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ABSTRACT

Allostery is a pervasive mechanism which regulates the activity of proteins in living systems through1

binding of a molecule at a distant site from the orthosteric site of the protein. The universality of2

allosteric regulation complemented by the benefits of highly specific, potentially non-toxic and protein3

activity modulating allosteric drugs makes uncovering allosteric sites on proteins invaluable for drug4

discovery. However, there are few computational methods to effectively predict them. Bond-to-bond5

propensity analysis, a recently developed method, has successfully predicted allosteric sites for a6

diverse group of proteins with only the knowledge of the orthosteric sites and the corresponding7

ligands in 19 of 20 cases. The method is based on an energy-weighted atomistic protein graph and8

allows for computationally highly efficient analysis in atomistic detail. We here extended the analysis9

onto 432 structures of 146 proteins from two existing benchmarking datasets for allosteric proteins:10

ASBench and CASBench. We further refined the metrics to account for the cumulative effect of11

residues with high propensities and the crucial residues in a given site with two additional measures.12

The allosteric site is recovered for 95/113 proteins (99/118 structures) from ASBench and 32/3313

proteins (304/314 structures) from CASBench, with the only a priori knowledge being the orthosteric14

site residues. Knowing the orthosteric ligands of the protein, the allosteric site is identified for 32/3315

proteins (308/314 structures) from CASBench.16

1 Introduction17

Proteins are ubiquitous in all aspects of cellular life where they fulfil crucial functions, while their malfunction could18

result in disease states [1, 2]. By 2017, 70% of small molecule drugs on the market targeted four types of proteins,19

namely protein kinases, ion channels, rhodopsin-like G protein-coupled receptors (GPCRs), and nuclear hormone20

receptors [3]. Most current small molecule drugs modify or inhibit the action of a protein by directly binding to the21

primary active site (also known as the orthosteric site) of the protein. The main advantage of this drug type is the high22

affinity and generally high specificity towards the orthosteric site as proved by a large number of successful drugs23

on the market [4]. Despite such advantages, the configuration of orthosteric sites is similar for proteins performing24

related functions and a low selectivity leads to off-target toxicity [5]. For instance, orthosteric sites for adenosine25

triphosphate (ATP) binding in different kinases are similar, thus making the optimisation of selective kinase inhibitor26

challenging [6]. In addition, prolonged exposure to the drugs results in drug resistance, through either modifications27

of the drug molecules [7] or changes to the orthosteric sites [8, 9, 10, 11, 12]. Moreover, orthosteric drugs act as28

complete inhibitors or activators rather than modulators of proteins and hence their therapeutic effect may not be the29

most optimal [10].30

Modulation of protein activity, achieved through binding of small molecules at the allosteric site, is termed allosterism31

[4]. These binding events result in conformational changes of the targeted proteins and affect the binding of natural32

substrates to orthosteric sites. Conformational modification can enhance or reduce the binding affinity of natural33

substrates at orthosteric sites and can, therefore, lead to a controlled upregulation and downregulation of protein34
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activities which is difficult to achieve by orthosteric site binding [13]. Allosteric modulators therefore have a lower35

potential for adverse side effects. Once all the allosteric sites are fully occupied, the drug reaches saturation (a ceiling36

level) and there is no further pharmacological effect. This indicates that on-target safety can be guaranteed even with37

overdosing [14, 15]. Contributing to the low off-target effects of allosteric drugs is the low evolutionary pressure for38

allosteric sites to accommodate an endogenous substrate compared to the well-conserved orthosteric sites [16]. This39

would allow for highly selective drug targeting in closely related protein families by exploiting allosterism.40

The two main challenges for using allostery in drug development are finding suitable allosteric sites in the first place41

and designing molecules which bind and exert modulation effects. The design of allosteric site binders could follow42

well-established approaches used to develop molecules that bind to orthosteric sites, such as high-throughput screening43

[17], structure-based drug design [18] and peptide phage display [19]. To achieve a high specificity as well as the44

intended modulation, it is indispensable to search for unique allosteric sites for the targeted protein. Therefore, efficient45

and effective methods for identifying putative allosteric sites are of great interest to guide the rational design of allosteric46

modulators and contribute to the field of drug discovery and development [20].47

Experimental methods including tethering [21, 22], nuclear magnetic resonance (NMR) [23, 24] and traditional48

high-throughput screening followed by X-ray crystallography [25, 26] have successfully led to the discovery of a49

few novel allosteric sites. All of these methods involve screening of huge compound libraries which is laborious and50

time-consuming. To circumvent the challenges associated with the experimental methods, numerous computational51

methods have been developed to predict allosteric sites (reviewed in [27, 28]) with various degrees of success. The52

continuous growth of the Allosteric Database (ASD) which contains data of 1949 allosteric proteins, their binding53

sites and other relevant information [29, 30, 31] and the construction of benchmarking datasets for allosteric proteins,54

