide the colabfold_batch command line tool through the274

colabfold python package. This allows computing of tasks275

too large for Google Colab on users’ own computer, e.g. pre-276

dicting an entire proteome (Methods “Proteome benchmark”).277

It can be installed with pip install colabfold, followed278

by pip install -U "jax[cuda]" -f https://storage.279

googleapis.com/jax-releases/jax_releases.html. It280

can be used as colabfold_batch input_file_or_directory281

output_directory, supporting FASTA, A3M and CSV files282

as input.283

Replacing MSA generation in284

AlphaFold2/RoseTTAFold with MMseqs2285

Generating multiple sequence alignments for AlphaFold2286

and RoseTTAFold is a time-consuming task. To improve their287

runtime, while maintaining a high prediction accuracy, we im-288

plemented optimized workflows using MMseqs2.289

MSA generation by MMseqs2 ColabFold sends the query290

sequence to a MMseqs2 server [11]. It searches the sequence(s)291

with three iterations against the consensus sequences of the292

UniRef30, a clustered version of the UniRef100 [29]. We ac-293

cept hits with an E-value of lower than 0.1. For each hit, we294

realign its respective UniRef100 cluster member using the pro-295

file generated by the last iterative search, filter them (Methods296

“New diversity aware filter”) and add these to the MSA. This297

expanding search results in a speed up of ∼10x as only 29.3298

million cluster consensus sequence are searched instead of all299

277.5 million UniRef100 sequences. Additionally, it has the300

advantages to be more sensitive since the cluster consensus301

sequences are used. We use the UniRef30 sequence-profile to302

perform an iterative search against the BFD/MGnify or Co-303

labFoldDB using the same parameters, filters and expansion304

strategy.305

New diversity aware filter To limit the number of hits306

in the final MSA we use the HHblits diversity filtering307

algorithm [8] implemented in MMseqs2 in multiple stages:308

(1) During UniRef cluster expansion, we filter each individual309

UniRef30 cluster before adding the cluster members to the310

MSA, such that no cluster-pair has a higher maximum311

sequence identity than 95% (--max-seq-id 0.95. (2) After312

realignment enable only the --qsc 0.8 threshold and disable313

all other thresholds (--qid 0 --diff 0 --max-seq-id314

1.0). Additionally, the qsc filtering is only used if least 100315

hits were found (--filter-min-enable 100). (3) During316

MSA construction we filter again with the following pa-317

rameters: --filter-min-enable 1000 --diff 3000 --qid318

0.0,0.2,0.4,0.6,0.8,1.0 --qsc 0 --max-seq-id 0.95.319

Here, we extended the HHblits filtering algorithm to filter320

within a given sequence identity bucket, such that it cannot321

eliminate redundancy across filter buckets. Our filter keeps322

the 3000 most diverse sequences in the identity buckets323

]0.0-0.2], ]0.2-0.4], ]0.4-0.6], ]0.6-0.8] and ]0.8-1.0]. In buckets324

containing less than 1000 hits we disable the filtering.325

New MMseqs2 pre-computed index to support ex-326

panding cluster members MMseqs2 was initially built to327

perform fast many-against-many sequence searches. Mirdita328

et al. [11] improved it to also support fast single-against-329

many searches. This type of search requires the database330

to be index and stored in memory. mmseqs createindex in-331

dexes the sequences and stores all time-consuming-to-compute332

data structures used for MMseqs2 searches to disk. We load333

the index into the operating systems cache using vmtouch334

(github.com/hoytech/vmtouch) to allow calls to the different335

MMseqs2 modules to become near-overhead free. We extended336

the index to store, in addition to the already present cluster337

consensus sequences, all member sequences and the pairwise338

alignments of the cluster representatives to the cluster mem-339

bers. With these resident in cache, we eliminate the overhead340

of the remaining module calls.341
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ColabFold databases342

