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Abstract 

Electrocorticography (ECoG) methodologically bridges basic neuroscience and 

understanding of human brains in health and disease. However, the localization of ECoG 

signals across the surface of the brain and the spatial distribution of their generating 

neuronal sources are poorly understood. To address this gap, we recorded from rat 

auditory cortex using customized μECoG, and simulated cortical surface electrical 

potentials with a full-scale, biophysically detailed cortical column model. Experimentally, 

μECoG-derived auditory representations were tonotopically organized and signals were 

anisotropically localized to £±200 μm, i.e., a single cortical column. Biophysical 

simulations reproduce experimental findings, and indicate that neurons in cortical layers 

V and VI contribute ~85% of evoked high-gamma signal recorded at the surface. Cell 

number and synchronicity were the primary biophysical properties determining laminar 

contributions to evoked μECoG signals, while distance was only a minimal factor. Thus, 

evoked μECoG signals primarily originate from neurons in the infragranular layers of a 

single cortical column.  

 

Keywords: origins of ECoG, biophysical simulations, auditory cortex, cortical column 

 

In Brief: Baratham et al., investigated the localization and origins of sensory evoked 
ECoG responses. They experimentally found that ECoG responses were anisotropically 
localized £±200 μm, i.e., a single cortical column. Biophysically detailed simulations 
revealed that neurons in layers V &VI were the primary sources of evoked ECoG 
responses, in contrast to common thinking. 
 
 

Highlights:  

Evoked μECoG signals are localized on the surface to a cortical column. 

Neurons in cortical layers V and VI constitute the vast majority of the signal recorded at 
the surface. 

Different laminar contributions to ECoG signal are driven by cell density and 
synchronicity. 
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Introduction 

The brain is composed of many neuronal microcircuits (e.g., cortical columns) that 

each perform specific computations, but are simultaneously integrated into larger 

networks1,2. Microscale measurements (e.g., whole cell and extracellular 

electrophysiology, Ca2+ imaging, etc.,) which investigate the activity of individual neurons 

and small neuronal populations have yielded insight into microcircuit mechanisms of local 

computations. At the same time, macroscale measurements (e.g., fMRI) have revealed 

principles of global processing in entire brain areas3. However, much less is known about 

how local neural processing is organized and coordinated across distributed brain 

networks. The relative paucity of knowledge about mammalian mesoscale (i.e., 

intermediate) cortical functioning can be attributed to the difficulty of simultaneously 

measuring the activity of 100s-1000s of functionally distinct sites over large spatial scales 

with sufficient resolution to resolve properties of local neuronal populations4,5. Measuring 

distributed cortical function is critical to understanding the computations giving rise to 

complex perceptions and behaviors6–8. High-density micro-electrocorticography (μECoG) 

arrays record neuronal activity directly from the cortical surface, can be fabricated on 

flexible materials with tight spacing of many thousands of channels, and are minimally 

invasive9–11. Furthermore, because ECoG and μECoG are used in humans, it is a critical 

methodological bridge between basic neuroscience findings and our understanding of the 

human brain in health and disease9. However, the utilization of (μ)ECoG for basic 

neuroscience is impeded by a lack of understanding of the spatial localization of the 

recorded signals across the surface and the specific neuronal sources generating those 

signals. 

ECoG records cortical surface electrical potentials (CSEPs), which, like all 

electrical signals in the brain, reflect a weighted superposition of all electrical sources 

surrounding the electrode3,12. Because of the 1/fα fall-off of power with frequency of brain 

signals3,12–14, many studies of ECoG and local field potentials (LFP) focus on lower 

frequencies (e.g., <60 Hz), though it is becoming more common to utilize activity in the 

‘high-gamma’ band (Hg: 65-170 Hz)7,15. The motivation for using Hg stems from the 

proposal that higher frequencies reflect a more spatially localized signal3. However, 

experimental estimates of spatial spread of correlations range over more than an order 
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of magnitude, from several hundred micrometers to a few millimeters. Reports on the 

frequency dependence of spatial spread are similarly inconsistent16–18. Determining the 

spatial localization of evoked ECoG signals is critical for both interpreting the data as well 

as guiding the design of future devices. 

An additional critical issue is understanding how ECoG signals arise during active 

neuronal processing, as opposed to baseline. During sensory processing, neuronal 

populations are activated with spatial correlations that partly depend on functional 

organization across cortex and the biophysics of signal propagation through cortical 

tissue19,20. In primary sensory cortices (e.g., A1), the functional organization of response 

properties varies smoothly across adjacent columns21. A cortical column in rodents has a 

radius of 200-500 μm (~350 μm) and spans ~1800-2100 μm in depth, including all six 

cortical layers, which are composed of a variety of neuron types22,23. While different 

excitatory and inhibitory cell types within columnar microcircuits play different roles in 

sensory computation, in general neurons within a column share similar sensory tuning 

properties24,25. At the same time, electrical fields spread passively through cortical tissue, 

diffusing the signal20. Thus, both passive spread of the electric field through the tissue 

and functional organization of neuronal populations are potential mechanisms dictating 

localization of evoked ECoG signals across the surface. However, which of the two is the 

dominant mechanism is unknown. 

Most fundamentally, we lack biophysical understanding of the precise sources that 

generate cortical surface electrical potentials (CSEPs). To understand how intracortical 

local field potentials (LFPs) arise from transmembrane currents, several recent studies 

have utilized biophysically detailed models. In models of passive neurons (i.e., no action 

potential generation), the spatial spread of population LFP is determined by single-neuron 

morphology, the temporal correlation between sources (synchronicity), and the number 

(density) of sources20,26. Additionally, the distance of the sources to the electrode is 

critical, as the magnitude of a single source decays with distance. Reimann et al.27, 

showed that, in contrast to commonly held belief, intra-cortical LFPs contain a significant 

contribution from active membrane current (e.g., voltage gated Na+ currents generating 

action potentials). However, all these studies used only three neuron types: two pyramidal 

neurons (layer III or IV, plus layer V) and layer IV stellate cells. Unlike for intracortical 
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LFPs, biophysically detailed simulations have not been used to understand CSEPs. For 

example, Miller et al.14, created a phenomenological model of the shape of power vs. 

frequency recorded by macro-electrode ECoG in humans, and suggested that synaptic 

inputs were the major contributors to broad-band CSEPs. However, that study did not 

focus on evoked activity and the qualitative model cannot reveal the anatomical origin of 

ECoG, nor the biophysical principles for that origin. The layers of a cortical column are 

composed of different numbers of neurons with distinct morphologies and synchronicity, 

and are by definition at different distances from the surface electrode28. Thus, a full-scale, 

biophysically detailed cortical column model that reproduces the frequency content of 

evoked cortical surface electrical potentials is required to determine the precise laminar 

and cellular origins of evoked CSEPs. 

