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ABSTRACT
Background: Image-based machine learning tools hold great promise for clinical applica�ons in nephropathology and
kidney research. However, the ideal end-users of these computa�onal tools (e.g., pathologists and biological scien�sts)
o�en face prohibi�ve challenges in using these tools to their full poten�al, including the lack of technical exper�se,
subop�mal user interface, and limited computation power.

Methods:We have developed Histo-Cloud, a tool for segmentation of whole slide images (WSIs) that has an easy-to-use
graphical user interface. This tool runs a state-of-the-art convolutional neural network (CNN) for segmentation of WSIs in
the cloud and allows the extraction of features from segmented regions for further analysis.

Results: By segmen�ng glomeruli, inters��al fibrosis and tubular atrophy, and vascular structures from renal and non-
renal WSIs, we demonstrate the scalability, best practices for transfer learning, and effects of dataset variability. Finally,
we demonstrate an applica�on for animal model research, analyzing glomerular features in murine models of aging,
diabe�c nephropathy, and HIV associated nephropathy.

Conclusion: The ability to access this tool over the internet will facilitate widespread use by computa�onal non-experts.
Histo-Cloud is open source and adaptable for segmenta�on of any histological structure regardless of stain. Histo-Cloud
will greatly accelerate and facilitate the genera�on of datasets for machine learning in the analysis of kidney histology,
empowering computationally novice end-users to conduct deep feature analysis of �ssue slides.

Keywords: Image Segmenta�on, End-User So�ware, Machine Learning, Cloud based Annota�on, Chronic Kidney
Disease

Note: This manuscript is currently under review for publica�on in Kidney360. Addi�onal co-authors may be added at the
�me of final publica�on.
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INTRODUCTION

Recent advances in machine learning techniques have led to previously unachievable performance for image analysis
tasks. In par�cular, convolu�onal neural networks (CNNs)1, a form of deep learning, have great poten�al for impac�ul
applica�ons in computa�onal analysis of image structures. Successful adoption of these tools to biomedical image data
promises a paradigm shift in both biological science and healthcare2.

In the field of pathology, the prac�ce of digi�zing histological slides has become common prac�ce3, facilita�ng the
applica�on of CNNs for analysis. Digitally scanned histology slides, known aswhole slide images (WSIs), are often gigapixels
in size. Due to the size of these images and the diversity of structures that can be present, parsing WSIs into biologically
relevant sub-compartments is often an important first step for tissue analysis4.

CNNs have been successfully u�lized by many research groups for the segmentation of WSIs4-9. However, thus far tools to
segment WSIs have been complex to deploy and use, requiring knowledge of the command line interface and
computational exper�se10-12. The ideal user for these tools is the pathologist or biological scien�st, whose clinical workflow
or research questions could benefit from fast and accurate segmentation of relevant structures2.

To address this gap, we have developed Histo-Cloud, a powerful tool for the segmenta�on of WSIs and deployed it as a
suite of easy-to-use plugins using the Digital Slide Archive (DSA)13, an open source cloud-based WSI repository with a built
in slide viewer. Histo-Cloud was designed with flexibility in mind and is agnos�c to �ssue type or structure. Segmentation
of new structures of interest is possible by retraining the CNN used for segmenta�on, which can be conveniently
performed within the cloud interface.

RESULTS
To demonstrate Histo-Cloud's performance characteris�cs and segmenta�on poten�al, a variety of segmenta�on tasks
from renal biopsy WSIs were tested. For each task, performance was evaluated on holdout WSIs and independent test
slides selected from datasets never used for training. A description of the datasets used for the studies below, including
sources, disease pathology, �ssue thickness, staining, and image acquisi�on is available in the Methods sec�on and is
summarized in Table 1. A list of abbrevia�ons is listed in Supp. Table 1.

HISTO-CLOUD:

Using the simple cloud-based interface, users can upload WSIs and train a segmentation network using their own
annotations (see Fig. 1b). Users can iteratively apply Histo-Cloud’s training and predic�on plugins in an ac�ve learning
framework, to build up powerful segmenta�onmodels with reduced effort7. The segmentations produced byHisto-Cloud
are converted to contours or heatmaps for direct display on the WSIs. When developing new segmentation models, the
slide-viewing environment of this tool, enables rapid qualita�ve evaluation of algorithm progress by displaying the
network predic�ons (Fig. 1a).

Going beyond segmentation, an included modular plugin extracts features from segmented WSI �ssue regions. These
features are written into the metadata of uploaded slides and can be exported in spreadsheet form for further analysis.
We have included a plot�ng tool in the user interface of the online slide viewer for quick explora�on of these extracted
features, Fig. 1c.

The source code can be run tradi�onally via the command line, butwe expect the majority of userswill u�lize the intui�ve
HistomicsUI based cloud interface. The source code is available on GitHub at h�ps://github.com/SarderLab/Histo-cloud,
and packaged as a pre-built Docker image14 h�ps://hub.docker.com/r/sarderlab/histo-cloud. This data sharing allows for
easy deployment on a remote server for use as well as further development by the community over theweb. Addi�onally,
a publicly available instance of Histo-Cloud is available for the community at: athena.ccr.buffalo.edu. All the models
described are available in the <Collec�ons> section in the <Segmenta�on models> folder on athena.ccr.buffalo.edu or at
https://bit.ly/3ejZhab. Documentation for using this tool is available at https://bit.ly/3nNMpfH. A video overviewof Histo-
Cloud is available at https://bit.ly/3r5GrZr.
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GLOMERULAR SEGMENTATION – scalability:

To assess the computational scalability of Histo-Cloud, a network model for glomeruli segmentation was trained using
renal �ssue WSIs (glomerulus model). This network was trained using a very large dataset containing 743 WSIs
(GlomTrainSet). Network performance was evaluated on a holdout set of 100 addi�onal human renal �ssue WSIs
(GlomTestSet 1). The computa�onally generated segmenta�on was robust when compared with manual annotations for
glomeruli and generated the following sta�stics: F-score=0.97, Ma�hews correla�on coefficient (MCC)=0.97, Cohen’s
kappa=0.97, intersec�on over union (IoU)=0.94, sensi�vity=0.95, specificity=1.0, precision=0.99, and accuracy=1.0. This
model also performed robustly on two independent test WSI datasets (GlomTestSet 2 & 3) origina�ng from an ins�tution
not included in the training dataset with ground-truth established by a separate annotator (MCC=0.83 and 0.90 on
GlomTestSets 2 and 3, respec�vely) (Fig. 2a). Fig. 2c shows examples of glomerulus segmenta�on performance for a
diverse set of glomerular pathologic changes and histochemical stains.