AlphaFold2 requires over 2 terabyte of storage space for its343

databases, which is a significant hurdle for many researchers.344

We optimized its databases and additionally created another345

large environmental sequence database.346

Reducing size of BFD/MGnify To keep all required se-347

quences and data structures in memory we needed to reduce348

the size of the environmental databases BFD and MGnify, as349

both databases together would have required ∼517 GB RAM350

for headers and sequences alone.351

BFD is a clustered protein database consisting of ∼2.2352

billion proteins organized in 64 million clusters. MGnify353

(2019_05) contains ∼300 million environmental proteins. We354

merged both databases by searching the MGnify sequences355

against the BFD cluster representative sequences using MM-356

seqs2. Each MGnify sequence with a sequence identity of357

>30% and a local alignment that covers at least 90% of its358

length is assigned to the respective BFD cluster. All unas-359

signed sequences are clustered at 30% sequence identity and360

90% coverage (--min-seq-id 0.3 -c 0.3 --cov-mode 1 -s361

3) and merged with the BFD clusters, resulting in 182 million362

clusters. In order to reduce the size of the database we fil-363

tered each cluster keeping only the 10 most diverse sequences364

using (mmseqs filterresult --diff 10). This reduced the365

total number of sequences from 2.5 billion to 513 million, thus366

requiring only 84 GB RAM for headers and sequences.367

ColabFoldDB We built ColabFoldDB by expanding the368

BFD/MGnify with metagenomic sequences from various en-369

vironments. To update the database, we searched the pro-370

teins from the SMAG (eukaryotes) [14], MetaEuk (eukary-371

otes) [13], TOPAZ (eukaryotes) [15], MGV (DNA viruses) [16],372

GPD (bacteriophages) [17] and updated version of MetaClust373

[18] against the BFD/MGnify centriods using MMseqs2 and374

assigned each sequence to the respective cluster if they have375

a 30% sequence identity at a 90% sequence overlap (-c 0.9376

--cov-mode 1 --min-seq-id 0.3). All remaining sequences377

were clustered using MMseqs2 cluster -c 0.9 --cov-mode378

1 --min-seq-id 0.3 and appended to the database. We re-379

move redundancy per cluster by keeping the most 10 diverse380

sequences using (mmseqs filterresult --diff 10). The fi-381

nal database consists of 209,335,865 million representative se-382

quences and 738,695,580 members. See “Data availability” for383

input files. We provide the MMseqs2 search workflow used in384

the server (“MSA generation by MMseqs2”) as a standalone385

script colabfold_search.sh.386

Template information AlphaFold2 searches with HHsearch387

through a clustered version of the PDB (PDB70 [8]) to find388

the 20 top ranked templates. In order to save time, we use389

MMseqs2 [10] to search against the PDB70 cluster represen-390

tatives as a prefiltering step to find candidate templates. This391

search is also done as part of the MMseqs2 API call on our392

server. Only the top 20 target templates according to E-value393

are then aligned by HHsearch. The accepted templates are394

given to AlphaFold2 as input features. This alignment step is395

done in the ColabFold client and therefore requires the subset396

of the PDB70 containing the respective HMMs. The PDB70397

subset and the PDB mmCIF files are fetched from our server.398

For benchmarking, no templates are given to ColabFold.399

Modeling protein complexes with ColabFold400