 We hypothesized that evoked high-frequency (e.g., high-gamma) cortical surface 

electrical potentials are spatially localized to a cortical column and are primarily generated 

by action potentials from neurons in layers V/VI. To test this hypothesis, we combined 

direct experimentation with biophysical modeling. We fabricated custom designed μECoG 

devices with small, low-impedance electrodes10, and recorded evoked CSEPs over the 

surface of rat auditory cortex. We provide definitive evidence that evoked μECoG signals 

are tightly and anisotropically localized to £±200 μm across the cortical surface. Thus, 

μECoG is localized to a cortical column, and the localization is primarily set by the spatial 

scales of functional organization of the underlying cortical tissue. To gain insight into the 

laminar contributions to evoked cortical surface signals, we created a full-scale, 

biophysically detailed model of a cortical column28 which was able to qualitatively recreate 

the evoked spectrum observed in the experimental data. Further, this model predicted 

that both the frequency content and amplitude of CSEP responses should increase with 

increasing input amplitude, which was confirmed by novel experimental findings. Finally, 

interrogation of the model shows that neurons in cortical layers V and VI contribute the 

vast majority (~85%) of the signal recorded at the surface because of their increased cell 

number and synchronicity. These results provide a new biophysical understanding of the 

spatial localization of cortical surface electrical potentials and indicate that evoked ECoG 

signals originate from neurons in infragranular layers.   

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 17, 2021. ; https://doi.org/10.1101/2021.08.16.456540doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.16.456540


6 
 

Results 

We designed and fabricated lithographically-defined, high-resolution μECoG 

arrays with customizable electrode geometry and spacing10,11,29. Each contact on the 

μECoG arrays had a diameter of 40 μm (approximately the size of a cortical mini-column), 

and an impedance of 30 ± 10 kW (measured in 1x phosphate-buffered saline at 1 kHz)10. 

To ensure that we fully captured the range of functional time-scales associated with the 

diversity of neurobiological signals, we recorded wide band (2-12,000 Hz) 

electrophysiological data. 
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Figure 1. Stimulus-evoked cortical surface electrical potentials exhibit large peaks 

in the high-gamma range. 

a. Photomicrograph of an 8x16 μECoG grid (pitch: 200 μm, contact diameter: 40 μm) on 

the surface of rat primary auditory cortex (A1). 

b. Top: tone stimulus played during experimental recordings. Middle: z-scored spectral 

decomposition of single-trial evoked cortical surface electrical potentials from a single 

electrode. Bottom: High-gamma component of single-trial evoked cortical surface 

electrical potentials indicated by horizontal dashed lines in the middle panel. 

c. Trial-averaged evoked cortical surface electrical potential on one μECoG electrode in 

response to presentations of that electrode’s best tuned frequency. 

d. Trial-averaged neural spectrogram for the electrode shown in c in response to 

presentations of its best tuned frequency. Dashed vertical lines in c & d represent stimulus 

onset and offset. Red vertical lines in c & d correspond to the time window of extracted 

evoked response used for subsequent analysis. 

e. Grand-average (mean ± s.e.) z-scored amplitude as a function of frequency across all 

tuned electrodes (N = 333). 

 

Stimulus-evoked cortical surface electrical potentials exhibit large peaks in the 

high-gamma range. 

An example of a 128-channel μECoG grid is shown on the cortical surface 

(subdural placement) of an anesthetized rat in the photomicrograph in Figure 1a. In this 

preparation, we recorded large amplitude, fast cortical surface electrical potentials 

(CSEPs) in response to the presentation of auditory tone pips (Methods). We played back 

stimuli consisting of short (50 ms) pure tone pips with varying frequency and intensity 

(amplitude) at 5 recording locations in 4 rats. An example recording from a single 

electrode during four consecutive stimulus presentations is shown in Figure 1b. Here, 

the top panel depicts stimulus amplitude and frequency, the middle panel displays the 

(normalized) neural spectrogram of the full response, and the bottom panel shows the 

amplitude of the high-gamma component of the neural response. For each recording 

electrode and CSEP frequency component, we normalized (z-scored, relative to baseline 

statistics taken during the inter-stimulus interval) the time-varying amplitude for each 
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CSEP frequency separately, removed untuned electrodes (those which exhibit no 

stimulus frequency selectivity), and computed the “best frequency” for each tuned 

electrode (Methods). The best frequency is the stimulus frequency which maximally 

drives activity on that electrode. Figure 1c-d show the average evoked potential (Fig. 1c) 

and neural spectrogram (Fig. 1d) derived from the recorded electrical potential in 

response to the electrode’s best frequency at a single amplitude (N = 25 trials). In both 

single trials (Fig. 1b), as well as the average (Figs. 1d), the electrode’s best frequency 

evoked large-amplitude, rapid CSEP deflections. The high-gamma (Hg: 65-170 Hz) 

component of the evoked response was observed to be the most robust, often exceeding 

five standard deviations of the baseline in response to the best-frequency (e.g., second 

stimulation, Fig. 1b, BF). 

 To summarize the frequency content of evoked CSEPs, we averaged across 

presentations of the best stimulus at one amplitude. For each electrode, we extracted 

mean z-scored responses across all neural frequency components in a ±5 ms window 

around the time of the peak high-gamma response (red vertical lines in Fig. 1c-d). We 

included all electrodes with a tuned response in the high-gamma band (N = 333 

electrodes from 5 μECoG placements on auditory cortex in 4 rats). Figure 1e plots the 

averaged (N = 333 electrodes, mean ± s.e.) z-scored response as a function of frequency. 

On average, we found that evoked responses were unimodally peaked around the Hg-

band, with notable responses in the multi-unit activity range (MuA, >500 Hz). 