We have found the performance of Histo-Cloud continually improves while achieving high specificity when deployed in a
human in the loop se�ng. This process allows experts to itera�vely correct the network predictions on holdout WSIs
before incorpora�ng them into the training-set, and the subsequent training reduces future annota�on burden7. This
process is facilitated due to the ability of our system to view predic�ons interac�vely on the WSIs via the web interface,
which is helpful to determine WSIswhere the trainedmodel struggles.We used this strategy to train the glomerulusmodel
iteratively and obtained a decreasing number of incorrect segmentations with increasing itera�ons.

As part of the scalability study the segmenta�on speedwas assessed. Prediction time as a func�on of WSI size was tracked
on a set of 1528 WSIs (median time=4.7 min, median size=1.9 Gigapixels) from a set that have similar diversity as in
GlomTrainSet, we refer to this set as GlomTestSet 4. Histo-Cloud uses hardware accelera�on on the host server to speed
processing and is capable of segmen�ng a large histology sec�on in as li�le as 1 min. The segmentation �me depends
(approximately linearly) on the size of the �ssue section; Fig. 2b quan�fies segmenta�on speed as a func�on of image
pixels on WSIs from GlomTestSet 4. The algorithm performs a fast thresholding of the �ssue region within the slide to
reduce the computational burden for slides with large non-�ssue areas. There is a slight programma�cal overhead when
opening and caching larger slides, this appears as a gentle upslope of points of the same color in Fig 2b.

VESSEL SEGMENTATION – adaptability:

To evaluate the adaptability of Histo-Cloud for segmen�ng mul�ple structures from WSIs, we retrained the glomerulus
model to segment glomeruli, arteries, and arterioles. The training set is referred to as VessTrainSet, and the test set is
VessTestSet.

Transfer learning is a machine learning technique where a model developed for one purpose is retrained for another
purpose15. Using the glomerulus model as the star�ng point for transfer learning, Cohen’s kappa of 0.86 was obtained for
segmen�ng arteries, arterioles, and glomeruli. The kappa metric was computed based on pixelwise agreement between
computational segmentation and manual ground-truth. To study the effect of transfer learning on segmentation
performance, we trained another model by randomly ini�alizing the network parameters (random model); performance
decreased to Cohen’s kappa of 0.51.

We further explored the possibility of improving the computational performance without access to amodel trained from
a large segmented dataset. Toward this goal, we used the Genotype-Tissue Expression dataset (GTEx)16, which contains
15989 H&E stained WSIs from 40 different �ssue types, to pre-train a segmentation model to detect the �ssue type. This
was accomplished without any human annota�on, by thresholding the �ssue region of each slide and training amodel to
classify the �ssue type of each slide. The goal was to create a model for transfer learning which had been exposed to
diverse �ssue morphologies, and therefore had learned filters useful for more fine-grained segmenta�on tasks. While
transfer learning using the resul�ng model (GTEx model) did improve the segmentation performance of glomeruli,
arteries, and arterioles (Cohen’s kappa=0.68) over random ini�aliza�on, performance was below that achieved using the
glomerulus model.
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Finally, we trained a fourth model, transfer learning with a model pretrained on the ImageNet17 dataset, this same model
was originally used to train the glomerulus model. Surprisingly, this model (ImageNet model) achieved the best
segmentation performance (Cohen’s kappa=0.87withMCC of 0.86, 0.66, and 0.91 for segmen�ng arteries, arterioles, and
glomeruli, respec�vely). This performance improvement is further explored in the DISCUSSION section. A more detailed
comparison of these results is shown in Fig. 3a, with randomly selected holdout predic�ons from VessTestSet in Fig. 3b.
To explore the performance of the ImageNetmodel on an independent test set, we segmented GTEx WSIs from different
organs, examples are shown in Fig. 3c.

INTERSTITIAL FIBROSIS& TUBULARATROPHY (IFTA) SEGMENTATION – adaptability:

To further evaluate the adaptability of Histo-Cloud, the effect of dataset variability on the segmenta�on of IFTA was
studied in a distributed se�ing; namely, our web-based setup (in cloud). IFTA ismorphological changes in the renal cortex
reflecting “chronic” injury with resultant scar formation and is an important indicator to predict renal disease prognosis9.

To generate a ground truth, three pathologists provided WSIs from their ins�tu�ons and manually annotated IFTA. Past
studies have shown significant disagreement among pathologists in manually annota�ng IFTA9. To minimize such
disagreement, the pathologists used the defini�on of IFTA based on Banff 2018 criteria18, and also collaborated via our
web-based tool in a distributed setup for IFTA annotation. Further the inclusion criteria of cases (discussed in theMethods
- WSIs from IFTASet 1, IFTASet 2, IFTASet 3, IFTATestSet 2, and GlomTestSet3 section) minimized variability of the
annotation process.

A holdout dataset was randomly selected by pooling one-third of the slides from each ins�tution (n=29). We refer to this
set as IFTATestSet 1. Another dataset from a fourth ins�tu�on (IFTATestSet 2, n=17) was used for independent tes�ng. A
pathologist from this fourth ins�tu�on manually annotated IFTA in IFTATestSet 2 to generate the ground-truth.

We trained five models for IFTA segmentation using the pathologist provided ground-truth: the first three models were
trained using slides from a single ins�tution - IFTASet 1 (12 slides), IFTASet 2 (24 slides), and IFTASet 3 (12 slides). We refer
these as Ins�tu�on 1, 2, & 3 models respec�vely. The fourth model used the combined training data from all the three
sets (48 slides), referred to as Combined full. A final model used1/3rd of this combined set (16 WSIs), ensuring the amount
of training data was comparable to the first three models. This model is referred as Combined 1/3rd.

To be�er assess the performance of the trained models, we output the network logits (predictions prior to using the
argmax function) which were used to construct ROC plots for each model. This process allowed us to display IFTA
predic�ons as heatmaps in HistomicsUI (Fig. 4d). Interes�ngly on IFTATestSet 1 training with 1/3rd of the combined dataset
(Combined 1/3rdmodel) yielded better IFTA segmentation (AUC=0.93) than training with a single institu�on dataset alone
(Fig. 4a) (AUC=0.78, 0.76, and 0.91 for models Ins�tu�ons 1, 2, & 3, respec�vely). When we tested the Combined full
model, the performance improved to AUC=0.95.The same trend was observed when segmen�ng IFTA in the independent
test set IFTATestSet 2 (Fig. 4b), with AUC=0.68, 0.75, and 0.83 for models Ins�tu�on 1, 2, & 3, respectively, AUC=0.86 for
Combined 1/3rdmodel, and AUC=0.88 for Combined fullmodel.