ColabFold offers protein complex folding through the spe-401

cialized AlphaFold-multimer model and through residue-index402

manipulation [3]. Here, we show the steps we took for Colab-403

Fold to produce accurate protein complex predictions.404

Modeling of protein-protein complexes We implemented405

two protein complex prediction modes in ColabFold. One406

based on AlphaFold-multimer [4] and one based on the residue407

index manipulation of the original AlphaFold2 model. Baek408

et al. [3] show that RoseTTAFold is able to model complexes,409

despite being trained only on single chains. This is done by410

providing a paired alignment and modifying the residue in-411

dex. The residue index is used as an input to the models to412

compute positional embeddings. In AlphaFold2, we find the413

same to be true, although surprisingly the paired alignment414

is often not needed (Fig. 2c). AlphaFold2 uses relative posi-415

tional encoding with a cap at |i−j| ≥ 32. Meaning, any pair416

of residues separated by 32 or more are given the same relative417

positional encoding. By offsetting the residue index between418

two proteins to be > 32, AlphaFold2 treats them as separate419

poly-peptide chains. ColabFold integrates this for modeling420

complexes.421

For homo-oligomeric complexes (Fig. 3a), the MSA is422

copied multiple times for each component. Interestingly, it423

was found that providing a separate MSA copy (padding by424

gap characters to extend to other copies) to work significantly425

better than concatenating left-to-right.426

For hetero-oligomeric complexes (Fig. 3b), a separate MSA427

is generated for each component. The MSA is paired according428

to the chosen pair_mode (“MSA pairing for complex predic-429

tion”). Since pLDDT is only useful for assessing local struc-430

ture confidence, we use the fine-tuned model parameters to431

return the PAE for each prediction. As illustrated in Sup-432

plementary Fig. 4, the inter-PAE (predicted aligned error),433

the predicted TM-score or interface TM-score (both derived434

from PAE) can be used to rank and assess the confidence of435

the predicted protein-protein interaction.436

MSA pairing for complex prediction A paired MSA helps437

AlphaFold2 to predict complexes more accurately only if or-438

thologous genes are paired with each other. We followed a439

similar strategy as Bryant et al. [22] to pair sequences accord-440

ing to their taxonomic identifier. For the pairing we search441

each distinct sequence of a complex against the UniRef100442

using the same procedure as described in “MSA generation”.443

We return only hits that cover all complex proteins within one444

species and pair only the best hit (smallest e-value) with an445

alignment that covers the query to at least 50%. The pairing446

is implemented in the new MMseqs2 module pairaln.447

For prokaryotic protein prediction, we additionally imple-448

mented the protocol described in [3] to pair sequences based449

on their distances in the genome as predicted from the UniProt450

accession numbers.451

Taxonomic labels for MSA pairing To pair MSAs for com-452

plex prediction, we retrieve for each found UniRef100 member453

sequence the taxonomic identifier from the NCBI taxonomy454

[30]. The taxonomic labels are extracted from the lowest com-455

mon ancestor field (“common taxon ID”) of each UniRef100456

sequence from the uniref100.xml (2021_03) file.457
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Speeding up AlphaFold2’s model evaluation458