  

Robust frequency tuning and high-resolution tonotopic maps derived from μECoG 

 We next determined auditory receptive field properties and the spatial organization 

of evoked CSEPs. The plots of Figure 2a-b present frequency-response area (FRA) heat-

maps derived from Hg activity (Fig. 2a) and multi-unit activity (tMuA, after application of a 

threshold to the MuA band for event detection, Methods) (Fig. 2b) in response to these 

stimuli. In each FRA, pixels correspond to stimulus frequency-intensity pairings, and are 

colored according to the mean evoked z-scored signal (N = 25 stimuli for each), with blank 

spaces indicating un-tuned responses (see Methods). Data are displayed for several 

electrodes spanning 1.8mm anterior-posterior (AP) and 0.4 mm dorsal-ventral (DV) over 

rat primary auditory cortex (A1). We found that the response profiles exhibited clear 
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frequency tuning and the canonical ‘V-shaped’ profiles expected of auditory cortical 

neurons30–32. Response profiles were largely similar between Hg and tMuA. Additionally, 

there was a smooth gradation of best frequencies across the AP axis, with low-

frequencies posterior, high-frequencies anterior, and similar best frequencies along the 

DV axis, suggestive of tonotopic organization.  

 

Figure 2. Robust frequency tuning and high-resolution tonotopic maps from 

μECoG 

a-b. Frequency-response area (FRA) surfaces recorded from a μECoG array. Subplots 

correspond to responses of a single electrode and are organized according to electrode 

position on the grid/brain. In each subplot, pixels correspond to a stimulus frequency-

intensity pairing, and are colored according to the mean evoked z-score. a. Ηg, b. tMuA. 
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c. High-resolution tonotopic organization of multiple auditory cortical fields derived from 

Ηg activity. Each pixel is color coded according to that electrode’s best frequency. The 

8x16 μECoG array displayed here covered multiple auditory cortical fields (A1, PAF, and 

VAF) and the approximate boundaries are demarcated (black lines).  

d. Differential tuning at neighboring electrodes. FRAs are plotted for four electrodes 

(numbered as in c) and show that neighboring electrodes (1 vs. 2; 3 vs. 4) can have 

different response properties. 

e-f. Average normalized response surface for all electrodes with significantly tuned Ηg (N 

= 333) and tMuA (N = 113) auditory responses. White line in each plot demarcates the 

FRA response boundaries. 

g. Across all tuned electrodes, the average (mean ± s.e.) FRA response boundaries for 

CSEP components (demarcated by colors) where similar. 

h-i. Distributions (25th-50th-75th percentiles) of best-frequencies (h) and bandwidths (i) for 

all tuned responses for CSEP components.  

 

As Hg activity had the largest number of tuned channels, we first visualized 

tonotopic organization by coloring each electrode (pixel) according to its best frequency 

extracted from the Hg-band (Fig. 2c). The 8x16 μECoG array displayed here covered 

multiple auditory cortical fields [primary auditory cortex(A1), posterior auditory field (PAF), 

and ventral auditory field (VAF)] and the functionally defined boundaries are demarcated 

(black lines)21,32. Within a given auditory cortical field, there was a smooth gradation of 

best frequencies, with low-frequencies posterior and high-frequencies anterior. Tuning 

across the dorsal-ventral direction was largely similar within an auditory field. 

Interestingly, while frequency tuning generally varied smoothly as a function of distance 

between electrodes within an auditory area, we observed examples of different tuning at 

neighboring electrodes located in different auditory fields. For example, the FRAs for the 

electrodes demarcated 1&2 and 3&4 in Figure 2c are plotted in Figure 2d and show that 

neighboring electrodes (1 vs. 2; 3 vs. 4) can have different response properties, with 3 

vs. 4 being a particularly stark contrast. This suggests a high degree of spatial localization 

of the recorded signals. These results demonstrate the ability to resolve the tonotopic 
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organization of multiple auditory cortical fields with very high-resolution using high-

frequency signals of CSEPs. 

 Figure 2a-b suggest that auditory responses of CSEP components from the same 

electrode are similar. The plots in Figure 2e-f display average normalized FRAs across 

all channels with tuned responses in the Hg and tMuA components, which were indeed 

similar. To quantify this, we first determined a boundary that separated the responsive 

portions of the FRA from the unresponsive portions (e.g., white lines in Fig. 2e-f, see 

Methods). The average FRA-boundaries for different frequency components across all 

tuned channels (β = 260, g = 292, Hg = 333, uHg = 302, tMuA = 113) are displayed in 

Figure 2g (mean ± s.e.), and were highly overlapping. We found that median best 

(auditory) frequencies (BF, extracted from FRA) were ~8.5kHz (Fig. 2h), and there was 

a mild effect of CSEP component on BF (Kruskal-Wallis, df = 4, c2 = 28, P < 0.001). The 

range of values in our data set (interquartile ranges, Fig. 2h) makes the functional 

relevance of the marginal statistical significance for best frequency questionable. Indeed, 

the best frequencies extracted from different components at an electrode were highly 

correlated (R, median = 0.89; range = [0.8 0.93], P < 10-5 for all). This indicates that 

different high-frequency CSEP components are generated by neurons with very similar 

tuning properties, perhaps from the same cortical column. Additionally, the median 

(auditory) bandwidths (BW, extracted from FRA as full-width at half-max) were ~1.5 

octaves (Fig. 2i) and there was a robust effect of CSEP component on BW (Kruskal-

Wallis, df = 4, c2 = 116, P < 10-22). Thus, there was a systematic decrease in bandwidth 

with increasing CSEP component in the electrical potential (Fig. 2i), perhaps reflecting 

greater spatial spread of the lower frequency signals.  

 

CSEPs are anisotropically localized to a cortical column 

 The spatial spread of electrical signals in the brain is of great interest, both for its 

importance in interpreting recorded electrical potentials and for its practical implications 

for sensor design. In principle, two primary factors that contribute to the spatial spread of 

correlations in electrophysiology recordings are diffusion due to the electrical properties 

of the tissue, and the spatial organization of neuronal function (e.g., tonotopy). If diffusion 

is the main determinant, then the spatial spread is expected to be isotropic. However, 
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given the tonotopic organization of rat auditory cortex (Fig. 2c), we hypothesized stronger 

correlations in the isotonic dimension (DV) versus the heterotonic dimension (AP). 

Furthermore, because tonotopy arises from the organization of cortical columns which 

contain neurons with similar tuning properties21,23, we hypothesized that the CSEP signals 

would be tightly localized the approximate diameter of a column (200-500 μm)21–23. 