The IFTA segmentation models were trained to simultaneously segment IFTA and glomeruli. We observed the same
performance trend for glomerulus segmentation via the IFTA models in both IFTATestSet 1 and 2; these results are
available in Supp. Fig. 2. The ROC plots (generated by thresholding the network logits) for all the glomeruli, artery, and
arteriole segmentations conducted in this work are shown in Supp. Fig. 3.

To demonstrate the robustness in another independent cohort and compare the trained model to visual manual
estimation of IFTA done in the clinical se�ng, we used an addi�onal 26 PAS-stained chronic kidney disease renal biopsy
cases from the Kidney Precision Medicine Project (KPMP)19 consor�um. We refer this set as KPMPTestSet. Three KPMP
pathologists, provided a percent IFTA score to the nearest 10 percent for each slide following Banff 2018 defini�ons18.
This scoring was done via visual estimation, without any annotation on the slides. The five IFTA segmenta�on models
discussed above were used to segment IFTA boundaries in the KPMPTestSet, percent IFTA was estimated as segmented
IFTA area over total renal cortex area, and the resul�ng computationally estimated scores were correlated with the
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manual visual es�ma�on. Fig. 4c shows a confusion matrix describing correlations (p-value < 0.05) between pathologists
and the computer for the Combined full model. We found that the correlation measures among pathologists and the
computer models were comparable. Supp. Fig. 4 shows a full comparison of the five IFTA segmenta�on models and each
KPMP pathologist. Fig. 4d depicts examples of qualita�ve IFTA segmentation performance.

MURINE MODEL ANALYSIS – u�lity:

Finally, we show the u�lity of Histo-Cloud in a basic research applica�on, analyzing digital image features extracted from
computationally segmented glomeruli (via the Glomerulus model) from four murine models. A description of the models
used is available inMethods -WSI from murine kidney �ssue.

WSI from each model contained mul�ple sec�ons obtained from one murine, with an average of 90-200 glomeruli per
section. For the current analysis, we extracted 315 engineered image features from each segmented glomerulus. Feature
defini�ons and quan�fication methods are discussed in our prior work5, a descrip�on is also available in Supp. Table 2.
The features were selected to reflect ac�ve, present, and physical manifestations of kidney pathophysiology.We used an
unsupervised Uniform Manifold Approxima�on and Projection (UMAP)20 to learn a two-dimensional manifold in the
feature space (performing dimensionality reduction). Each glomerulus was plotted (with label) in this space to visualize
the separability between classes (control vs disease) in eachmurine model (Fig. 5). To quan�fy this separability, we trained
a K-nearest neighbor (KNN)21 classifier using the UMAP featureswith five-fold cross validation, and computed the optimal
Cohen’s kappa achieved over mul�ple K for each murine model (Supp. Fig. 5). Overall, we found the aging, KKAy and
Db/Db diabetes models to have good unsupervised class separability (Figs. 5a, b, c). We also applied Seurat22 software to
analyze the image feature data and to characterize differen�al feature abundance. The distribution of the top feature
separa�ng control from disease, and the most representa�ve glomeruli image patches depic�ng differences from these
two classes are shown in Fig. 5.

DISCUSSION
In this work, we contribute three elements to the digital pathology community to advance �ssue analysis: an online tool,
the source code, and trained segmentation networks. Webelieve that easy-to-use AI tools and collabora�ve development
of powerful models will benefit the digital pathology research community.

This work was mo�vated by our previously developed Human-AI-Loop (H-AI-L)7 which allows for iterative annotation of
WSIs significantly reducing the annotation burden. As most work in computational pathology, H-AI-L has found limited
u�liza�on by the pathology research community due to complexi�es of installa�on. To address this limitation, we
implemented Histo-Cloud as an online tool which does not require the installation of any software on the user’s local
computer. All processing occurs on the remote server, which hosts the web client. Like the original H-AI-L work, we use
the DeepLab segmentation network23 for processing image patches, but Histo-Cloud uses on-the-fly processing of WSI
patches to increase the tool’s performance and scalability. Data permissions (set via the digital slide archive - DSA13) can
be adjusted to keep uploaded data secure.

Annotation done interactively on the WSI fits easily into pathologist workflow, and the cloud-based nature ofHisto-Cloud
abstracts any computational overhead away from theend-user. Annotation can bedone on any internet connecteddevice
without any software installa�on. If the user prefers to annotate locally, we have added op�ons to ingest and export
annotations in an Extensible Markup Language (XML)24 format readable by the commonly used WSI viewer Aperio
ImageScope25. The authors note two complimentary works: HistomicsML26 and Quick Annotator27, both use superpixels28

and ac�ve learning29 to speed the annotation process. HistomicsML also uses HistomicsUI for deployment, and Quick
Annotator is run locally in the QuPath slide viewer30. A future extension of our tool will combine edge detec�on and
snapping31 to speed the ini�al segmenta�on by human annotators.

Conduc�ng the transfer learning study using the GTEx �ssue histology WSIs (Fig. 3a) (15989 WSIs containing 2.6 trillion
total image pixels, 4.7 TB of data) and training the glomerulus model for glomeruli segmentation (Fig. 2a) (743 WSIs, 1.8
trillion pixels, 276 GB) were stress tests for scalability. Se�ng Histo-Cloud’s accessibility benefits aside, the study of
glomeruli segmentation (Fig. 2) not only uses the largest most-diverse cohort of WSIs, but also reports the best
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performance in the literature for glomerular segmenta�on. In our previous work onH-AI-L7 we trained Deeplab-v232 using
a dataset of 13 PAS and hematoxylin and eosin (H&E) stained murine WSIs containing 913 glomeruli, and achieved an F-
score=0.92. Kannan et al.33 used Inception-V334 for the sliding window classification of glomeruli with a set of 885 patches
from 275 trichrome stained biopsies, and reportedMCC=0.63. Bueno et al.35 trained U-net6 with 47 PAS stainedWSIs, and
reported Accuracy=0.98. Gadermayr et al.36 used 24 PAS-stained murine WSIs to train U-net6, repor�ng Precision=0.97
and Sensi�vity=0.86.