Our efforts in speeding up AlphaFold2’s MSA generation459

yielded large improvements in its runtime. However, we dis-460

covered multiple opportunities within AlphaFold2 to speed up461

its model inference, without sacrificing (or only sacrificing very462

little) of its accuracy.463

Avoid recompiling AlphaFold2 models The AlphaFold2464

models are compiled using JAX [31] to optimize the model465

for specific MSA or template input sizes. When no templates466

are provided, we compile once and, during inference, replace467

the weights from the other models, using the configuration468

of model 5. This saves 7 minutes of compile time. When469

templates are enabled, model 1 is compiled and weights from470

model 2 are used, model 3 is compiled and weights from mod-471

els 4 and 5 are used. This saves 5 minutes of compile time.472

If the user changes the sequence or settings, without changing473

the length or number of sequences in the MSA, the compiled474

models are reused without triggering recompilation.475

Avoid recompiling during batch computation In order476

to avoid AlphaFold2 model recompilation for every protein477

AlphaFold2 provides a function to add padding to the input478

MSA and templates called make_fixed_size. However, this is479

not exposed in AlphaFold2. We used the function in our batch480

notebook as well as in our command line tool colabfold_batch,481

in order to maximize GPU utilization and minimize the need482

of model recompilation. We sort the input queries by sequence483

length and process them in ascending order. We pad the input484

features by 10% (by default). All sequences that lie within the485

query length and an additional 10% margin do not require to486

be recompiled, resulting in a large speed up for short proteins.487

Recycle count AlphaFold2 improves the predicted protein488

structure by recycling (by default) 3 times, meaning the pre-489

diction is fed multiple times through the model. We exposed490

the recycle count as a customizable parameter as additional491

recycles can often improve a model (Supplementary Fig. 6)492

at the cost of a longer runtime. We also implemented an op-493

tion to specify a tolerance threshold to stop early. For some494

designed proteins without known homologous sequences, this495

helped to fold the final protein (Supplementary Fig. 5).496

Speed-up of predictions through early stop AlphaFold2497

computes five models through multiple recycles. We noted498

that for prediction of high certainty (> 85 pLDDT), all five499

models would often produce structures of very similar confi-500

dence, for some even without or with less than 3 of recycles.501

In order to speed up the computation we added a parameter502

to define an early stop criterion that halts additional model503

inferences and stops recycling if a given pLDDT or (interface)504

pTMscore threshold is reached.505

Exposing advanced features506

In our investigation of AlphaFold2’s internals, we realized507

that we could expose many knobs that might be usefully to508

researchers trying to explore AlphaFold2’s full potential.509

Sampling of diverse structures To reduce memory require-510

ments, only a subset of the MSA is used as input to the model.511

Alphafold2, depending on model configuration, subsamples512

the MSA to a maximum of 512 cluster centers and 1024 “extra”513

sequences. Changing the random seed can result in different514

cluster centers and thus different structure predictions. Colab-515

Fold provides an option to iterate through a series of random516

seeds, resulting in structure diversity. Further structure di-517

versity can be generated by using the original or fine-tuned518

(use_ptm) model parameters and/or enabling (is_training)519

to activate the stochastic (dropout) part of model. Enabling520

the latter, can be used to sample an ensemble of models for521

the uncertain parts of the structure prediction.522

Custom MSAs ColabFold allows researchers to upload their523

own MSAs. Any kind of alignment tool can be used to gener-524

ate the MSA. The uploaded MSA can be provided in aligned525

FASTA, A3M, STOCKHOLM or Clustal format. We con-526

vert the respective MSA format into A3M format using the527

reformat.pl script from the HH-suite [8].528

Lightweight 2D structure renderer For visualization, we529

developed a matplotlib [32] compatible module for displaying530

the 3D ribbon diagram of a protein structure or complex. The531

ribbon can be colored by residue index (N to C terminus)532

or by a predicted confidence metric (such as pLDDT). For533

complexes, each protein can be colored by chain ID. Instead534

of using a 3D renderer, we instead use a 2D line plotting based535

technique. The lines that make up the ribbon are plotted in536

the order in which they appear along the z-axis. Furthermore,537

we add shade to the lines according to the z-axis. This creates538

the illusion of a 3D rendered graphic. The advantage over a539

3D renderer is that the images are very lightweight, can be540

used in animations and saved as vector graphics for lossless541

inclusion in documents. As the 2D renderer is not interactive,542

we additionally included a 3D visualization using py3Dmol543

[33] in the ColabFold notebooks.544

Benchmarking ColabFold545

We show with multiple datasets that ColabFold does not546

sacrifice accuracy for its much faster runtimes.547

Benchmark with CASP14 targets We compared548

AlphaFold-Colab and AlphaFold2 (commit b88f8da) against549

ColabFold using all CASP14 [2] targets. ColabFold-550

AlphaFold2 (commit 2b49880) used UniRef30 (2021_03)551

[34] and the BFD/MGnify or ColabFoldDB. ColabFold-552

RoseTTAFold (commit ae2b519) was executed with paper-553

mill (github.com/nteract/papermill) using the PyRosetta554

protocol [28]. ColabFold-RoseTTAFold-BFD/MGnify and555

ColabFold-AlphaFold2-BFD/MGnify used the same MSAs.556

AlphaFold-Colab used the UniRef90 (2021_03), MGnify557

(2019_05) and the small BFD. AlphaFold2 used the full_dbs558

preset with and default databases downloaded with the559

download_all_data.sh script. The 65 targets contain 91 do-560

mains, among these are 20 FM-targets with 28 domains. We561

compared the predictions against the experimental structures562

using TMalign [35].563

Measuring run-times for CASP14 benchmark To pro-564

vide more accurate run times we split MSA generation and565

model inference measurements. MSA generation times were566

repeated five times and averaged.567

ColabFold was executed using colabfold_batch. The MM-568

seqs2 server which computes MSAs for ColabFold has 2x14569

core Intel E5-2680v4 CPUs and 768 GB RAM. Each gener-570

ated MSA was processed by a single CPU-core. Runtimes571

were computed from server logs.572
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AlphaFold2 MSA generation runtimes were measured by573