 
Figure 3. CSEPs are anisotropically localized to a cortical column 

a.  Spatial distribution of weights from a regularized linear model of Hg responses during 

the tone stimuli as a function of the other electrodes on the grid. Locations are all relative 

to the electrode used as the dependent variable in linear regression. Values are median 

across all N = 333 tuned (in Hg) electrodes. 

b. Spatial distribution of normalized weights for tMuA. Values are median across all N = 

113 tuned (in tMuA) electrodes. 

c.  Median ± s.d. of normalized linear weights across all electrodes as a function of 

distance in the AP (solid lines) and DV (dashed lines) dimensions along the grid. Different 

frequency bands are demarcated with colors. 

 

 To assess spatial spread, for each CSEP frequency component, we fit a general 

linear model to single-trial tone responses for each target electrode as a function of the 

responses at all other electrodes. Our analysis method, based on sparse general linear 

models, largely mitigates potential confounds due to pairwise chaining of local 

correlations by factoring out the covariance matrix of the regressors. We fit the linear 

model using the UoILasso algorithm33 (see Methods) which provides accurate estimates of 

parameters values (R2>0.9 for all fits). For each target electrode, the parameter values 
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from the fit model (weightings on responses at other electrodes) were normalized to their 

maximum value across frequency to ease comparisons across frequencies and 

electrodes. Figure 3a-b display the spatial distributions of median fit parameters as a 

function of location relative to the target electrode (demarcated as ‘X’) for all frequency 

tuned electrodes in the Hg and tMuA components. For both of these signals, we found 

that model parameters were extremely localized in both AP and DV directions (values 

quickly go to zero), and exhibited a marked anisotropy, with larger values DV than AP. 

Also, parameters were larger for Hg than for tMuA (grey scale), indicating that less tMuA 

variance could be explained by surrounding electrodes, and thus suggesting a more 

localized signal.  

 We summarized the results of this analysis for the b through tMuA components 

(Fig. 3c, colors, N’s: b = 260, g = 292, Hg= 333, uHg = 302, tMuA = 113) by plotting the 

median model parameters as function of distance in the AP (solid lines) and DV (dashed 

lines). Across frequency components, we found that ~70% of the parameter magnitudes 

were concentrated at ±200 μm (4/143 grid locations with non-zero values, ~3%), 

indicating that the vast majority of explanatory variation was localized immediately 

surrounding the electrode. Furthermore, the parameter values were significantly greater 

in the dorsal-ventral than the anterior-posterior direction for all CSEP components 

(Wilcoxon Sign Rank Test, P < 10-4 - 10-28). Within both the AP and DV directions, a 

significant effect of CSEP frequency component on parameter magnitude at 200 μm was 

observed, with lower frequencies having larger values (Kruskal-Wallis; df = 4; DV: c2 = 

35, P < 10-6; AP: c2 = 51, P < 10-12). This indicates that lower frequencies have a greater 

spatial spread and is in line with lower frequencies having broader tuning (Fig. 2). A 

cortical column is ~350 μm in diameter22. Thus, these results indicate that cortical surface 

electrical potentials are localized to single cortical columns, and that the degree of 

localization increases with increasing CSEP frequency. Furthermore, the localization is 

anisotropically distributed and aligned with tonotopic organization, indicating that 

differentiation of function across the cortical surface is the primary determinant of spatial 

correlations of evoked μECoG signals. 

 

Biophysical in silico cortical column reproduces in vivo observed μECoG response  
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 The experimental results presented above demonstrate that evoked CSEPs were 

tightly localized along the cortical surface, approximately to a single cortical column in the 

rat. This suggests that the sources of the μECoG signal are mostly located within the 

column directly underneath the electrode. To investigate the laminar and cellular origin of 

sources within a column that generate CSEPs, we simulated a full-scale, biophysically 

detailed model of a cortical column where each neuron’s full morphology is represented 

by 100’s to 1000’s of connected cylindrical neuronal segments28. The column model and 

μECoG electrode is depicted in Figure 4a, where circles indicate the locations of (a 

subset of) neuronal somas (black: excitatory neurons; red: inhibitory neurons). Stimulus-

evoked input to the column is provided by activating (with Poisson spike trains) 

thalamocortical synapses located throughout the column according to the distribution 

shown in Figure 4b, which also displays the cortical layers.  

 An example of the column’s activity is displayed in Figure 4c. The biophysical 

neurons in the column received thalamic input in the form of Poisson spike trains that 

were modulated in time to emulate our tone stimulus (Fig.4c.i, black) and background 

Poisson spike trains (Fig.4c.i, grey) that were not modulated by the stimulus. In Figure 

4c.ii we show the spike times (black: excitatory neurons; red: inhibitory neurons) in 

response to one presentation of the input stimulus (Fig.4c.i). Neurons are arranged by 

depth below the surface, which allows us to visualize the laminar boundaries as sharp 

changes in the density of firing reflecting different cell densities across layers. The fraction 

of neurons in the column firing action potentials is displayed in Figure 4c.iii as a function 

of time. The time-to-peak of about 15-20 ms in most layers (Fig. 4c.iv), as well as the 

following period of slightly elevated activity until stimulus offset, are both consistent with 

the in vivo recordings25,34. 

 The biophysical model produces CSEPs (Fig. 4d-f) consistent with the high-

frequency transient onset response observed in vivo. We computed the electrical 

potential at the cortical surface of the simulated column using the line source 

approximation35, and processed the simulated data identically to the experimental data. 

Average (mean ± s.e., N = 60 stimulus presentations) raw evoked cortical surface 

electrical potential from the model is plotted in Figure 4d, while the spectral content of 

the simulated CSEP is shown in Figure 4e (dashed black lines: stimulus; dashed red line: 
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10ms window around the peak high-gamma response). The extracted z-scored (max 

normalized) response as a function of frequency for the simulated CSEP is shown Figure 

4f, as well as the experimental data (black). There is striking agreement in the high-

frequency content of CSEPs collected experimentally and CSEPs generated by the 

simulations. Both experimental and simulated CSEPs exhibit a peak frequency of ~100 

Hz, and the spread of the signal around the peaks are overlapping. Thus, biophysical 

simulations accurately recreate key aspects of experimentally acquired data, indicating 

that they are a good forward model of CSEP generation.  
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Figure 4. Biophysical in silico cortical column reproduces in vivo observed μECoG 

response  

a. Rendering of a random sub-selection of 626 neurons in the simulated column (about 

2% of the total). Black: excitatory neurons; red: inhibitory. Circles represent somas, lines 

represent dendritic structures. The position of the simulated μECoG electrode relative to 

the column is shown above.  
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b. Distribution of synapses from the thalamus along the depth axis of the simulated 

cortical column.  

c. Data from one simulated stimulation and pre/post-stimulus silence i. Population spike 

rate of thalamic and background cortical spike trains activating synapses in the column. 

ii.  Spike raster of all neurons in the column vs. soma depth (y-axis). Note that differences 

in raster density in part reflect differences in neuron density across cortical layers. iii. 

