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Abstract 

The binding of SARS-CoV and SARS-CoV-2 to the ACE2 receptor on human cells is 

mediated by the spike protein subunit 1 (S1) on the virus surfaces, while the receptor binding 

domains (RBDs) of S1 are the major determinants for the interaction with ACE2 and 

dominant targets of neutralizing antibodies. However, at the virus-host interface, additional 

biomolecular interactions, although being relatively weak in affinity and low in specificity, 

could also contribute to viral attachment and play important roles in gain- or loss-of-function 

mutations. In this work, we performed a peptide scanning of the S1 domains of SARS-CoV 

and SARS-CoV-2 by synthesizing 972 16-mer native and mutated peptide fragments using a 

high throughput in situ array synthesis technology. By probing the array using fluorescently 

labelled ACE2, a number of previously unknown potential receptor binding sites of S1 have 

been revealed. 20 peptides were synthesized using solid phase peptide synthesis, in order to 

validate and quantify their binding to ACE2. Four ACE2-binding peptides were selected, to 

investigate whether they can be assembled through a biotinylated peptide/neutravidin system 

to achieve high affinity to ACE2. A number of constructs exhibited high affinity to ACE2 

with Kd values of pM to low nM.  
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Introduction 

The COVID-19 pandemic, caused by infection with the severe acute respiratory syndrome 

related coronavirus-2 (SARS-CoV-2), has led to millions of fatalities as well as devastating 

social and economic consequences[1]. Molecular and structural biology studies have revealed 

the most potent and specific interaction between the virus and human cells, namely, the 

interaction between the RBD domain of viral spike protein subunit 1 (S1) and the receptor 

ACE2 (angiotensin converting enzyme 2) on human cells[2-4]. Despite its important function, 

the RBD is highly variable among sarbecoviruses, as compared to many other sequences of 

viral proteins[2]. SARS-CoV-2 is 82% similar to the SARS-CoV attributed to the SARS 

outbreak in 2003, while their similarities of the RBD domains and receptor binding motifs 

(RBM), i.e., the 69-residue motif in the RBD directly interacting with the receptor, are 67% 

and 47%, respectively. Other viral proteins, as well as parts of the S1 other than the RBD can 

also contribute to the interaction, while other human proteins have also been found to mediate 

the viral entry. For example, a monoclonal antibody against the N-terminal domain of S1 

(NTD) has been found to able to block the infection effectively, though it does not inhibit the 

binding of S1 to its receptor on cells[5]. Human serine protease TMPRSS2 is used for S 

protein priming and TMPRSS2 inhibitor can block the viral entry[6]. 

Comprehensive profiling of the interactions between the viral proteins and the proteins on 

human cells is essential in understanding the infection mechanism and to develop diagnostic 

tests and therapies. There is no single technology, which will allow us to elucidate all these 

interactions at molecular detail, especially regarding the transmission and evolution of viruses 

with host cells from different species. Proteomic and genetic studies were used to map the 

potential interactions[7, 8], while crystallography and cryo-EM can help to illustrate the 

individual interactions with atomic to sub-nm resolution[3, 9]. As a chemical biology 

approach, peptide arrays have the advantage to map the sequence-specific interactions 

quickly, though the peptide fragments often cannot fully resemble the structures of folded 
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proteins. Moreover, the identified peptides can become lead compounds for the development 

of antiviral drugs to block the cellular entry of viruses, a therapeutic approach complementary 

to vaccines[10]. Peptide arrays have also been used to map the viral epitopes against anti-

virus antibodies[11].  

The coronavirus spike proteins are homotrimeric class I viral fusion proteins containing S1 

and S2 subunits. For membrane fusion, the spike proteins need to be proteolytically activated 

at the S1/S2 boundary, resulting in the dissociation of S1 and a dramatic structural change of 

S2. Different from SARS-CoV, cell entry of SARS-CoV-2 can be pre-activated by proprotein 

convertase furin, reducing its dependence on target cell proteases for entry. The interaction 

between S1 and ACE2 is essential for initial virus attachment. S1 can be divided into an N-

terminal domain (NTD) and a C-terminal domain (CTD), while the CTD can be further 

divided into RBD and two subdomains SD1 and SD2. The RBD is conformationally variable. 