ASBench [32] and CASBench [33], have provided comprehensive resources in aiding the identification of allosteric55

sites with computational methods.56

There are two general ways of approaching the problem of identifying putative allosteric sites computationally: (1)57

identifying allosteric sites without considering the communication with orthosteric sites and (2) uncovering the allosteric-58

communication pathways between orthosteric and allosteric sites [34]. Several studies have followed the first approach:59

Huang et al. developed Allosite to find allosteric sites based on topological and physicochemical characteristics of60

allosteric and non-allosteric sites using a support vector machine (SVM) classifier [35], while Chen et al. built a random61

forest model which utilised calculated descriptors of orthosteric, allosteric and regular sites (binding sites without any62

function) and their bound ligands to classify potential sites on a given protein and identify putative allosteric sites [36].63

Similarly, not concentrating on cognate ligands, Fogha et al. performed computational analysis of the density and64

clustering of crystallisation additives which are used to stabilise proteins during the process of crystallisation [37].65

These methods, although achieving some promising predictability for putative allosteric sites, focus merely on the66

potential binding pockets on the proteins and do not consider the effects of binding at these sites on the protein, which67

is the key concept of allostery. Therefore, these approaches alone are not sufficient to identify potential allosteric68

sites. Molecular dynamics (MD) simulations and normal mode analysis (NMA) of elastic network models (ENM) are69

widely used within the second approach of identifying allosteric signalling paths based on protein dynamics described70

by Newton’s equation of motion. MD simulations can be applied to model proteins at atomic resolution and aid the71

understanding of communication pathways in proteins [38, 39]. For example, Shukla et al. applied MD simulations to72

reveal the structures of intermediates of a non-receptor tyrosine kinase c-Src and analysed its activation pathways to73

discover inhibitory allosteric sites [40]. However, MD simulations require a vast amount of computational resources if74

applied at an atomistic level for large proteins [41] and conventional all-atom MD simulations are unable to access the75

timescales of ligand-binding processes of proteins [42]. To retain crucial characteristics of dynamics and alleviate high76

computational demands, ENM were introduced. Performing NMA of ENM on proteins can result in a good match77

to MD simulations [43, 44, 45]. Most available methods include NMA of ENM as the main component and use a78

perturbation approach to measure the response of the protein to ligand binding or unbinding [34], thereby predicting79

allosteric sites, such as PARS [46, 47]. The results obtained from NMA of ENM can be combined with machine80

learning for the identification of allosteric sites and have been applied in AlloPred [48] and AllositePro [49]. Guarnera81

and Berezovsky introduced a structure-based statistical mechanical model of allostery (SBSMMA) which differs from82

ENM [50] to predict allosteric sites [51]. Although both ENM and SBSMMA are successful in modelling proteins83

and require much less computational power than MD simulations, they have two inherent limitations – not providing84

atomistic details of the protein and not considering long-range interactions above a certain distance. ENM treats each85

residue as a mass and represents a protein as a network of masses connected by virtual strings if they are within a cutoff86

distance [52]. SBSMMA uses the coarse-grained representation of proteins based on Cα harmonic models and the87

allosteric potential is calculated only if the distance between two Cα atoms is less than 11 Å [50]. This means that88

proteins represented by these two models are coarse-grained at the residue level and as a result subtle changes in protein89

conformations cannot be captured.90
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Bond-to-bond propensity analysis was introduced recently to circumvent these limitations, mainly to retain atomistic91

detail and remain computationally efficient. It has been shown capable of predicting allosteric sites requiring only92

knowledge of orthosteric sites and ligands [53]. The method builds on the construction of an atomistic graph from a93

biomolecular structure with atoms described as nodes and bonds, whether covalent or noncovalent, as weighted edges.94

The resulting protein graph is analysed with an edge-to-edge transfer matrix M (Methods) and the effect of fluctuations95

of an edge on any other edge is calculated and represented by a propensity score. Therefore, this approach enables the96

measurement of long-range coupling between bonds which is crucial for allosteric signalling. This graph-theoretical97

model differs from all of the computational methods discussed above, except MD simulations, as it uses a fully atomistic98

representation of a protein which retains the physico-chemical details of a protein [54, 55]. Despite keeping the99

atomistic details of the protein structure, the method is computationally efficient: by employing advances in algorithmic100

matrix theory [56, 57], the computation time scales approximately linearly with respect to the number of edges,101

which makes the method applicable to large and multimeric proteins [58, 59] and high-throughput analysis in general.102

Furthermore, since there is no cutoff distance for interactions, both weak and long-range interactions within a protein can103

be captured by this model. Therefore, bond-to-bond propensity analysis presents a more cost-effective computational104

method to analyse proteins at the atomistic level and predict potential allosteric sites.105