Jayapandian el al.37 present the most comprehensive results on glomeruli segmenta�on, training U-net6 on a dataset
containing 1196 glomeruli from 459 human WSIs stained with H&E, PAS, Silver and Trichrome, repor�ng F-Score=0.94.
However their analysis is limited to glomeruli with minimal change disease38. In contrast our training dataset
(GlomTrainSet) contained743 WSIs from both human andmice, stainedwith diverse histological stains, with a 61734 total
glomeruli, from diverse disease pathologies beyond minimal glomerular changes. The holdout dataset GlomTestSet 1
contained similar diversity (Fig. 2c). Our trained model also performed well on independent test datasets GlomTestSet 2
& 3 (Figs. 2a). Predictably, performance on the independent test datasets GlomTestSet 2 & 3 was lower than the holdout
dataset, albeit visual assessment of the segmentations appeared consistent with expert opinion. The modularity of Histo-
Cloud will allow others to adapt the trained model to include more structurally abnormal glomeruli.

When tes�ng the effec�veness of transfer learning, we found that adap�ng the ImageNetmodel for segmen�ngglomeruli,
arteries, and arterioles using the VesselTrainSet, performed better than using the glomerulus model as the star�ng point
(albeitmarginally). The ImageNetmodelwas trained on thousands of natural image classes, and iswidely used in computer
vision literature17. It is surprising that despite having seen renal �ssue the glomerulus model reduced feature
generalizability. This result suggests that it is a better prac�ce to start network training using the ImageNet parameters
(now the default for training Histo-Cloud models in the cloud). Encouragingly, when applying the developed vessel
segmentation model to different �ssue types from the publicly available GTEx �ssue WSIs16, the segmentation of arteries
and arterioles was found to be consistent with expert opinion (Fig. 3c).

Perhaps the most interesting aspect of a cloud-based segmentation tool is the ease of crowd sourcing annotation and
developing collabora�ve models across centers or ins�tutions39. As discussed above and also known that manual
annotation of IFTA boundaries by mul�ple pathologists suffer from high degree of disagreement9. In contrast, Histo-
Cloud’s web-based system allowed the annotators to view each other’s annotations in annota�ng IFTASet 1, 2, & 3, and
IFTATestSet 2 for the mul�-ins�tute IFTA study (see IFTA SEGMENTATION – adaptabilityunder RESULTS). We further note
that visualizing IFTA predic�on confidence using heatmaps was more reflective of the underlying biology than using
contours, confirmed by subject ma�er experts via visual assessment. Namely, a heatmap depicts a probability which is
more informa�ve than contours which display binary predic�ons. Examples of IFTA segmenta�ons on the holdout data
IFTATestSet 2 as both contours and heatmaps are shown in Fig. 4d. The functionality to output segmented regions as
heatmaps is available using the segmentation plugin.

The IFTA segmentation study further highlights the importance of training set diversity. Training using data from more
ins�tu�ons improved segmenta�on performance, even when less WSIs from each ins�tution were used. Namely the
performance of Combined 1/3rd model in comparison to Ins�tu�on 1, Ins�tu�on 2, and Ins�tu�on 3 models (see IFTA
SEGMENTATION – adaptability under RESULTS). This and the results described in the previous paragraph suggest a cloud-
based environment is ideal for the development of models for histology segmenta�on, avoiding bias and allowing easy
interaction between annotators for genera�ng ground-truth by centralizing data from mul�ple ins�tutions. Users can
choose to pool their data or simply u�lize models trained by others to aid in annotation or for transfer learning.

Finally, the murine model analysis case study suggests that our tool will enable basic science laboratories working on
murine experiments to study differen�al abundant image features in various disease models as well as in treatment
groups. In summary, the analy�c approaches described here will enable researchers who lack software engineering skills
to analyze the histopathology from murine models or human �ssue, using an intui�ve online cloud-based framework.
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METHODS
WSIs for GlomTrainSet, GlomTestSet 1, and GlomTestSet 4: These datasets were used for the segmentation of glomeruli.
This dataset consists of both human and murine renal �ssue WSIs from various ins�tutes as well as publicly available
repositories, using diverse stains and different scanners. The ins�tutions included the University of California at Davis (UC
Davis), Johns Hopkins University (JHU), Kidney Transla�onal Research Center (KTRC) at Washington University School of
Medicine at St. Louis (WUSTL), Seoul National University Hospital Human Biobank (SNUHHB), Vanderbilt University
Medical Center (VUMC), University at Buffalo (UB), University Hospital Cologne (UHC), and the publicly available
Genotype-Tissue Expression (GTEx) portal, a repository that hosts human autopsy WSIs.

The GlomTrainSet consisted of 743 WSIs, 428 from human and 315 from murine �ssues, containing a total of 61734
manually verified glomerular annota�ons. GlomTestSet 1 consisted of 100 holdout slides from the same data sources as
GlomTrainSet. This included 3816 glomeruli, 37.8 GB of compressed image data, and a combined total of more than 0.24
trillion image pixels.GlomTestSet 4 contained an additional 1528 WSIs from the same sources that were used to study the
scalability and prediction time of the method.

The human renal �ssues manifest disease pathology spanning various stages of diabe�c nephropathy; various classes of
lupus nephri�s; renal transplant protocol biopsies, including �me-zero, protocol, and indica�on biopsy cases; human
autopsy renal �ssues publicly available via GTEx with diversity in age, sex, and race; and renal biopsies with pathologies
that includemembranous nephropathy, thrombo�c microangiopathy, pauci-immune glomerulonephri�s, focal segmental
glomerulosclerosis (FSGS),mesangiopathic glomerulonephri�s, arteriolosclerosis, hypertension, IgA nephropathy, chronic
tubulointersti�al nephri�s, acute tubular necrosis, Fabry disease, amyloid nephropathy, membranoprolifera�ve
glomerulonephri�s, light chain cast nephropathy, minimal change disease, post-infec�ous glomerulonephri�s, idiopathic
nodular glomerulosclerosis, and an�-glomerular basement membrane disease. The human data was collected in
accordance with protocols approved by Institu�onal Review Board at the UC Davis, JHU, KTRC, WUSTL, SNUHHB, VUMC,
and UB. The SNUHHB data was shared under IRB number H-1812-159-998.