In the closed conformation, the RBDs are shielded by the NTDs. In the open conformation, 

one RBD is exposed upward away from the viral membrane. The SARS-CoV-2 RBD has a 

twisted five-stranded antiparallel β sheet. Between the β4 and β7 strands, there is an extended 

insertion, known as receptor binding motif (RBM), containing the short β5 and β6 strands, α4 

and α5 helices, and loops. Multiple residues of the SARS-CoV-2 RBM have been found 

essential for contacting ACE2.  

The structure of spike protein is considered to be highly dynamic, not only the RBD, but also 

the other subunits and domains, allowing it to search for the receptor for docking to the target 

cell. Therefore, interactions other than those observed in the final complex can be involved in 

the initial binding of the viruses to host cells. To identify these potential interactions by 

scanning the S1 domains of SARS-CoV and SARS-CoV-2, in this work, we prepared peptide 

arrays representing the two S1 proteins, in which each peptide was 16 amino acids long with a 

2 amino acids offset and 14 amino acids overlap (figure 1A). All reported mutations prior to 
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May 2021 have also been included in this study. The resulting arrays were then probed by 

fluorescently labelled ACE2.   

Results and discussion 

We have recently developed an amphiphilic hydrogel coating for glass surfaces, on which 

small droplets of polar aprotic organic solvents can be deposited with relatively large contact 

angle (> 40) and inhibited motion, permitting multiple rounds of on-demand combinatorial 

synthesis of small molecule compounds and peptides with high yields [12]. Moreover, the 

amphiphilic hydrogel coating can be switched to a hydrophilic matrix after the synthesis, 

resulting in a hydrogel coating suitable for protein- and cell-based screening. Automation of 

the array synthesis allowed us to generate high density peptide arrays with standard solid 

phase peptide chemistry. 334 peptides, each in triplicate, presenting the amino acids 14-695 of 

SARS-CoV-2 S1, and 319 peptides presenting the amino acids 18-669 of SARS-CoV S1 were 

synthesized on the hydrogel coating (figure 1A). The resulting arrays possess a density of 

2500 features/cm2. Because of the small size of the chip (about 1 cm2), very small amount of 

protein was needed for the screening (200 ng of fluorescently labelled human ACE2 in 5 µL). 

After washing with buffer to remove the unbound protein, the glass slide was imaged using 

afluorescence microscope (figure 1B).  

As shown in figure 1C and 1D, the hydrogel coating does not show any non-specific 

interactions with ACE2. Seven successive peptide fragments (m1-m7, figure 1C) from the 

RBM of SARS-CoV showed strong signals in binding to ACE2, while the strongest signals 

were observed for the peptides m3-m5 (figure 1C). Other binding sites of SARS-CoV S1 to 

ACE2, both in the RBD and in the other domains, have also been identified. Interestingly, for 

the SARS-CoV-2 RBM peptides, only three successive peptide fragments have shown 

binding signals (M10-M12, figure 1D), while the strongest signals were from outside the 

RBM, e.g. the peptide J12 (figure 1D) of the RBD and the peptide B9 (figure 1D) of the NTD. 

After sequence alignment, we found that both viruses share a similar binding profile to ACE2 
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in the RBD sequences, but exhibit remarkable differences in the other domains (see figure 

S1). 

We selected 21 peptides to measure their binding affinities to ACE2 (figure 2). The peptides 

were synthesized using standard solid phase peptide chemistry and purified by HPLC. The 

binding affinities were measured using bio-layer interferometry with ACE2 immobilized on 

the sensor. As the sequences were identified with the peptides on a solid support and the 

proteins in solution, validating their interaction with proteins immobilized on sensor surface 

and the peptides in the mobile phase can avoid artifacts caused by multi-valent 

interactions[13]. Four SARS-CoV-2 peptides and three SARS-CoV peptides showed strong 

interaction with ACE2. Interestingly, only the NTD peptides from SARS-CoV-2, but not the 

NTD peptides from SARS-CoV, exhibited strong interaction with the receptor protein. The 

strongest interaction was measured not with the RBM peptide of SARS-CoV-2, but with an 

RBD peptide of SARS-CoV-2.  

