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Abstract 

Recent years have seen an increase in the number of structures available, 
not only for new proteins but also for the same protein crystallized with 
different molecules and proteins. While protein design software have 
proven to be successful in designing and modifying proteins, they can also 
be overly sensitive to small conformational differences between structures 
of the same protein. To cope with this, we introduce here pyFoldX, a python 
library that allows the integrative analysis of structures of the same protein 
using FoldX, an established forcefield and modeling software. The library 
offers new functionalities for handling different structures of the same 
protein, an improved molecular parametrization module, and an easy 
integration with the data analysis ecosystem of the python programming 
language. 

Availability and implementation 

pyFoldX is an open-source library that uses the FoldX software for energy 
calculations and modelling. The latter can be downloaded upon registration 
in http://foldxsuite.crg.eu/ and is free of charge for academics. Full details 
on installation, tutorials covering the library functionality, and the scripts 
used to generate the data and figures presented in this paper are available 
at https://github.com/leandroradusky/pyFoldX.  
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Introduction 

Outstanding advances in the experimentally determinable biomolecular 
space have been recently made (H. M. Berman, Vallat, and Lawson 2020); 
also, the last CASP competition (Senior et al. 2020) revealed striking 
improvements in the field of in silico biomolecular modelling. It is now 
increasingly likely that a protein of interest has several structures, alone or 
in complex with other biomolecules and ligands; however, protein design 
software users/researchers creating structural datasets commonly only 
select one of the available structures (normally the one with highest 
resolution and/or the highest sequence coverage) and disregard the rest. 
This loses the potential power of using different structures of the same 
protein and can result in significant differences in the analyses due to 
small conformational differences (Delgado Blanco et al. 2020) or the 
presence of different molecular partners along available structures (Kiel 
and Serrano 2014).  

Thus, there is a need for bioinformatics tools that allow all available 
structures for a target protein to be considered when trying  to diagnose 
mutational effects or to engineer new properties. These tools should take 
into account all structural information resulting from the formation of 
complexes and binding modes, as well as the distinct conformations 
arising from the crystallization conditions.  

Here, we introduce pyFoldX, a python library powered by the FoldX suite 
(Delgado et al. 2019; Schymkowitz et al. 2005). pyFoldX enables full 
integration of standardized data analysis tools within the python 
programming language. The pyFoldX library mainly comprises two 
packages: i) the structure package, which contains classes to handle single 
structures or ensembles of structures (Fig. 1A). It is fully integrated with 
FoldX functionality (energy measurements, mutational modelling, etc.) and 
stores the results of energetic calculations in pandas data frames 
(McKinney 2015); and ii) the paramx package, which improves a 
functionality introduced in the latest version of FoldX, thus allowing for 
user-friendly parameterization of new molecules (Fig. 1B) based on 
standard atom types. Using these new functionalities, we created a 
comprehensive database of repaired PDB structures with minimized energy 
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and improved structural quality. Our results from analyzing a 
comprehensive set of benign and pathogenic mutations mapped into 
protein structures underscored that considering the ensemble of available 
structures can improve the FoldX diagnosis. We have made the pyFoldX 
code open to the public and encourage the community to extend the library 
and/or request new specific features. 

Functionality and Results 

Molecule Parameterization 

A key feature that was introduced in the last version of FoldX was the 
possibility to parameterize small molecules not previously recognized by 
the software; this feature was effectively used the parameterization of RNA 
bases. We have now improved it in pyFoldX by allowing the auto 
parameterization of molecules through the simple definition of template 
atoms (Table S1). This feature will permit users to introduce new organic 
molecules in the FoldX force field using atoms that fit into the template 
atom set provided. A complete tutorial that demonstrates the 
parameterization of a glucose molecule complexed with a lectin is 
available online (Tutorials section of project's github).  

Mutational Effect Diagnosis 

Taking advantage of the integration of pyFoldX with pandas, we built a 
random forest classifier using the sklearn library (Trappenberg 2019). This 
allowed us to assess the accuracy of FoldX energetic features, along with 
other structural annotations, as well as to discriminate between benign and 
pathogenic mutations structurally mapped by the Missense3D-DB (Khanna 
et al. 2021). We trained the classifier with a random set encompassing 80% 
of the annotated mutations, with the remaining 20% used for testing (Fig. 

1C). We then analyzed mutations along the ensemble of good resolution 
structures (resolution <2.0Å) for the same set of mutations. Based on the 
classifier probabilities for a mutation to belong to the 'pathogenic' or 
'benign' category (Ppathogenic=1-Pbenign), we found that mutations classified 
as benign tend to keep such classification along the ensemble of available 
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structures for their proteins. This allowed us to achieve a better separation 
in the histogram of probabilities from both types of mutations (Fig. 1D). 