Bond-to-bond propensity analysis has successfully predicted 19 out 20 allosteric sites for a test set of 20 proteins [53] and106

showcased the allostery in aspartate carbamoyltransferase (ATCase) and the main protease of the severe acute respiratory107

syndrome coronavirus 2 (SARS-CoV-2) [58, 60]. It has also been built into an efficient web application, ProteinLens,108

for the study of allostery [61]. To further benchmark this methodology and provide comparable insights into its109

performance across as diverse proteins as possible, we apply it here to two recently developed large, encompassing110

datasets, ASBench and CASBench. ASBench contains 235 allosteric sites [32] and computational methods such as111

AlloPred [48], AllositePro [49] and SBSMMA [51] have made use of this dataset for method validation. However, it112

is important to note that some of these methods use only the chain of the protein that contain orthosteric and allosteric113

sites. This means they may potentially miss communication between the sites if the pathway involves multiple chains or114

the entire protein structure as seen in multimeric proteins. We show in this work that bond-to-bond propensity analysis115

achieves overall higher accuracy in the ASBench dataset. We further tested bond-to-bond propensities with a more116

recent dataset, CASBench, which contains 91 protein entries with multiple crystal structures [33]. We evaluated the117

allosteric site prediction performance of our method in these datasets based on the four statistical measures used in118

[53] and two new measures introduced in this work.119

2 Results120

2.1 Bond-to-bond propensity analysis on the ASBench database121

Proteins with annotated orthosteric residues, allosteric residues and ligands were collected from the ASBench and122

ASD databases as described in Methods and resulted in 118 structures of 113 distinct allosteric proteins. Bond-to-bond123

propensity analysis utilises the orthosteric ligand as the perturbation source to mimic the ligand-binding event [53] and124

identify regions on the protein which are functionally coupled to the orthosteric site. However, as orthosteric ligands are125

not available in structures from the ASBench database, the orthosteric site residues were selected as the source instead.126

For each protein, quantile scores, both intrinsic (pb, allosteric site, pR, allosteric site) and absolute (pref
b , pref

R ), of all its bonds127

and residues were calculated with no a priori knowledge about the allosteric site (See Methods for more details). To128

assess the performance of the method and the significance of these calculated quantile scores, the allosteric site residues129

were used as the target point and evaluated with six statistical measures as described in Methods.130

We here exemplify the method on bovine seminal ribonuclease (PDB ID: 11BG [62]), where we used the orthosteric131

site residues (Chain A: Asp14, Asn24, Asn27, Leu28, Asn94, Cys95, Chain B: Cys32 and Arg33) as the perturbation132

source. Figure 1 shows the propensity quantile score results mapped onto the protein structure where blue (0) indicates a133

low and red (1) a high connectivity to the active site. The values obtained from the statistical measures for the allosteric134

residues (allosteric ligand excluded if present) are summarised in Table 1.135

Based on the criteria described, the experimentally identified allosteric site can be detected with all six statistical136

measures. This process was conducted for all 118 proteins obtained from ASBench under two conditions – with and137

without the allosteric ligand in the structure. The results are shown in Fig 2.138

In the presence of the allosteric ligand, the allosteric site is detected for 106/118 structures, according to at least one139

statistical measure, and for 81/118 structures, according to at least three statistical measures. When the allosteric ligand140

is removed from the protein structure and the same analysis is applied, the allosteric site is detected for 99/118 structures,141

according to at least one statistical measure, and for 69/118 structures, according to at least three statistical measures.142

The slight decrease in success rate is probably owing to the interaction of the allosteric ligand with the allosteric site143

residues. Since these allosteric ligands are effective allosteric modulators of the corresponding protein, the binding of144
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Figure 1: Bond-to-bond propensity analysis on the atomistic graph of bovine seminal ribonuclease (PDB ID: 11BG) where
the orthosteric residues (green) are used as the perturbation source. Note that: (a) All residues are coloured by quantile score
(QS) (see legend) obtained from bond-to-bond propensity analysis. (b) Surface representation of the protein structure coloured by
QS. Relevant sites are highlighted and labelled accordingly.

Table 1: Results of bond-to-bond propensity analysis with six statistical measures for bovine seminal ribonuclease (11BG) (95% CI:
95% confidence interval)

Statistical Measures Results Allosteric Site Detection

pb, allosteric site
95% CI

0.529 (> 0.495)
0.487, [0.478, 0.495] Success

pR, allosteric site
95% CI

0.665 (> 0.528)
0.525, [0.522, 0.528] Success

P(pb, allosteric site > 0.95) 0.081 (> 0.05) Success

P(pR, allosteric site > 0.95) 0.125 (> 0.05) Success

pref
b, allosteric site 0.508 (> 0.5) Success

pref
R, allosteric site 0.780 (> 0.5) Success

the allosteric ligand would strengthen the functional coupling of the allosteric site to the orthosteric site which can be145

highlighted by the method. The average residue QS of the allosteric site for 109/118 structures decreases when the146

allosteric ligand is not present and those for the other nine structures only increased by less than 0.01 suggesting the147

same conclusion. Despite a lower success rate without the allosteric ligand, allosteric sites of 84% of the structures can148

be identified with only the knowledge of orthosteric site residues.149

2.2 Prediction accuracy of bond-to-bond propensity analysis on the ASBench database150

We focus here on the 12 structures with allosteric ligands where the allosteric site could not be detected by any of the151

measures. From those 12, the orthosteric residues of three structures (PDB IDs: 1UXV, 2VD3 and 3QH0) reported152

in the ASD database are incorrect (that is they do not form a binding site) and those of one further structure (PDB153