Population spiking (fraction of neurons spiking in 1 ms) of biophysically detailed cortical 

neurons. iv. Cell-averaged spike rate of biophysically detailed neurons in each layer. 

Darker shades indicate deeper layers. 

d. CSEP computed by the Line Source Approximation from all neurons in the column 

during a 150 ms window centered around the 50 ms “tone pip” stimulation.  

e. Spectrogram of the CSEP in panel d, z-scored to baseline 

f. Frequency content of CSEP during 10 ms centered at the response peak (indicated 

with dotted red lines in panels d and e), z-scored to baseline. Individual electrode 

averages from experimental results are in grey, black is grand average. Individual 

stimulus presentations from simulations are in pink, red is grand average. All traces are 

normalized to their respective maxima.  

 

In silico cortical column predicts experimentally observed relationship between 

response magnitude and frequency 

The model makes testable predictions regarding the relationship between the 

magnitude and frequency content of CSEP responses. In the simulations, we varied the 

magnitude of the excitatory input to the network by increasing the mean firing rate of the 

thalamic spike trains during the stimulus. Analogously, in the experiments, we monitored 

the evoked CSEP in response to varying sound amplitudes at each electrode’s best 

frequency.  

For the simulations, Figure 5a displays the average normalized evoked response 

to stimulation of different amplitudes as functions of frequency (input magnitude given by 

color saturation, indicated by inset color bar). We observed that the magnitude of CSEP 

response depended monotonically on input magnitude. More interestingly, we found that 

as the magnitude of the response increased, so did the frequency content of that 
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response. This can be seen as a sweep towards the upper right of the individual traces 

as input magnitude increases. We quantified the relationship between response 

magnitude (z-scored response between 10 and 200 Hz) and the frequency content 

(frequency at peak response between 10 and 200 Hz). The pink-to-red squares in Figure 

5c display the normalized maximum response magnitude vs. normalized frequency at 

maximum response for varying input amplitudes (color saturation demarcates magnitude 

of input, circled square demarcates input used in Figures 4, 6, 7). Intuitively, these effects 

were mediated by an increase in the population mean firing rate and spike synchrony 

resulting from increased input spike rate.  

Next, we sought to determine if this relationship between magnitude and frequency 

existed in the experimental data. Figure 5b displays the z-scored CSEP at an example 

electrode as a function of frequency in response to the BF stimulus presented at different 

amplitudes (see inset color bar). Similar to Figure 5a, we observed a sweep towards the 

upper right of the individual traces with increasing input amplitude (Fig. 5b). For frequency 

tuned electrodes, we calculated the same quantities (maximum response magnitude and 

frequency at maximum response) as a function of the amplitude of auditory input at the 

electrode’s best frequency in the tone stimuli (Fig. 5c; grey-to-black circles, mean ± s.d., 

N ∈ [206 299]). As in the simulations, we observed that increasing the input magnitude 

resulted in an increase in both the magnitude of the peak response and frequency at the 

peak response. Further, there is a striking correspondence in the curvature of response 

frequency vs. response magnitude plots derived from experimental and simulation data 

(Fig. 5c). These results demonstrate a prediction made by the model that was confirmed 

by a novel experimental finding.  
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Figure 5. In silico cortical column predicts experimentally observed relationship 

between response magnitude and frequency 

a. Average z-score as a function of frequency in eight simulations with variable input 

amplitude. 

b. Average z-score as a function of frequency in the experimental data for six different 

stimulus amplitudes.  

c.  Normalized response magnitude vs. normalized response frequency for experimental 

data (black, mean ± s.d.) and for simulations (red). Each data point corresponds to the 

response frequency and magnitude associated with a distinct input magnitude (response 

magnitude increases monotonically with input magnitude). Circled point indicates the 

input magnitude used in Figures 4,6,7. Orange dashed line is unity. 

  

Evoked μECoG responses originate in infragranular layers 

We next utilized the model to understand the spatial distribution of the generating 

sources of the CSEP. A key feature of the biophysical model is that CSEP calculation is 

separate from the numerical simulation of the neurons in the column, enabling us to 

calculate CSEPs from arbitrary samples of neuronal segments in the column without 

perturbing the activity at all. We first examined the contributions to the CSEP from cortical 

layers by computing each layer’s contribution to the CSEP individually (see Methods).  

Figure 6a plots the raw evoked CSEP (scale bar in inset) as a function of time for 

each layer, and indicates the average depth of neuronal somas for the layers. 

Surprisingly, we found that layers V and VI produce the largest evoked potentials, despite 
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being the furthest away, while neurons in superficial layers contribute very little of the total 

CSEP. Figure 6b shows the frequency content of each contribution during a 10ms 

window surrounding the response peak. The inset shows the relative magnitudes of the 

layers contributions in the band centered at 94 Hz, the apex of the high-gamma peak, 

shown as a dotted vertical line in the main panel. As with the raw evoked potential, we 

found that infragranular layers also contribute most to the high-gamma component of 

ECoG responses:  51% from layer V, 35% from layer VI, and the remaining 14% coming 

from layers I-IV. To further probe the dependence of the high-gamma component on 

individual layers, we also performed lesion studies examining the CSEP produced when 

activity in one cortical layer is excluded, which showed that only layer V lesions were 

capable of flattening the high-gamma peak (SFig.1). 