running AlphaFold2 without models (providing an empty574

string to the --model_names parameter) on the same 2x14575

core Intel E5-2680v4 CPUs and 768 GB RAM system. The576

AlphaFold2 databases were stored on a software-RAID5 com-577

posed of six Samsung 970 EVO Plus 1TB NVMe drives. Run-578

times for AlphaFold2 were taken from the features entry of579

the timings.json file. For a fair comparison, AlphaFold2 was580

modified to allow HMMer and HHblits to access one CPU core.581

All ColabFold and AlphaFold2 model inference runtime582

measurements were done on systems with 2x16 core Intel583

Gold 6242 CPUs with 192 GB RAM and 4x Nvidia Quadro584

RTX5000 GPUs. Only one GPU was used in each run.585

ColabFold-RoseTTAFold-BFD/MGnify and ColabFold-586

AlphaFold2-BFD/MGnify used the same MSAs, runtimes are587

shown only once.588

AlphaFold-Colab was executed in the browser using a589

Google Colab Pro account. Times for homology search were590

taken from the notebook output cell “Search against genetic591

databases” cell. The JackHMMer search uses 8 threads.592

Complex benchmark We compare predictions of seventeen593

ClusPro [4, 12] targets to their native structures using DockQ594

[36]. We used colabfold_batch (commit 45ad0e9) with595

BFD/MGnify in residue-index manipulation- and AlphaFold-596

multimer mode to predict structures. We use MSA pairing as597

described in “MSA pairing for complex prediction” and also598

add unpaired sequences. Models are ranked by predicted in-599

terface pTMscore as returned by AlphaFold-multimer. The600

DockQ AlphaFold-multimer reference numbers were provided601

by Richard Evans.602

Proteome benchmark We predict the proteome of M. jan-603

naschii. Of the 1787 proteins we exclude the 25 proteins longer604

than 1000 residues, leaving 1762 proteins of 268 aa average605

length. With the colabfold_search wrapper to MMseqs2606

we search against the ColabFoldDB (“ColabFoldDB”) in 113607

min on a system with an AMD EPYC 7402P 24-core CPU (no608

hyperthreading) and 512GB RAM. MMseqs2 had a maximum609

resident set size of 308 GB during the search. We then predict610

the structures on a single Nvidia Titan RTX with 24 GB RAM611

in 46 h using only MSAs (no templates). For each query we612

stop early if any recycle iteration reaches a pLDDT of at least613

85. Early stopping results in a speed-up of 3.7× over default614

and 4.8× over always recompiling. AlphaFold2 (reduced_dbs)615

was ran with the reduced_dbs preset and no template infor-616

mation was used. We changed the AlphaFold2 source code to617

utilize all CPU cores during the homology search.618

AlphaFold2 (reduced_dbs, v2.1.1), ColabFold (commit619

f5d0cec) default and ColabFold Stop ≥ 85 have an average620

pLDDT of 90.68, 90.22 and 89.33 respectively for 50 ran-621

domly sampled proteins. These are the same proteins that622

were used to extrapolate the run-time of AlphaFold2. Over623

all predictions, the pLDDTs for the M. jannaschii proteome624

downloaded from the AlphaFoldDB, ColabFold default and625

ColabFold Stop ≥ 85 are 89.75, 89.38 and 88.77, respectively.626

CODE AVAILABILITY

ColabFold is free open-source software (MIT) and avail-627

able at github.com/sokrypton/ColabFold. A locally in-628

stallable version is available at github.com/YoshitakaMo/629

localcolabfold. The ColabFold development version shown630

in this manuscript is available at github.com/konstin/631

ColabFold. The ColabFold server components are free632

open-source software (GPLv3) and available at github.com/633

soedinglab/mmseqs2-app. MMseqs2 is free open-source soft-634

ware (GPLv3) and available at mmseqs.com.635

DATA AVAILABILITY

ColabFold databases are freely (CC-BY-SA 4.0) available at636

colabfold.mmseqs.com.637

MSAs and structures produced during benchmarking:638

wwwuser.gwdg.de/~compbiol/colabfold/manuscript639

Input databases used for building ColabFold databases:640

UniRef30: uniclust.mmseqs.com641

BFD: bfd.mmseqs.com642

MGnify: ftp.ebi.ac.uk/pub/databases/metagenomics/643

peptide_database/2019_05644

PDB70: wwwuser.gwdg.de/~compbiol/data/hhsuite/645

databases/hhsuite_dbs646

MetaEuk: wwwuser.gwdg.de/~compbiol/metaeuk/2019_11/647

MetaEuk_preds_Tara_vs_euk_profiles_uniqs.fas.gz648

SMAG: www.genoscope.cns.fr/tara/localdata/data/649

SMAGs-v1/SMAGs_v1_concat.faa.tar.gz650

TOPAZ: osf.io/gm564651

MGV: portal.nersc.gov/MGV/MGV_v1.0_2021_07_08/mgv_652

proteins.faa653

GPD: ftp.ebi.ac.uk/pub/databases/metagenomics/654

genome_sets/gut_phage_database/GPD_proteome.faa655

Further datasets used for benchmarking ColabFold:656

PFAM (Pfam-A.seed.gz & Pfam-A.full.gz):657

ftp.ebi.ac.uk/pub/databases/Pfam/releases/Pfam34.0658

M. jannaschii proteome:659

uniprot.org/proteomes/UP000000805660

ftp.ebi.ac.uk/pub/databases/alphafold/v1/661

UP000000805_243232_METJA_v1.tar662
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