ID: 2ATS) do not match with the data in ASBench. From the remaining eight, six structures (PDB IDs: 1M8P, 3D2P,154

3DC2, 3HQP, 3R1R and 4HYW) obtained from the ASBench are only one part of a large and complex multimeric155

protein, where the effect of cooperativity might play a crucial role. For example, it has been demonstrated with156

aspartate cabamoyltransferase (ATCase), a large dodecameric protein with six orthosteric sites, that only when at least157

three orthosteric sites are involved, allosteric behaviour is detected [58]. Since only one orthosteric site is reported158

4
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Figure 2: Allosteric site detection results for 118 structures in the ASBench database. The x-axis indicates the number of
statistical measures for successful allosteric site detection.

in ASBench for these structures, this could explain the failure of identification of allosteric sites in these proteins159

when using only one orthosteric site as the perturbation source. From the remaining two structures, the G336V mutant160

of E.coli phosphoglycerate dehydrogenase (PDB ID: 2PA3) displays a different allosteric mechanism – the flip flop161

mechanism [63], which involves large scale mechanical changes. Lastly, the human muscle glycogen phosphorylase162

(PDB ID: 1Z8D) contains two allosteric sites [64] with only allosteric site 1 being detected, highlighted in red in Fig 3.163

This is due to the other site (highlighted in blue) being in close proximity to the orthosteric site where direct interactions,164

instead of long-range coupling, occur between the two sites.165

Figure 3: Structure of human muscle glycogen phosphorylase (PDB ID: 1Z8D [64]). The orthosteric (green) and two allosteric
(cricled in blue and red) site residues are highlighted as spheres

5
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Upon removing the allosteric ligands, allosteric sites of seven more structures could not be identified. For the structure166

of UDP-glucose dehydrogenase (PDB ID: 3PJG), ASBench has incorrect orthosteric residues reported (not forming a167

binding pocket) and hence, a wrong perturbation source was used. Haemoglobin (PDB ID: 1B86) is a well-known168

protein with cooperativity underpinning its activity [65] and contains four orthosteric sites. As only one orthosteric169

site is reported in ASBench, the coupling of the allosteric site to this one site could not be detected as it might not be170

strong enough. Two structures (PDB IDs: 3C1N and 3H6O) are large and complex multimeric proteins where again171

cooperativity would affect the results. The orthosteric sites and allosteric sites of the other three structures (PDB IDs:172

2W4I, 3MWB, 4B1F), similar to those of 1Z8D above, are in close proximity. The allosteric effect is not mediated by173

long-range coupling and is thus not revealed by propensity analysis.174

It is worth noting that the allosteric sites are generally large in size based on the definition provided in the ASBench175

database (residues within 6 Å from the allosteric ligand). In the previous bovine seminal ribonuclease (PDB ID: 11BG)176

example, the allosteric site contains eight residues but only four residues form direct interactions with the allosteric177

ligand. Defining the allosteric site using these four residues, which is essentially a sub-site of the original allosteric site,178

and rerunning all calculations give slightly different results as shown in Table 2.179

Table 2: Results of bond-to-bond propensity analysis with six statistical measures for bovine seminal ribonuclease (PDB ID: 11BG)
(95% CI: 95% confidence interval)

Statistical Measures Results (8 Allosteric Residues) Results (4 Allosteric Residues)

pb, allosteric site
95% CI

0.529 (> 0.495)
0.487, [0.478, 0.495]

0.529 (> 0.494)
0.484, [0.475, 0.495]

pR, allosteric site
95% CI

0.665 (> 0.528)
0.525, [0.522, 0.528]

0.659 (> 0.501)
0.498, [0.494, 0.501]

P(pb, allosteric site > 0.95) 0.081 (> 0.05) 0.106 (> 0.05)