The results above appear counter-intuitive when the contribution of sources is 

viewed only as a function of distance. However, in addition to distance, the number of 

sources and their correlations are additional biophysical factors that dictate the 

contribution of neuronal populations to a distally recorded signal20. A priori, the relative 

importance of these factors to determining laminar contributions to evoked CSEPs in a 

full-scale cortical column model is not clear. Thus, we plotted each layers’ peak high-

gamma responses as a function of the number of simulated neurons in (Fig. 6c), the 

average distance of somas in each layer from the recording electrode (Fig. 6d), and the 

synchronicity between somatic membrane potentials in each layer during the stimulus 

(Fig. 6e). We note that in Figure 6d the peak high-gamma response vs. depth shows a 

positive slope, contrary to the physical principle that individual neurons further from the 

electrode will contribute less to the signal. However, as is evident from these plots, there 

are correlations between depth and the other variables. For example, deeper layers tend 

to contain more neurons. Thus, we fit a regularized linear model to predict peak high-

gamma magnitude across layers as a function of depth, number of segments, and 

synchronicity of neuronal somas simultaneously, which fit the data well (R2 = 0.98). The 

relative magnitudes of the fit coefficients are plotted in Figure 6f, which shows that the 

number of segments and between cell synchronicity are the dominant factor that 

determine source contributions to CSEPs, while depth was a minor factor. To determine 

how robust these results were to baseline normalization, we performed the same analysis 
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with a different normalization procedure and found very similar results (SFig. 2). Thus, 

infragranular layers contribute ~86% of evoked CSEP responses because of their 

increased number of neurons and increased synchronicity.  

 

  

Figure 6. Evoked μECoG responses originate in infragranular layers 

a. Contributions to the simulated CSEP from anatomical layers. Top-to-bottom: cortical 

layers I through VI. The sum of these contributions is the total CSEP. 

b. Frequency content of the laminar contributions during stimulus peak. Layer V and VI 

contributions dominate the high-gamma peak. 

c. Magnitude at peak frequency of each cortical layer’s CSEP contribution vs. number of 

neurons in the layer. 

d. Magnitude at peak frequency of each cortical layer’s CSEP contribution vs. average 

distance of cell bodies in the layer from the recording electrode. 

e. Magnitude at peak frequency of each cortical layer’s CSEP contribution vs. 

synchronicity of somatic membrane potentials averaged over all pairs of neurons in the 

layer. 

f. Pie chart showing the relative importance of these three factors in a linear model of the 

high-gamma peak contribution magnitudes of anatomical layers. 

 

Evoked μECoG responses originate in sources 800-1400 μm below the surface 

  The previous results indicate that layers V and VI are the dominant sources to 

evoked CSEPs. However, due to the large, extended morphology of some neurons 

relative to the column depth, knowledge of the largest contributing anatomical layers does 
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not necessarily imply precise knowledge of the spatial distribution of segments generating 

CSEPs. For example, the apical tufts of many layer V pyramidal neurons reach into layer 

I. Thus, we next isolate contributions to the CSEP from 200 μm axial slices of the column.  

 Most slices contain segments from neurons in more than one layer, and a given 

neuron can contribute to more than one slice. The breakdown of segments in each slice 

by anatomical layer is shown in Figure 7a, where each color represents one slice. For 

each slice, five bars are shown displaying the number of segments in that slice belonging 

to neurons in the five cortical layers. For example, the top slice is dominated by segments 

from layer V neurons (Fig. 7a, 4th column). The total number of neuronal segments in 

each slice is shown in Figure 7b, which makes clear that the slices between 800-1200 

μm have the most segments. Figure 7c shows CSEPs calculated only from segments in 

the slices as a function of depth (CSEP scale bar is inset). The largest contributors to the 

evoked responses are the slices located from 800-1400 μm below the surface, i.e., in 

layer V. We extracted a 10 ms window around the peak of the CSEP response and 

analyzed the frequency content of each slice’s contribution within that window. The results 

are shown in Figure 7d. The inset shows the relative magnitudes of the slices’ 

contributions at 94 Hz, the apex of the high-gamma peak, shown as a dotted vertical line. 

Here we see that the slices spanning 800-1400 μm are also the ones contributing most 

to the high-gamma peak (56% total), which is where layer V somas are located. Thus, 

this analysis demonstrates that layer V somas are the major generating source of evoked 

ECoG signals.  

As with the layer contributions, we sought to ascertain the relative importance of 

the number of segments in the slice (Fig. 7e), the depth of the slice below the surface 

(Fig. 7f), and the synchronicity of membrane potentials of segments within the slice (Fig. 

7g) in determining the high-gamma peak contribution magnitude. The results of a 

regularized linear regression predicting high-gamma peak from those parameters (R2 = 

0.91) are shown in Figure 7h. As with the layer contributions, very similar results were 

observed using a different normalization procedure (SFig. 3). Similar to the layer 

contributions, we find that the number of segments and the synchronicity are the most 

important factors determining the magnitude of a slice’s contribution to the CSEP.  
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Figure 7. Evoked μECoG responses originate in sources 800-1400 μm below the 

surface 

a. Proportional breakdown of segments by anatomical layer. Most slices contain 

segments from neurons in multiple cortical layers. Bars represent proportion of total 

segments in the slice, different slices not to scale. 

b. Total number of simulated neuronal segments in each 200 μm axial slice of the column. 

c. Contributions to the CSEP from 200 μm slices, organized by depth (top: cortical 

surface). The sum of these contributions is the total CSEP shown in Figure 4b.  

d. Frequency content of the slice contributions during stimulus peak, colored by slice 

depth. Slices containing somas of layer V neurons dominate the high-gamma peak. 

e. Magnitude at peak frequency of each slice’s CSEP contribution vs. number of neuronal 

segments in the slice. 

f. Magnitude at peak frequency of each slice’s CSEP contribution vs. average distance of 

segments in the slice from the recording electrode. 
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g. Magnitude at peak frequency of each slice’s CSEP contribution vs. average 

synchronicity in the slice. 

h. Pie chart showing the relative importance of the three factors in our linear model of the 

slices’ high-gamma peak contribution magnitudes. 

 

Discussion 

We found that evoked cortical surface electrical potentials had a strongly non-monotonic 

frequency structure, with a large peak in the 65-170 Hz range (Hg). In the brain, the most 

prominent biophysical sources with energy in that frequency range are action potentials 

of pyramidal neurons3. In experimental data, we quantitively demonstrated that evoked 

CSEPs were localized to a cortical column. Full-scale biophysical simulations of a cortical 

column reproduce the experimentally observed evoked spectrum and indicate that 

evoked μECoG high-gamma is generated by infragranular neurons. 