Notably, we observed a better discriminative power when we analyzed 
structural ensembles than when we used the best structure (e.g., in terms 
of resolution), giving us a highly accurate classification (AUC = 0.9) (Fig. 

1E).  

Note that the pyFoldX's github webpage include: i) tutorials on how 
features that feed the classifier are computed; ii) the datasets of these 
features along single structures and ensembles mutations; and iii) scripts 
showing how the random forest classifier was created and used. 

FoldX-Repaired Protein DataBank 

By combining the PDB_REDO (Joosten et al. 2014) structure refinement 
method with the Foldx RepairPDB command for sidechain energy 
minimization, we designed a pipeline using pyFoldX to refine the quality for 
virtually all the structures in the Protein Data Bank (H. Berman et al. 2007) 
(Fig. S2). We first examined the structures to determine if they contained 
organic compounds not recognized by FoldX; we then parameterized the 
most frequent ones. Table S2 shows the list of new molecules now 
parameterized and recognized by FoldX.  

In general, the resulting repaired structures presented lower energies when 
evaluated with independent force fields (Alford et al. 2017; Yang and Zhou 
2008) (Fig. S2A) as well as improved structural quality features (as 
measured with WHAT_CHECK; (Dunbrack 2004) (Fig. S2B). If any of the 
independent force fields reported higher energies with respect to the 
original entries, the structures were further analyzed to determine potential 
flaws in FoldX modeling. The predicted high energies were due proline 
rotamers placed by FoldX but penalized by these force fields (Fig S3). 
FoldX uses a probabilistic method that depends on the previous phi, psi, 
and chi angles to generate rotamers; therefore, it is possible that some of 
the generated rotamers have a poor representation in the PDB structures. 
Note that all the generated structure files are available online for 
downloading or as object instantiation through pyFoldX structure package.  
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Discussion and Perspectives 

Here we present pyFoldX, a novel  library fusing FoldX modeling 
functionalities within the python programming language. pyFoldX enables 
easy analyses of extensive structural datasets, and in-depth energy 
analyses and modelling along the ensemble of structures available for a 
single protein, in a user-friendly manner. Notably, comprehensive analysis 
using pyFoldX of mispredicted energy changes versus experimentally 
measured mutations should lead to improvements in the FoldX sidechain 
modeling routines and force field. Mutational effect diagnosis can now be 
improved by incorporating other non-structural features, and other machine 
learning strategies can be investigated to improve the built classifier. The 
possibility to parameterize novel organic molecules presents opportunities 
for ligand binding modelling; notably for carbohydrate molecules, given the 
ability of pyFoldX to handle mmCIF formatted files that correct historic 
errors on these kinds of interactions (Feng et al. 2021). Overall, we believe 
that this tool will provide the structural biology community with a more 
powerful way to access FoldX functionalities, useful for instance for 
determining effects of mutations or for engineering new properties into 
proteins/protein-ligand complexes. 
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Figure  

 

Figure 1: (A) pyFoldx structure-handling capabilities. Single structures can 

be instantiated from different formats, while ensembles of structures of the 

same protein can be instantiated from the protein's Uniprot accession. 

FoldX commands can be executed into structures and ensembles, 

returning pandas dataframes with energies and, if applicable, objects with 

the transformed structures. (B) Example of parametrization of a glucose 

molecule with the pyFoldX paramx package. (C) Analyzed mutations data 

set description. To train a random forest classifier, 80% of the Missense3D-

DB mutations were used in order to estimate the probability of belonging to 

the 'pathogenic' category. The remaining 20% were used for testing and 

analyzed by using the indicated structure in the database and the ensemble 

of good resolution structures for these proteins. (D) Histogram of 

probability of belonging to the 'pathogenic' category given by the created 

classifier for mutations mapped into their best structure by Missense3D-DB 
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(left) and the mean of the probabilities for all crystals of good resolution 
along its ensemble (right). (E) ROC curve of mutation class prediction by 
the generated classifier taking into account best crystal (orange lines) or 
mean predictions for crystals along ensemble (blue lines). Thin lines: 
classifying mutations as pathogenic (Ppathogenic>0.5) or benign 

(Ppathogenic≤0.5). Thick lines: mutations with no clear 

prediction are discarded (0.4>Ppath>0.7). Overall, predictions are 
better when ensembles are considered and high accuracy is achieved 
(AUC = 0.9) when no clear predictions are discarded from the analysis. 
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