P(pR, allosteric site > 0.95) 0.125 (> 0.05) 0.25 (> 0.05)

pref
b, allosteric site 0.508 (> 0.5) 0.510 (> 0.5)

pref
R, allosteric site 0.780 (> 0.5) 0.808 (> 0.5)

pb, allosteric site does not change while pR, allosteric site decreases slightly when only four allosteric residues were scored,180

however, comparisons with <pb, site>surrogate sites and <pR, site>surrogate sites calculated from the 1,000 surrogate sites indi-181

cates that the allosteric site is more significant compared with other surrogate sites. The increase of values for the other182

four measures complements this argument. Therefore, defining the allosteric site with the four interacting residues leads183

to better detection of the allosteric site and one needs to take note that actual results may be buried by the definition of a184

large allosteric site. Hence, it is important to characterise the allosteric site and include relevant residues properly which185

presents an ongoing problem [66].186

Similarly, not all residues in the orthosteric site defined in the database interact with the orthosteric ligand or support its187

binding. Due to the absence of orthosteric ligands in the structures from the ASBench database, comparisons between188

using the orthosteric site residues and the orthosteric ligand as perturbation source cannot be achieved.189

2.3 Bond-to-bond propensity analysis on the CASBench database190

314 structures of 33 allosteric proteins with orthosteric ligands and description of orthosteric and allosteric residues191

were collected from the CASBench database. As seen in the ASBench data analysis above, the presence of the allosteric192

ligand strengthens the coupling to the orthosteric site and makes the result biased towards successful detection of the193

allosteric site. Hence, the allosteric ligand (if present in the structure) is removed when carrying out bond-to-bond194

propensity analysis for the CASBench database.195

Bond-to-bond propensity analysis was conducted for these 314 structures using the orthosteric ligand or orthosteric site196

residues (with orthosteric ligand removed) as the perturbation source in two separate runs. When multiple orthosteric197

ligands or sites are present, all of them were used as the source. Moreover, when there are multiple allosteric sites in the198

protein structure, each of them is investigated separately with the six statistical measures and the average value for each199

of the measures is used to decide whether the allosteric sites can be detected for the protein. Taking Escherichia coli200
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biotin repressor (PDB ID: 2EWN [67]) as an example, which has two allosteric sites, the results are summarised in201

Table 3.202

Table 3: Results of bond-to-bond propensity analysis with six statistical measures and averaging for Escherichia coli biotin repressor
(PDB ID: 2EWN) (95% CI: 95% confidence interval). The two allosteric sites were scored separately based on the six metrics
separately and the averaged scored was used to assess whether the allosteric sites of Escherichia coli biotin repressor can be detected
by each measure.

Statitical Measures Results Average Allosteric Site Detection

pb, allosteric site
95% CI

Site 1: 0.333 (< 0.523)
0.516, [0.510, 0.523]

Site 2: 0.326 (< 0.528)
0.521, [0.515, 0.528]

0.329 (< 0.523)
0.516, [0.510, 0.523] Failure

pR, allosteric site
95% CI

Site 1: 0.532 (> 0.509)
0.506, [0.504, 0.509]

Site 2: 0.500 (< 0.510)
0.507, [0.504, 0.510]

0.516 (< 0.523)
0.516, [0.510, 0.523] Failure

P(pb, allosteric site > 0.95) Site 1: 0.013 (< 0.05)
Site 2: 0 (< 0.05) 0.007 (< 0.05) Failure

P(pR, allosteric site > 0.95) Site 1: 0 (< 0.05)
Site 2: 0 (< 0.05) 0 (< 0.05) Failure

pref
b, allosteric site

Site 1: 0.438 (< 0.5)
Site 2: 0.444 (< 0.5) 0.441 (< 0.5) Failure

pref
R, allosteric site

Site 1: 0.686 (> 0.5)
Site 2: 0.668 (> 0.5) 0.677 (> 0.5) Success

It is observed in some cases that some of the allosteric sites of the protein can be detected by a particular measure while203

the other sites cannot be detected (pR, allosteric site in this case). Therefore, the criteria used here are stringent and would204

be effective and meaningful in assessing the performance of bond-to-bond propensity analysis and the performance205

summary is shown in Fig 4.206

207

Figure 4: Allosteric site detection results for 314 structures in the CASBench database. The x-axis indicates the number of
statistical measures for successful allosteric site detection.

When the orthosteric ligand is selected as the perturbation source, the allosteric site is detected for 308/314 structures208

(32/33 proteins), according to at least one statistical measure. When using the orthosteric site residues as the source,209

the allosteric site is detected for 304/314 structures (32/33 proteins), according to at least one statistical measure. It is210
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observed that, in general, the allosteric site of a protein structure can be identified with more statistical measures when211

the orthosteric ligand is set as the perturbation source.212

If the orthosteric ligand is selected as the source, the source bonds include the weak bonds formed by the ligand and the213

surrounding residues. The orthosteric site includes all residues within 5 Åof the orthosteric ligand [33]. Therefore, the214

number of source bonds is much lower compared to when using the entire orthosteric site residues as the source. The215

different and better results obtained by using the ligand as the source suggest that the allosteric site is closely coupled216

to the ligand-binding event at the orthosteric site. Although successful allosteric site detection is achieved by fewer217

statistical measures using the whole orthosteric site as the source, the method still succeeds in identifying allosteric sites218