 The spatial spread of electrical potentials (i.e., LFPs) is of long-standing debate 

and great interest both for basic neuroscience as well as practical applications to sensor 

design and brain-machine interfaces. We demonstrate a tight, anisotropic localization of 

evoked CSEPs to ≤±200 μm on the surface, with higher frequency components exhibiting 

greater spatial localization. Indeed, we observed examples of neighboring electrodes (in 

different auditory areas) with very different tuning properties. A column is ~300 μm in 

diameter (range: 200-500 μm) 22. Thus, our results quantitatively demonstrate that CSEPs 

are localizable to individual cortical columns.  

 Generally speaking, our results indicate a much more localized signal than has 

been directly quantified in previous (μ)ECoG studies16,18,36,37, though there have been 

qualitative descriptions of tight localization38. Most studies of ECoG that directly quantify 

evoked signal spread do so by calculating the pairwise correlation between electrodes, 

and examine the decay of correlation with distance16,18. However, such pairwise analyses 

potentially confound long-range correlations due to direct interactions with correlations 

due to chaining of local (pairwise) interactions. The analysis methods used here, based 

on sparse general linear models, largely mitigates such confounds by factoring out the 

covariance matrix of the regressors. Our results corroborate and extend a study of the 

spatial spread of low-frequency electrical potentials inside the cortex17. However, in 
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contrast to that report, we demonstrate that higher frequencies are more spatially 

localized and have narrower stimulus tuning. We note that our estimate of spatial spread 

should be considered an upper-bound, as it is at the limit of the inter-electrode spacing 

(which is still half that of Utah arrays). 

 We observed a large anisotropy in the spatial spread of correlations in evoked 

CSEPs. The anisotropic localization had greater values in the dorsal-ventral direction than 

the anterior-posterior direction. The anisotropic spread thus reflects the functional 

organization (tonotopy) of the underlying cortical tissue21,31,32. This indicates that the 

major determinant of the spatial scale of correlations in stimulus evoked high-frequency 

electrical potentials across the surface is not the passive propagation of signals through 

the cortical tissue (which is expected to be isotropic26), but instead is correlations in 

function. As cortical columns are the basis of the functional organization of cortex22, the 

anisotropy corroborates localization to a cortical column. Together, our results imply that 

maximization of ECoG for basic neuroscience and brain-machine interfaces requires 

small electrodes with very tight electrode spacing and electronics with good signal-to-

noise at high frequencies. In particular, ECoG grids for human BMI should be matched to 

the spatial resolution of functional differentiation of the underlying cortex, and subsampled 

relative to this to ensure robustness to electrode loss over time. 

 Like all electrophysiological methods, ECoG records compound electrical 

potentials (i.e., LFPs) that reflect a weighted linear superposition of all electrical sources 

in the brain3,20,26. Several studies have examined the relationship between intracortical 

spiking activity (both single-unit and multi-unit activity, MuA) and the frequency content of 

simultaneously recorded intracortical LFPs, but report divergent results.  For example, 

Steinschneider et al.39, characterized the spectral content of A1 evoked LFPs and the 

relationship to MuA in non-human primates. Several studies have suggested that high-

frequency content of intracortical LFPs (‘broad-band activity’) is directly modulated by 

neuronal spiking activity40,41. Ray & Maunsell42 showed that evoked intracortical gamma 

band activity can be dissociated from high-gamma band activity, while a report from 

Leszczynski43 suggests that broadband activity can be dissociated from MuA in different 

layers. However, these studies have primarily focused on intracortical recordings. Thus, 
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little is known about the relative contributions of the superposed neuronal sources at the 

cortical surface. 

 Our study addresses this gap with a full-scale, biophysically detailed model28 of 

cortical sources and forward model of their superposition at the surface. This model 

allowed us to interrogate the laminar and cellular contributions to CSEPs using 

manipulations that would not be possible experimentally, such as isolating a single 

anatomical layer or slice of cortex without disturbing the activity of the column. The model 

produces stimulus-evoked responses with high-frequency content strikingly similar to that 

observed experimentally. In both simulations and experiments, the largest magnitude 

responses were observed in the high-gamma range, peaking at ~100 Hz in both cases. 

The simulation predicted that as the magnitude of the input increases, there should be 

concomitant increases in both the frequency and amplitude of the evoked response with 

a concave shape. This prediction was validated with a novel observation in the 

experimental data. Previous efforts to understand CSEPs and intracortical LFPs 

produced by large populations of neurons use simplified neuronal models14,44, or 

simplified network models that omit several cell types or even entire cortical layers45. The 

Blue Brain Project model28, used here, represents the state of the art in biophysically 

detailed simulation of neurons and cortical columns. Together, our results indicate that, 

for the first time, a computational model accurately captures the biophysical processes 

giving rise to the evoked ECoG response observed in the data. 

 The biophysical model demonstrates that the intuition that CSEP signals must be 

generated primarily in superficial layers is incorrect. Instead, our analysis implicates 

neurons in cortical layer V as the primary source of the signal recorded at the surface, 

with layer VI also contributing substantially. Similarly, analysis of contributions to the 

CSEP by depth showed that slices of the column containing layer V somas produce most 

of the signal observable at the surface. Subsequent analysis found that the density 

(number) and synchrony of neurons to be more important than depth in determining a 

population’s contribution to the surface signal. While layers II/III/IV are closer to the 

recording electrode than layers V/VI, they have fewer neurons2,28 and reduced 

synchrony46,47. Layers V/VI are composed of predominately excitatory pyramidal 

cells28,47, and pyramidal neuron action potentials contribute most to the high-frequencies 
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examined here3. Thus, we conclude that evoked high-gamma at the surface is a 

biomarker of layer V/VI pyramidal neuron firing rates.  

  The simulation results suggest a word of caution for the interpretation of multi-unit 

activity (and LFPs more broadly) recorded both at the surface and intracortically9,48,49. In 

particular, we found that activity in the multi-unit activity range (500-1000Hz) at the 

surface was predominantly generated by neurons in layer V, sources which are very 

distant (1-1.5mm) from the recording electrode. Hence, previous reports of ‘single-unit’ 

recording from the cortical surface, as well as intracortically recorded multi-unit activity 

(e.g., laminar polytrodes, Utah arrays, etc.) may contain contributions from distal, but 

numerous and synchronous, neurons. The finding that evoked ECoG high-gamma is 

primarily generated by neurons in layer V provides a potential explanation of the robust 

tuning to exogenous variables found here and elsewhere (e.g., auditory stimuli, vocal tract 

articulators6, etc.,). In particular, neurons in layer V have previously been found to have 

sharper tuning curves than neurons in layer II/III25,34,50. Thus, while cortical surface 

electrical stimulation may activate broadly connected neurons in layer II/III50,51, recordings 

from the surface can reflect the finely tuned responses and precise projections of neurons 

in layer V34,50. The homogeneity of cortical columns within an area22 and the linear 

properties of the cortical tissue suggests that the results here derived from µECoG will 

extrapolate to the larger electrodes used in the clinic. 