Murine renal �ssues included in GlomTrainSet and GlomTestSet 1 came from three different models. For the first model
wild-type FVB/N mice were subjected to a combination of four interventions that induce a post-adaptive form of FSGS.
The interventional process includes 0.9% saline drinking water, angiotensin II infused via osmo�c pump, uni-nephrectomy,
and deoxycor�costerone delivered by implantation of a subcutaneous pellet, summarized as the SAND model40,41. The
second model was a streptozotocin (STZ) diabetes murine model that manifests nephropathy; a detailed descrip�on of
this model is discussed in our prior work42. The third model was a nephrin knockdown (nephrin KD) murine model, was
implemented using a published protocol43, and shows mesangial hypercellularity and sclerosis, glomerular basement
membrane thickening, and podocyte loss.

The �ssues were sectioned at 2-5 µm thickness for staining and imaging. The data consist of �ssues stained with diverse
histological stains, including hematoxylin & eosin (H&E), periodic-acid Schiff (PAS) with hematoxylin (PAS-H) counterstain,
Silver, Trichrome, Verhoeff’s Van Gieson, Jones, and Congo red. The slides were scanned using different brigh�ield
microscopy WSI scanners, including Aperio VERSA digital whole slide scanner (Leica Biosystems, Buffalo Grove, IL),
Nanozoomer (Hamamatsu, Shizuoka, Japan), and Mo�cEasyScan Pro (Mo�c, San Antonio, TX), at 40X resolu�on. Pixel
resolution of the images used was 0.13 µm to 0.25 µm.

WSIs for VessTrainSet, VessTestSet, and GlomTestSet 2: This human dataset was used to test adaptability of the model
for vessels. In total there were 939 annotated arteries, 6023 arterioles, and 4507 glomeruli. VessTrainSet contained 226
renal �ssue WSIs. VessTestSet contained an addi�onal 58 holdout slides. Mul�ple stains per case were used. This dataset
was manually annotated for relevant structures to establish a ground-truth.

The renal �ssue WSIs came fromUHC via co-author J.U.B. Diagnoses included thrombo�c microangiopathy, hypertension-
associated nephropathy, and vasculi�s. Tissues were sectioned at 2-3 µm thickness. Diverse histologic stains were used,
including H&E, PAS-H, Masson trichome, and Jones methenamine silver, for staining the �ssue to depict different
pathobiological features. A brigh�ield microscopy scanner Nanozoomer (Hamamatsu, Shizuoka, Japan) was used for WSI
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scanning at 40X resolution. Pixel resolution of the images used was 0.25 µm. Note that the VessTestSet dataset was used
to construct the GlomTestSet 2 dataset to conduct the study discussed in GLOMERULI SEGMENTATION – scalability.

WSIs for IFTASet 1, IFTASet 2, IFTASet 3, IFTATestSet 2, and GlomTestSet 3: These datasets were used for the
segmentation of IFTA. The human renal tissues for this part of the study came from four ins�tutions: University of
California, Davis; University of California, Los Angeles (UCLA); University of Coimbra (Portugal); and University Hospital
Cologne (UHC).

Tissues were obtained from renal allogra� nephropathy with no prior history of rejection. For this study, periodic acid-
Schiff (PAS)-stained renal tissue WSIs of renal allograft nephropathy were used for training (IFTASet 1, n=20; IFTASet 2,
n=48; and IFTASet 3, n=22). One slide was selected per case for each ins�tution. The WSIs per set were uniformly chosen
from four IFTA classes defined based on semiquan�tative score (ci/ct scores: 0, 1, 2, & 3); ci/ct scoring is amethod defined
in Banff 2018 criteria18 for assessing IFTA in transplant biopsies. A minimum of five slides per class were used for each set.
The caseswere reviewed to ensure the following selec�on criteriawere met: (1) the amount of early or evolving IFTAwith
variable intermixed edemawas minimized, (2) no active inflammation, (3) no prior history of rejec�on, and (4) cases were
selected to represent the full range of IFTA severity. All types of IFTA, including classic, endocrinization, and thyroidization
patterns, were included in the analysis, without dis�nguishing between the types. IFTATestSet2 was providedby UHC, and
contained 17WSIs. This dataset followed similar case selection criteria as abovewith two slides fromclass 0 andfive slides
each from the remaining three classes.

The human data was collected in accordance with protocols approved by Ins�tu�onal Review Boards at the UC Davis,
UCLA, University of Coimbra, and the University at Buffalo. Deiden�fied images from UHC throughout this paper were
used for retrospective research, and such is permitted under German law to conduct without IRB approval. The �ssues
were sectioned at 2-3 µm thickness and stained using PAS-H. Imaging was done using different brigh�ieldmicroscopy WSI
scanners, including Aperio CS virtual slide imaging system, Aperio AT2 (Leica Biosystems, Buffalo Grove, IL), and
Nanozoomer (Hamamatsu, Shizuoka, Japan) at 40X resolu�on. Pixel resolution of the images usedwas 0.25 µm. Note that
the IFTATestSet 2 dataset was used to construct theGlomTestSet 3 dataset to conduct the study discussed in GLOMERULI
SEGMENTATION – scalability.

KPMP WSI dataset: This dataset was used to test adaptability of the model for IFTA. This part of the study used 26 renal
�ssue biopsy whole slide images (WSIs) of 26 chronic kidney disease (CKD) subjects from Kidney Precision Medicine
Project. The recruitment sites were Brigham & Women’s Hospital, Cleveland Clinic, Joslin Diabetes Center/ Beth Israel
Deaconess Medical Center, and University of Texas at Southwestern. The inclusion criteria for CKD subjects for biopsy
include subjects diagnosedwith diabe�c kidney disease (type 1 or 2) and hypertensive kidney disease. For the former, the
subjects are included based on eGFR in the range of 30-59mL/min/1.73 m2 or eGFR ≥ 60with urinary protein to crea�nine
ra�o (uPCR) > 150 mg/g or urinary albumin to crea�nine ra�o (uACR) > 30mg/g. For the latter, the subjects are included
based on eGFR in the range of 30-59 mL/min/1.73 m2 or eGFR ≥ 60 with uPCR in the range of 150-2000 mg/g or uACR in
the range of 30-2000 mg/g. The study is overseen by three independent bodies, including a data safety monitoring board,
a central ins�tu�onal review board (WUSTL), and an NIH-NIDDK convened external expert panel. More details about the
ra�onale and design of KPMP cases are available in a recent publica�on44. The �ssueswere sectioned at 2-3 µm thickness,
and the PAS-H stained �ssues were used for the study presented in this work. Imaging was done using Aperio GT450
brigh�ield microscopy WSI scanner (Leica Biosystems, Buffalo Grove, IL) at 40X resolution. Pixel resolution of the images
used was 0.25 µm.