for more than 96% of the 314 structures. Combined with the results from analysing the ASBench database, for which219

orthosteric residues are used as the source, the results indicate that propensity analysis reveals the intrinsic coupling of220

the allosteric site to the region where the orthosteric binding occurs. Using the orthosteric ligand as the perturbation221

source allows a more accurate detection of allosteric sites. However, if there is no structure containing the orthosteric222

ligand, the approximate site containing orthosteric residues would still be a good choice to uncover distant sites coupled223

to the region and provide guidance on allosteric site detection.224

2.4 Prediction accuracy of bond-to-bond propensity analysis on the CASBench database225

We focus here on the six structures for which the allosteric site cannot be detected by any of the measures when using226

orthosteric ligands as the source. One of them (PDB ID: 4R1R) is ribonucleotide reductase protein R1 (CAS0047). It is227

a large and complex multimeric protein and only one orthosteric site is reported in the CASBench database. Hence,228

the effect of cooperativity could affect the performance of propensity analysis as previously discussed. Another two229

structures (PDB IDs: 1FUQ, 1KQ7) are two out of the four structures of fumarase (CAS0085). This is also a complex230

multimeric protein where bond-to-bond propensity analysis may not perform well if not all orthosteric ligands are231

present. The remaining three structures are epoxide hydrolase (CAS0002) (PDB IDs: 5AIA, 5ALN and 5ALT). We232

analysed 28 structures of epoxide hydrolase in total, each with a different orthosteric ligand. Hence, different ligands,233

even when binding at the same orthosteric site, exert different perturbation effects on the protein.234

When orthosteric residues were used as the perturbation source, the allosteric sites of two structures (PDB IDs: 1LLD,235

1LTH) of L-lactate dehydrogenase (CAS0028) were not identified. This can be partly explained by the changed236

perturbation effects as the allosteric sites were identified when sourcing from the orthosteric ligands. In CASBench, the237

orthosteric sites include residues within 5 Å from the orthosteric ligands which leads to a large region as the perturbation238

source. This shows that the specific ligand-site interactions are crucial for accurate allosteric site detection. This is239

consistent with the overall trend since it has been shown above that successful allosteric site detection is achieved by240

more statistical measures using the orthosteric ligand as the source. Moreover, allosteric sites of another eight structures241

were not detected when only using the orthosteric site residues as the source. This further strengthens the idea that the242

method is sensitive to specific interactions between the ligand and the protein and holds the potential to evaluate the243

performance of different ligands in the orthosteric site.244

3 Discussion245

Allosteric sites are of great interest in understanding biological function as well as in drug targeting, but, are difficult246

to predict and in general poorly understood. They are usually discovered serendipitously and require experimental247

verification. Two recently introduced allosteric protein databases, ASBench [32] and CASBench [33], aim to collect248

available information on known allosteric sites and are hence excellent benchmarking tools for promising computational249

approaches. To test the capability of bond-to-bond propensity analysis, a recently developed method that was shown250

to be able to predict allosteric sites, we deployed the method to both databases, which, after cleaning, provided 432251

protein structures for analysis.252

An important part of this process is the scoring of the target sites. In addition to previously used scoring measures, we253

introduced two additional statistical measures, namely the average reference residue quantile score of the allosteric254

residues, pref
R, allosteric site and the proportion of allosteric residues with QS above 0.95, P(pR, allosteric site > 0.95). The first255

measures the absolute propensities of residues in the allosteric site compared to the SCOP reference set and the second256

counts the number of high scoring residues in the allosteric site. These two measures complement the existing four257

metrics and enable thorough analysis of the significance of the quantile scores computed from bond-to-bond propensity258

analysis.259

Benchmarking datasets of allosteric proteins, namely the ASBench and the CASBench databases, were used for analysis.260

For structures in ASBench, the orthosteric residues were used as the perturbation source. With the presence of the261

allosteric ligand, the allosteric site is identified for 106/118 (89.8%) structures and the allosteric site is detected for262
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99/118 (83.9%) structures when the allosteric ligand is removed, according to at least one statistical measure. Despite263

the strengthening of functional coupling of the allosteric site to the orthosteric site by the allosteric ligand, propensity264

analysis is still able to reveal the intrinsic connectivity between the two sites. For the CASBench database we conducted265

our analysis sourced from the orthosteric ligands or the orthosteric residues and managed to detect the allosteric266

sites according to at least one statistical measure for 308/314 (98.1%) structures (32/33 proteins) and for 304/314267

(96.8%) structures (32/33 proteins), respectively. The allosteric site of a protein structure can be identified with more268

statistical measures when choosing the orthosteric ligand as the source. This observation suggests that using the ligand269

as the source confers the perturbation effect of the binding event more accurately. However, if the information on the270

orthosteric substrate is not available, it is viable to select the orthosteric residues as the perturbation source.271