As the peptide fragments cannot fully resemble their structures in the folded proteins, the 

patterns of fluorescence signals on the arrays and the measured binding affinities do not 

contradict the interaction between RBM and ACE2 observed in the crystal structures. 

Meanwhile, peptide scanning can help to reveal the relatively weak interactions, which cannot 

be seen in the final complex structure. The structure of the spike proteins is highly dynamic, 

and mechanisms associated with conformational changes have been suggested to contribute to 

viral attachment and cell entry[14]. The interaction between the non-RBM peptides with 

ACE2 can be transient and relatively weak, but relevant to the pathology of the viruses. Both 

array screening and affinity measurements have shown different patterns between the SARS-

CoV and SARS-CoV-2 peptides. This might reflect their difference in infection, while the 

dynamic processes cannot be easily visualized by conventional structural biology methods.  

We then tested the effects of mutations on array screening. The sequences of SARS-CoV-2 

S1 mutants were extracted from the CDC database[15]. The 13 strains include most mutations 
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prior to May 12, 2021. All peptide sequences containing the mutations have been synthesized, 

resulting in a secondary array of 319 different peptides (each in triplicate). Figure 3 

summarizes all mutations, which can cause changes in binding to ACE2. Nine mutations have 

been found to cause an increase of ACE2 binding in one or multiple peptide fragments in the 

scan (figure 3A). Six mutations have shown an effect of reduced ACE2 binding in one or 

multiple peptide fragments (figure 3B). Both increase and decrease of ACE2 binding were 

observed in the peptide scanning of four mutations (figure 3C). It is important to note that 

many changes, especially those causing increased binding, have been measured for multiple 

successive sequences (e.g. P26S, 156, E154K, L452R, and E484I), a common indication of 

reliability of peptide scanning. Among the multiple mutations, remarkable changes in the 

peptide scanning patterns have been observed for A67V+69/70 and S474N+S484K (figure 

3d). As most of these mutations are not in the RBD and only one mutation is in the RBM, the 

evolution of SARS-CoV-2 is not necessarily in the direction of increasing the binding affinity 

between S1 and its receptor. 

The peptide scan has revealed potential additional binding sites of S1 to ACE2. However, we 

know neither their binding sites on ACE2, nor whether they bind synergistically or 

competitively to the receptor.  In order to assemble the peptides in different combinations and 

test whether the resulting constructs can recapitulate the multivalent protein-protein 

interaction to achieve high affinity, we used a peptide-biotin/neutravidin system with four 

selected peptides.  As shown in figure 4A, mixtures of one or multiple biotinylated peptides 

were mixed with neutravidin. As four biotinylated peptides, same or different, can be 

displayed on each tetrameric neutravidin, this approach allowed us to test different 

combinations quickly.  

To generate the construct randomly displaying four peptides (Q1), the four biotinylated 

peptides were pre-mixed in equal amounts followed by addition of neutravidin (figure 4A). Its 

binding to ACE2 was measured using BLI (Bio-Layer Interferometry), showing a KD value of 
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71.4 nM (figure 4B), remarkably lower than any of the peptides (figure 2). The increased 

binding affinity is not caused by neutravidin, as no binding can be detected between ACE2 

and neutravidin (figure 4C). Among the 4 constructs randomly displaying three peptides, the 

combination of BP2+BP3+BP4 (T4) exhibits a KD value similar to that of Q1. Remarkably, 5 

of the 6 constructs displaying two peptides exhibited strong interactions with ACE2. In 

particular, BP2+BP4 (B5) exhibited a KD value of 5.2 nM, while the combination of 

BP1+BP3 (B2) exhibited low pM binding affinity to ACE2. Among the 4 constructs 

displaying a single peptide, strong binding has been measured only for peptide BP4 (M4). For 

other combinations, the complexes exhibited strong binding to the reference sensor, so that 

the affinity cannot be measured reliably.  