WSIs for murine kidney �ssue for the study discussed in MURINE MODEL ANALYSIS – u�lity: For this part of the study
four murine model renal �ssue WSIs were employed. These models include an aging model, two type 2 diabetic
nephropathy (T2DN) models (KKAy and Db/Db), and a transgenic HIV-associated nephropathy (HIVAN)model. We used 8
mice (4 young and 4 old) WSIs for the aging model, 20 mice (10 KKAy or disease and 10 C57/BL6 or control) WSIs for the
KKAy model, 14 mice (7 Db/Db or disease and 7 Db/m or wild-type control) WSIs for the Db/Db model, and 37 mice (26
transgenic disease and 11 wild-type control) WSIs for the HIVAN model.
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The aging studies were performed in 4-month-old and 21-month-old C57/BL6 male mice obtained from the NIA aging
rodent colony45. For the KKAy model (see published descrip�on46), male mice that develop spontaneous diabetes of
polygenic origin were used. For the Db/Db model, male mice on BKS background featuring a lep�n receptor muta�on
were used. These mice depict spontaneous/congenital diabetes due to lep�n signaling abnormali�es47. For the HIVAN
model, transgenic Tg26 mice on a FVB/N background feature a gag-pol-deleted HIV-1 genome48 which manifests as
collapsing glomerulopathy. Animal studies were performed in accordance with protocols approved by the Ins�tu�onal
Animal Care and Use Committee at the Georgetown University, National Ins�tutes of Health, JHU, and UB, and are
consistent with federal guidelines and regulations, and are in accordance with recommendations of the American
Veterinary Medical Associa�on guidelines on euthanasia. Tissues were sectioned at 2-3 µm thickness, and the PAS-H was
used for staining. The slides were scanned using different brigh�ield microscopy WSI scanners, including Nanozoomer
(Hamamatsu, Shizuoka, Japan) and MoticEasyScan Pro (Mo�c, San Antonio, TX), at 40X resolution. Pixel resolu�on of the
images used was 0.25 µm.

So�ware:With the goal of developing a tool with class leading WSI segmentation accuracy as well as easy accessibility to
computational non-experts, we have integrated the popular seman�c segmenta�on network Deeplab V3+23 with the
DSA13, an open-source cloud-based histology management program. Specifically, we have created a suite of easy-to-use
plugins using HistomicsUI, an application programing interface of the DSA for running Python codes. These plugins
efficiently run the DeepLab network for native segmentation of WSIs, making tes�ng new slides accessible through the
HistomicsUI graphical user interface (the slide viewing component of the DSA). Using the HistomicsUI interface, users can
interactively view the computational annotations, and further refine such annotations for training new models. The
modified HistomicsTK-Deeplab codebase is available via GitHub and also as a prebuilt Docker image for easy installation.
This software is deployed in the cloud and is accessible via theweb, making it easily accessible to the community as a plug-
and-play tool (Fig. 1). The open-source plugins are available to the digital pathology community for use and further
development.

Func�onality: We have developed several plugin tools with various func�ons. (1) The <SegmentWSI> plugin (Fig. 1a)
segments WSIs using a previously trained model. (2) The <TrainNetwork> plugin can be used to train new models from a
folder of annotated WSIs (Fig. 1b). Histo-Cloud generates predic�ons as a series of image contours or sparse heatmaps
which are written to JavaScript Object Notation (JSON) format for display in HistomicsUI as annotation layers. The code is
modular, with the ability to handle multi-class segmentation, and includes the op�on to tweak the network
hyperparameters for advanced users. (3) Func�onality was included for conversion between JSON annota�ons and the
XML format (<IngestAperioXML> and <ExportAperioXML> plugins). The XML format is used to display contours in Aperio
ImageScope (Leica, Buffalo Grove, IL) which is a popular WSI viewer. (4) The <ExtractFeaturesFromAnnota�ons> plugin
(see Fig. 1c) was built for extrac�on of image and contour-based features from annotated regions in the slides. The
features arewritten into the slidemetadata (on DSA) in JSON format. For further data explora�on, features saved into the
slide metadata can be plo�ed pairwise using a sca�erplot tool available in HistomicsUI (Fig. 1c) for a single slide or across
a folder of WSIs. Features can also be saved in spreadsheet format for local download and further analysis.

Computa�onal model: We used the official implementa�on of the Deeplab V3+ segmenta�on network23, modified to
work natively on WSIs. This implementation was accomplished by adap�ng the way the network ingests data, extrac�ng
patches from WSIs as needed during training using the large_image Python library49. A similar method (HistoFetch) is
described more extensively in a recently published preprint50, which shows on-the-fly patch extraction speeds overall
training time for unsupervised tasks. The HistoFetch method was adapted in this work to perform a supervised
segmentation task by creating addi�onal patch selection criteria intendedto proac�vely balance uneven class distribu�ons
during patch extrac�on. Note that during development the code was migrated to use large_image49 for reading WSI data
rather than the openslide51 library, as the former supports a larger number of slide formats. To convert the ground-truth
annotations to masks for seman�c segmenta�on, the HistomicsUI JSON annotations are converted into the Aperio
ImageScope XML format, and the XML_to_mask conversion code from the original H-AI-L study7was reused for genera�ng
ground-truth masks. This code follows the way openslide and large_image read WSI patches via specifying the loca�on

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 17, 2021. ; https://doi.org/10.1101/2021.08.16.456524doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.16.456524
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page | 11

and scale of the patches. The min and max indices of each contour annotation are wri�en into the metadata of the XML,
allowing for faster reference of which contours are in the image region requested.

A flowchart providing an overview of this training input pipeline is presented in Supp. Fig. 1. A similar pipeline is used
during predic�on (segmenta�on of slides), but patches are extracted deterministically from an overlapping grid pa�ern
(excluding non-tissue regions) to ensure full �ssue segmenta�on. Thetraining and tes�ng performa fast color thresholding
of the �ssueregionwhich is savedas a portable network graphics (PNG)mask for reference (to avoid repeatedoperations).
This process ensures the network does not train on non-�ssue regions, and thus speeds the predic�on process. During the
development, we found that occasionally providing the network with background (non-�ssue) patches helped generalize
the batch normaliza�on parameters during training. We therefore implemented a parameter that defines the probability
of selection of patches that may include the background region. A default of 0.1 was found to work well in generalizing
the batch normaliza�on layers.