The results presented here strengthen confidence in allosteric site identification as predicted by bond-to-bond propensity,272

which coupled with the efficiency of the method make it an attractive approach. Generally, the definition of orthosteric273

and allosteric residues, which would significantly affect the size and residues involved, plays an essential part when274

evaluating allosteric site prediction methods and was also highlighted for bond-to-bond propensity analysis. Finally,275

more detailed analysis would be usually required in cases where the allosteric site and the orthosteric site are in very276

close proximity, to elucidate the effect of cooperativity in large and complex multimeric proteins or the role of structural277

water molecules, which could still be possible given the computational efficiency of the approach.278

4 Methods279

4.1 Allosteric protein datasets280

The ASBench database 235 X-ray crystal structures of allosteric proteins were downloaded from the ASBench281

database. Experimentally determined orthosteric and allosteric site residues for these proteins were attained from ASD282

Release 4.1079. The data was further processed to exclude entries without orthosteric site information or incomplete283

structures. The resulting 118 structures were all analysed by bond-to-bond propensity. Details can be found in284

Supplementary Information Table S2. Note that results on the first 4 of the 6 scoring measures were first reported in the285

supplementary information of reference [61] without any analysis.286

The CASBench database X-ray crystal structures containing various orthosteric and allosteric ligands of 91 allosteric287

proteins in PDB format were downloaded from the CASBench website together with the corresponding experimentally288

determined orthosteric and allosteric site residues. This data was further processed to exclude incomplete structures289

and the resulting 314 structures of 33 distinct proteins were used for bond-to-bond propensity analysis. The proteins290

in CASBench are labelled with CAS ID and the list of proteins with corresponding CAS ID used in this work can be291

found in Supplementary Information Table S5.292

4.2 Construction of the atomistic protein graph293

Bond-to-bond propensity analysis starts by constructing a weighted atomistic graph using the 3-dimensional coordinates294

of the atoms of the protein in the PDB files. Atoms are represented by nodes and bond and interactions that link the295

atoms are represented by edges. The weights of edges correspond to the interaction energies between the atoms with296

weights derived from relevant interatomic potentials. An in-depth procedure for the atomistic protein graph construction297

has been described in refs [54, 55]. In this work, Biochemical, atomistic graph construction software in Python for298

proteins, etc. (BagPype) [68, 61] was used to construct the atomistic protein graph and Fig. 5 illustrates the main299

features of this process using bovine seminal ribonuclease (11BG) as an example. The crystal structures in the PDB files300

are cleaned accordingly and hydrogen atoms are added using Reduce (v.3.23) [69], which is incorporated in BagPype.301

Covalent bonds are weighted using standard bond energies [70]. The weighting of π − π stacking, hydrophobic302

interaction, hydrogen bonding and electrostatic interactions is done based on potentials in references [71, 72, 73],303

respectively. The weighted graph is then converted to an N ×N adjacency matrix, where N is the number of nodes304

(atoms).305

4.3 Bond-to-bond propensities306

Bond-to-bond Propensity was first introduced in Ref. [53] and further discussed in Ref. [58], hence it is only briefly
summarised here. The edge-to-edge transfer matrix M was introduced to study non-local edge-coupling in graphs [74]
and an alternative interpretation of M is employed to analyse the atomistic protein graph. The element Mij describes
the effect that a perturbation at edge i has on edge j. M is given by

M =
1

2
WBTL†B (1)
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Figure 5: Atomistic graph construction. Main steps of the atomistic protein graph construction package, BagPype, using the
structure of bovine seminal ribonuclease (PDB ID: 11BG [62]) as an example.

where B is the n×m incidence matrix for the atomistic protein graph with n nodes and m edges; W = diag(wij) is an
m×m diagonal matrix which possesses all edge interaction energies with wij as the weight of the edge connecting
nodes i and j, i.e. the bond energy between the atoms. L† is the pseudo-inverse of the weighted graph Laplacian matrix
L [75]. L, which defines the diffusion dynamics on the energy-weighted graph [76] and is defined as:

Lij =

{
−wij , i 6= j∑
j wij , i = j

(2)

To evaluate the effect of perturbations from a group of bonds b
′
, which belong to the orthosteric ligand or the orthosteric

site residues (i.e., the source), on a bond b anywhere else in the protein, we calculate:
raw∏
b

=
∑

b′ ∈ source

|Mbb′ | (3)

This is the raw propensity of an individual bond which reflects how strongly the bond is coupled to the source. As
different proteins contain different numbers of bonds, the raw propensity is normalised and the bond propensity is
defined as: ∏

b

=

∏raw
b∑

b

∏raw
b

(4)

The residue propensity is then defined as the sum of normalised bond propensities of all the bonds of a residue, R:∏
R

=
∑
b ∈ R

∏
b

(5)