The dramatic differences between the different constructs remain to be investigated by 

modelling and structural analysis. The tetrameric neutravidin displays the ligands randomly in 

a tetrahedron geometry (figure 4A), which can be very different from their arrangement in the 

folded S1 protein and unfavorable for binding to ACE2. In the future, assembling the peptide 

fragments in a more spatially defined form, for example, on DNA nanostructures such as 

DNA origami[16], may represent a more rational approach to designing potent and specific 

binders. The peptide-biotin/neutravidin method provides a quick screening of different 

assemblies to identify binders with high affinity comparable to many antibodies. It also 

demonstrated that the different peptide fragments of S1, upon randomly assembled on a 

protein template, can recapitulate the protein-protein interaction to achieve high affinity to 

ACE2. 

The interactions between viral molecules and human cells are complex and dynamic. 

Initiation of infection is often not a simple process of attachment, as many viruses have 

developed sophisticated mechanisms to evade immune surveillance. For example, the 

conformational changes involving the different parts of the flexible structure of the spike 

protein can be associated with the searching of receptors on target cells and escaping immune 
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detection. Therefore, many interactions can take place before the final formation of a stable 

and specific complex, while these relatively weak and transient interactions cannot be easily 

accessed by conventional structural biology methods. The fast evolution of viruses also 

demands a technology, which will allow us to access the influence of the mutations on these 

interactions quickly. On-demand high-density peptide array synthesis can provide us with a 

convenient tool to scan these interactions.  

Conclusion 

In this work, by using peptide scanning technology, we have identified potential additional 

receptor binding sites of SARS-CoV and SARS-CoV-2 spike protein subunit 1. Through 

assembling multiple peptides with a biotin-peptide/neutravidin system, high affinity binders 

with pM – nM KD have been discovered. In the future, we will synthesize arrays to cover the 

entire proteomes of corona viruses of different variants, and to probe them not only with 

human ACE2, but also with other potential human receptors as well as receptors from non-

human species. The fast and high throughput synthesis as well as the simple binding-based 

screening assay will also give us powerful tool to follow and monitor the evolution of the 

virus. Moreover, this approach will provide new insights into the virus-human cell 

interactions, not only with regard to the most potent interaction between two specific protein 

domains, but also to those relative weak and transient in binding. The constructs of assembled 

and displayed peptide fragments will also be tested, to evaluate their potencies in inhibiting 

virus attachment and infection. 
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Figure 1. SARS-CoV and SARS-CoV-2 spike protein S1 subunit microarrays for the mapping of ACE2 interactions. (A, 
B) The schematic illustration of mapping peptides from S1 subunits and ACE2 interactions. (C,D) Binding paterns of peptides 
from SARS-CoV (C) and SARS-CoV-2 (D) S1 subunits to ACE2.  
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Figure 2. Binding kinetics of peptides from SARS-CoV (A-E) and SARS-CoV-2 (F-H) S1 subunits to ACE2. ACE2 was 
immobilized on BLI biosensors and measured for binding with various concentrations of the peptides.  
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Figure 3. Binding profiles of peptides from SARS-CoV-2 S1 subunits and their mutants to ACE2. Observed intensity 
increase, decrease, and pattern variation in the array signals were grouped in panels A, B, and C, respectively. (D) Signal 
change upon multiple amino acid mutations. 
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Figure 4. Binding kinetics of biotin-conjugated peptides complexed wih neutravidin to ACE2. (A) The schematic 
illustration of combinatorially assemblying multiple biotinylated peptides with neutravidin. (B-J) Binding kinetics of biotin-
peptide/neutravidin. ACE2 was immobilized on BLI biosensors and measured for binding with various concentrations of the 
complexes.  
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