Training & Tes�ng: Training of models was done on a server equipped with two Intel Xeon Silver 4114 (10 core)
processors, with 64 GB RAM and dual Nvidia Quadro RTX 5000 graphical processing units (GPU) with 16 GB of video
random access memory (VRAM). These resources allowed training with a batch size of 12 using image patches of size 512
x 512 pixels. A batch size of 12 is the minimum recommended for training the batch normalization parameters in the
DeepLab implementa�on document. The Athena server (open for public use) has only one GPU with 8 GB of VRAM. We
have therefore disabled training of the batch normaliza�on parameters by default in the training plugin (which can be
enabled in the advanced parameter section) and have set a default batch size of 2. All trained networks used a base
learning rate of 1e-3 with polynomial decay using the momentum optimizer (momentum value=0.9).

All models use the Xcep�on 65 network backbone23, with DeepLab parameters atrous_rates=6, 12, and 18,
output_stride=16, and decoder_output_stride=4 for both training and predic�on. The glomerulus model was trained for
400,000 steps, and was initialized using the ImageNet model. The vessel segmenta�on models were trained for 100,000
steps, and the IFTA segmenta�onmodels were trained for 50,000 steps using ImageNetmodel as star�ng point for transfer
learning. Details on the trained models are outlined in Table 1.

As part of the input pipeline,WSI patches can be extracted efficiently at downsampled resolu�ons. The patchdownsample
rate is user specified, and mul�ple down sample rates can be specified during training, which are randomly cycled for
patch extraction. For training, downsample rates of 1, 2, 3, & 4 with respect to the native slide resolu�on were used, a
randomly selected downsample rate from the list was used for each extracted training patch. For predic�on, a
downsample rate of 2 was used for all experiments, we found this choice was a good compromise between prediction
speed and accuracy. We believe that the mul�-resolu�on training strategy helped the network to generalize. We found
the glomerulus model works equally well in both 40X and 20X WSIs (both using a predic�on downsample of 2). Further,
the vessel segmenta�on model was trained using 40X WSIs, and successfully applied to the 20X GTEx WSIs for tes�ng.

Using a large patch size for predic�on increased segmentation performance, giving the network a larger field-of-view and
reducing edge ar�facts. For prac�cal purposes, we settled on a default patch size of 2000 x 2000 pixels. For predic�on, it
was found that using a stride of 1000 pixels gave sufficient overlap between extracted patches. During predic�on, the
indices of the extracted patches are tracked, and the resul�ng bitmap prediction is used to populate a fullWSI mask using
the similarmethod asdiscussed in the original H-AI-L study7. To reduce thenumber of ar�facts at the edge of the predicted
patches, a parameter to remove the boarder of the predic�onswas included. Prac�cally this parameter was set to remove
100 pixels from the border of each prediction.

To improve speed and to keep the memory requirements of code implementation low, network predic�ons are not up-
sampled. Instead, the coordinates of the extracted contours or heatmap indices are up-sampled prior to JSON crea�on.
Using DeepLab parameters, namely, output_stride=16 and decoder_output_stride=4, result in a prediction bitmap that is
25% of the size of the input resolution. With a default downsample of 2 used for predic�on, the resultantWSI mask is one-
eighth of the sizeof the pixel resolutionof theoriginalWSI. We found that 32 GBof RAMis enough to successfully segment
even very large slides.
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When experimen�ng with the network logits for the genera�on of the ROC plots (Figs. 4a & 4b), we converted the code
to s�tch the patch predictions together by averaging the logits of overlapping patches.

Sta�s�cal analysis: Pearson correlation coefficient measure (Pearson’s r)52 was used for the study shown in Fig. 4c, and
corresponding r with null hypothesis r=0 vs alterna�ve r > 0 was used to measure significance.
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d