4.4 Quantile regression307

Bond and residue propensities naturally decrease as the distance of the bond or residue from the perturbation source
increases. To determine the bonds and residues that are significant, bond and residue propensities at a similar distance
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from the source are compared using conditional quantile regression (QR) [77]. The distance of a bond b from the
perturbation source is defined as the minimum distance, db, between b and any bond of the source:

db = min
b′ ∈ source

|xb − xb′ | , (6)

where the vector xb contains the cartesian coordinates of the midpoint of bond b. As propensity
∏
b decays exponentially

with distance d, a linear model for the logarithm of the propensities is adopted to solve the QR minimisation problem:

β̂proteinb (p) = argmin
(βb,0,βb,1)

protein∑
b

ρp(log(
∏
b

)− (βb,0 + βb,1db)), (7)

where ρp(·) is the tilted absolute value function:

ρp(y) = |y(p− 1(y < 0))| (8)

p is the quantile and 1(·)is the indicator function. The optimised model β̂protein = (β̂proteinb,0 (p), β̂proteinb,1 (p)) describes
the sum of the quantiles of the propensities for all bonds in the protein. The bond quantile score of bond b with
propensity

∏
b at distance db from the source can be calculate by finding the quantile pb such that:

pb = argmin
p ∈ [0,1]

∣∣∣∣∣log(∏
b

)− (β̂proteinb,0 (p) + β̂proteinb,1 (p)db)

∣∣∣∣∣ (9)

The residue quantile score of residue R is defined similarly by using the residue propensity as shown in eq. 5 and the
distance dp which is the minimum distance between the atoms of a residue and those of the source. Therefore,

β̂proteinR (p) = argmin
(βR,0,βR,1)

protein∑
R

ρp(log(
∏
R

)− (βR,0 + βR,1dR)), (10)

and

pR = argmin
p ∈ [0,1]

∣∣∣∣∣log(∏
R

)− (β̂proteinR,0 (R) + β̂proteinR,1 (p)dR)

∣∣∣∣∣ (11)

are used to calculate the residue quantile score.308

4.5 Statistical evaluation of allosteric bond and residue quantile scores (QS)309

Four statistical measures have been used to evaluate the significance of the quantile scores (QS) by Amor et al. [53] and310

were employed in this project as listed below:311

1. The average bond quantile score of the allosteric site:312

pb, allosteric site =

∑
b ∈ allosteric site pb

Nb, allosteric site
(12)

where Nb, allosteric site is the number of bonds in the allosteric site.313

2. The average residue quantile score of the allosteric site:314

pR, allosteric site =

∑
R ∈ allosteric site pR

NR, allosteric site
(13)

where NR, allosteric site is the number of residues in the allosteric site.315

3. The proportion of bonds in the allosteric site with bond quantile score greater than 0.95316

i.e. P(pb, allosteric site > 0.95).317
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4. The average reference bond quantile score of the allosteric site:318

pref
b, allosteric site =

∑ref
b ∈ allosteric site p

ref
b

Nb, allosteric site
(14)

where Nb, allosteric site is the number of bonds in the allosteric site.319

For the purpose of complementing these previous measures and to investigate more aspects of allosteric site detection,320

two additional measures were introduced in this work:321

5. The proportion of residues in the allosteric site with residue quantile score greater than 0.95322

i.e. P(pR, allosteric site > 0.95).323

6. The average reference residue quantile score of the allosteric site:324

pref
R, allosteric site =

∑ref
R ∈ allosteric site p

ref
R

NR, allosteric site
(15)

where NR, allosteric site is the number of residues in the allosteric site.325

To assess the significance of the average bond and residue quantile score pb, allosteric site and pR, allosteric site, structural326

bootstrap is used to sample random surrogate sites from the same protein. These surrogate sites need to follow327

two structural rules: (1) the number of residues is equal to the number of residues in the allosteric site and (2) the328

diameter (maximum distance between any two atoms in the site) is smaller than that of the allosteric site. For each329

protein, 1,000 surrogate sites are generated and the average bond and residue quantile scores <pb, site > surrogate sites330

and <pR, site > surrogate sites of these sites are calculated. The scores are compared with those of the allosteric sites331

(pb, allosteric site and pR, allosteric site). A 95% confidence interval is obtained for each protein to assess the statistical332

significance by using bootstrap with 10,000 resamples with replacement [78]. Fig 1 illustrates the process using 11BG333

as an example. If the average quantile score, whether bond or residue of the allosteric residues, is above the upper334

bound of the 95% confidence interval, the allosteric site is assumed to be detected according to the corresponding335

statistical measure. The proportion of both bonds and residues of the allosteric residues with a quantile score above336

0.95 (P(pb, allosteric site > 0.95) and P(pR, allosteric site > 0.95)) is then calculated. If the proportion exceeds the expected337

proportion of 0.05, the allosteric site is classified as identified. Lastly, the average reference bond and residue quantile338

scores of the allosteric residues (pref
b, site and pref

R, site) are computed and a value above 0.5 (the expected value) suggests339

that the allosteric site is uncovered.340
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