c

a b

Fig. 1 | The user interface of the segmentation tool (available via the web).
[a] The left <Segment WSI> column shows the controls for the segmentation plugin: <IO> is required arguments and <WSI
Analysis> contains optional parameters. The right column shows the WSI viewer controls and annotations created by the plugin.
The green annotations on the holdout slide are predicted by the plugin and are easily editable by the user. Slides are analyzed
by clicking the <Submit> button in the top left corner, which submits a segmentation job, running the DeepLab network on the
remote server (where HistomicsUI is installed). [b] The options from the <Train Segmentation Network> plugin. Under the <IO>
section, a user can specify a directory full of annotated WSIs to use for network training with the <Training Data Folder> option,
and where to save the trained model with the <Output Model Name> option. The <Training layers> option gives users the ability
to choose which of the annotation layers should be used for training, and subsequently single or multi-class segmentation
models can be trained. To speed up the training process, a previously trained segmentation model can be used for transfer
learning by specifying the <Input Model File>. Hyper-parameters for training the network can be specified using the options in
the <WSI Training Parameters> section – the values herein set to defaults which we have found work well. [c] shows the <Extract
Features> plugin which can be used to extract image and morphology features from annotated objects. These features are
written to the slide metadata and can be plotted from within the online interface via the <Metadata Plot> tab (on the right). [d]
shows the welcome screen of the online interface athena.ccr.buffalo.edu.
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Fig. 2 | Glomeruli segmentation results – scalability study.
[a] The segmentation performance of glomerulus model for glomeruli detection. Mathews correlation coefficients were
calculated for three renal tissue WSI datasets, as specified in subsection GLOMERULI SEGMENTATION – scalability under the
section Results: GlomTestSet 1 contained 100 WSIs holdout from the training set GlomTrainSet, GlomTestSet 2 had 58 WSIs, and
GlomTestSet 3 had 17 WSIs. Both GlomTestSet 2 and GlomTestSet 3 were from an institution independent of the institutions from
where the training dataset GlomTrainSet was formed for training the glomerulus model. Further, glomerular boundaries in
GlomTestSet 2 and GlomTestSet 3 were annotated by an independent annotator who was not involved in annotating glomeruli in
GlomTrainSet. [b] shows the prediction time in minutes as a function of the WSI size in pixels for glomeruli predictions on 1528
WSIs in GlomTestSet 4. The color and size of the points represent the size of the automatically extracted tissue region of the
slide (the analyzed region) in pixels. The proposed glomerular segmentation model scales roughly linearly in time for increasing
WSI size. [c] A batch of randomly selected glomeruli with the computationally segmented boundaries from the 100 holdout WSIs
in GlomTestSet 1. This selection is intended to highlight the diversity of pathology and staining of the holdout dataset.
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Fig. 3 | Vessel segmentation results – transfer learning study.
[a] The segmentation performance as a function of network initial ization (measured as Matthews Correlation Coefficient)
for the VessTestSet with 58 holdout WSIs from the WSIs used for vessel segmentation. Note that glomeruli were also
segmented here. The ground-truth annotations of structures were generated for three classes: glomeruli , arterioles, and
arteries. The colors here represent different transfer learning sources for parameter initial ization. Namely, glomerulus
model is the model used for glomerular segmentation results in Fig. 2 , and results in a Cohen’s kappa=0.86 here when this
model was used for initial izing the training. Random model does not use transfer learning for parameter initial ization, and
results in a Cohen’s kappa=0.51 when used as the initial ization strategy for training. GTEx model is a model trained to
identify the diverse tissue types from the publicly available GTEx tissue WSI dataset (15989 WSIs with 40 different tissue
types), and results in a Cohen’s kappa=0.68 , when used for training initial ization. ImageNet model uses a model pre-trained
on the ImageNet dataset, and produces a Cohen’s kappa=0.87 , when used for initial izing the training. Performance for
computationally segmenting three classes, namely, glomeruli , arteries, and arterioles, with respect to the ground-truth was
measured using Cohen’s kappa metric based on pixelwise matching between computational segmentations and ground-truth.
[b] shows randomly selected crops of WSIs from the holdout set (VessTestSet) with computational segmentations by the
model trained based on ImageNet model as the starting point. [c] shows randomly selected crops of various types of tissues
from GTEx WSIs, computationally segmented using the model trained based on ImageNet model as the starting point. Despite
being trained only on kidney tissues, the trained model is able to segment arteries and arterioles in diverse tissue types. We
also note that the GTEx sl ides are autopsy tissues scanned at 20X, and the training set for this study VessTrainSet was
scanned at 40X, and did not contain autopsy tissue WSIs.
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Fig. 4 | IFTA segmentation results – multi-institute study.
[a] ROC plots showing the segmentation performance of the five trained IFTA models on the 29 holdout WSIs, IFTATestSet
1 . The models ( Institution 1, Institution 2, and Institution 3) were trained using training datasets from three different
institutions, namely, IFTASet 1 with 12 WSIs, IFTASet 2 with 24 WSIs, and IFTASet 3 with 12 WSIs. These datasets were
annotated by three respective pathologist annotators, marking the ground-truth IFTA boundaries. The Combined full model
was trained using all the 48 WSIs from all the three datasets. The Combined 1/3 rd model used 1/3 rd of the pooled training
set, randomly selected from the three datasets (16 WSIs), to have comparable number of training WSIs as used by the first
three training datasets . This last model yielded a better performance in segmenting IFTA than the models, Institution 1,
Institution 2, and Institution 3 , suggesting that a more diverse dataset improves segmentation performance. Combined full
model offered slightly better performance than Combined 1/3 rd model. [b] shows the performance of the five models using
ROC measures on the independent test dataset IFTATestSet 2 with 17 WSIs. This dataset was originated from an institution
independent than those sourced for results shown in [a] , and was annotated by an independent annotator than those
employed for [a]. Using IFTATestSet 2 , we observed the same performance trend as in [a] . [c] shows the pairwise Pearson
correlation coefficients (p-value < 0.05) for percent IFTA scored visually manually by three additional annotators and the
percent IFTA estimated based on computational segmentation using the Combined full model (computer) for the 26 CKD
renal tissue biopsy WSIs in KPMPTestSet . The KPMP cohort acted as another independent test set which was never seen by
our trained model. [d] shows computational IFTA predictions using the Combined full model on the holdout WSIs
IFTATestSet 1 . The left shows the traditional contour predictions, the right shows the corresponding heatmap predictions
developed specif ical ly for structures with poorly defined boundaries.
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Fig. 5 | Murine model glomerulus feature analysis – utility study.
Feature analysis from glomeruli segmented from renal tissue WSIs from four murine models: [a] is an aging model, [b & c]
are two type 2 DN models (KKAy and Db/Db), and [d] is an HIVAN model. In each panel the left plot shows an unsupervised
UMAP representations of 315 engineered image features extracted from the murine glomeruli , where the glomeruli were
segmented using the glomerulus model . Here each dot is a glomerulus and the red and blue colors differentiate the disease
from control. Definitions and quantif ication strategy of the 315 engineered image features are available in our prior work5.
Separation between the disease and control classes are quantif ied using KNN kappa metric. The right plot shows the
highest differential ly expressed feature as predicted using the Seurat software22. The representative glomeruli from each
murine class depicting this differential ly expressed feature, and the feature value, are shown on the right for each murine
model. Definitions of the 315 features are provided in Supp. Table 2. This study suggests that the seamless segmentation
of glomeruli from large WSIs using our tool faci l itates conducting deep glomerular feature analysis to study novel murine
models.
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Data and Models

Tasks
Structures
Segmented

Models
Trained

Ini�aliza�on
for Transfer
Learning

Training
WSIs

Holdout
Test WSIs

Independent Test WSIs
Traning
Steps

Glomeruli
Segmenta�on

Glomeruli
Glomerulus
model

ImageNet 743 100
58 (GlomTestSet 2)

400000
17 (GlomTestSet 3)

Vessel
Segmenta�on

Glomeruli,
Arterioles,
Arteries

Random model

226 58

Qualita�ve assesment on
publicly available GTEx
�ssue WSIs from mul�ple

organs

100000
GTEx model
Glomerulus
model
ImageNet

IFTA
Segmenta�on

IFTA,
Glomeruli

Ins�tu�on 1 ImageNet 12

29
17 (IFTATestSet 2)

50000

Ins�tu�on 2 ImageNet 24
Ins�tu�on 3 ImageNet 12

Combined 1/3rd ImageNet 16

Combined full ImageNet 48
26 (KPMPTestSet)

Murine Model
Feature Analysis

Glomeruli Used glomerulus model for segmenta�on

4 Old, 4 Young

0

10 KKAy T2DN, 10 C57
Control

7 Db/Db T2DN, 7 Db/M
Control

26 Tg26 HIVAN, 11 WT
Control

Table 1 | Data used and models trained.
Different segmentation tasks, corresponding trained models, segmented structures, initia l model used for transfer learning,
WSIs used for training, hold-out testing, and independent testing, and training steps. We note that GlomTestSet 2 is the
same as the Vessel Segmentation holdout dataset (58 WSIs). GlomTestSet 3 is also the same as IFTATestSet 2 (17 WSIs) .
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