 In summary, our results indicate that evoked ECoG high-gamma responses are 

primarily generated by the population spike rate of pyramidal neurons in layer V/VI of 

single cortical columns. Together, these results highlight the possibility of understanding 

how microscopic sources (specific neuronal populations) produce mesoscale signals (i.e., 

ECoG). For example, in some cases we observed a pronounced secondary peak at 

~375Hz in the experimental data (Fig. 5b); this novel spectral component has not been 

previously characterized, and was not reproduced by the single column simulation. We 

conjecture that this novel spectral component may reflect the activity of neurons in layer 

II/III in response to input from adjacent cortical columns (which were not explicitly 

modeled here). More broadly, we propose that different high-frequency components of 

ECoG signals (e.g., high-gamma, ultra-high-gamma, multi-unit activity, etc.,) reflect 

spiking activity of neurons in different cortical layers. As neurons in different layers are 
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thought to perform distinct computations47, this proposition implies that different 

components of ECoG signals could be biomarkers for these computations. 

Experimentally, this could be addressed by recording ECoG with laminar polytrodes 

combined with layer/cell-type specific optogenetic perturbations52,53,54,55 analyzed with 

current source density estimation56. However, the highly interconnected nature of 

neurons in a cortical column makes independent and isolated control of only one neuronal 

population challenging at best. Further, our results indicate that considering properties of 

the population (e.g., synchrony and number of sources) are essential. Thus, biophysically 

detailed simulations of evoked CSEPs combined with experiments will remain a critical 

tool for understanding the origins of experimentally observed ECoG signals20,26–28. 
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Methods 

 

Key Resource Table (to be included upon acceptance) 

 

Contact for Reagent and Resource Sharing 

Further information and requests for resources should be directed to and will be fulfilled 

by the Lead Contact, Kristofer E. Bouchard (kebouchard@lbl.gov). 

 

Experimental Model and Subject Details 

 Data from four rats (female Sprague Dawley) were used in this study. All animal 

procedures were performed in accordance with established animal care protocols 

approved by the Lawrence Berkeley National Laboratory, Institutional Animal Care and 

Use Committees.  

 

Method Details 

Electrophysiological recordings 

 All neural data were recorded with a multi-channel amplifier optically connected to 

a digital signal processor (Tucker-Davis Technologies [TDT], Alachua, FL). Signals were 

acquired at 12 kHz and lowpass filtered to the Nyquist frequency (6 kHz).  

 

Rodent Preparations 

We performed experiments in four anesthetized female Sprague Dawley rats. 

Animals were given a 1 mg/kg subcutaneous (s.q.) injection of Dexamethasone the night 

before a procedure to reduce cerebral edema.  An anesthetic state was induced with an 

inductive dose of ketamine (95 mg/kg i.p.) and xylazine (10 mg/kg i.p.). Anesthetic state 

was assessed using toe pinch reflex and monitoring respiration rate. Additional doses of 

ketamine (55 mg/kg i.p) and xylazine (5 mg/kg i.p.) were administered as needed to 

maintain a negative reflex and a regular reduced respiration rate. Respiration was 
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supported with a preoperative subcutaneous injection of atropine (0.2 mg/kg), and a 

perioperative nose cone supplying .8L/min of O2. A water heating bed provided 

thermostatic regulation. To prevent dehydration over the 10-hour surgery and recording 

session, subcutaneous saline injections (1 ml/kg) were provided every 3 hours. Once 

anesthetized the rodent was affixed to a snout stereotax without earbars.  

After stable anesthetic state was achieved, an incision was made along the sagittal 

midline. All the soft tissue on top of the skull was removed to reveal the lambda and 

bregma fissures. Two 1mm burr holes were drilled over non-auditory cortical areas–one 

between the lambda and bregma on the left hemisphere, and another anterior to bregma 

on the right hemisphere. These serve to reduce intracranial pressure and provide a 

reference for electrophysiological recordings. The right masseter muscle was then 

transected to uncover the portion of cranium lying over the right auditory cortex. Using a 

1mm diamond tapered round Stryker dental drill, a craniotomy was performed to expose 

the cortex. 

 

Recording Devices 

Rodent electrophysiological recordings were made with custom designed 128-

channel μECoG grids (initially fabricated in-house, purchased at the time through Cortera 

Neurotechnologies, Inc., Berkeley, CA). These arrays were placed over the primary 

auditory cortex as identified by anatomical and physiological properties. For the rat 

experiments, the dura was surgically removed and the μECoG grid was placed directly 

on the pial surface. The μECoG grids were placed over the primary auditory cortex and 

grounded via a silver wire inserted into a non-auditory cortical area in the contra-lateral 

hemisphere, which also served as the reference. Each contact on the grid had an 

impedance of 30 ± 10 kΩ after electroplating with platinum black (measured in 1x 

phosphate-buffered saline at 1kHz), and had an exposed diameter of 40 μm, with a 200 

μm inter-electrode pitch.  

 

Auditory Stimuli 

Pure tone pips (50ms in duration) were played through a DVD player (Sony), 

attached to a TDT amplifier and played through an electrostatic speaker located near the 
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left ear of the animal (80dB SPL, A-scale). The frequency and amplitude of the tone pips 

were parametrically varied. The frequencies spanned 6 octaves (500 Hz to 32 kHz) in 30 

increments and 8 attenuations from 0 to -70dB (0dB attenuation at 80 dB SPL). Each 

frequency-attenuation combination was presented 25 times in pseudorandom order with 

250 ms of inter-stimulus silence.  

 

Data Analysis 

All analysis was performed using code written in Matlab (The Mathworks) or Python. All 

software is available upon request. 

 

Spectral analysis of cortical surface electrical potentials (CSEPs) 

We calculated the spectrogram of the entire recorded electrical potential time series for 

each electrode from 4-1200 Hz (54 bins) using a constant-Q wavelet transform57. 

Constant-Q refers to a time-frequency decomposition in which frequency bins are 

geometrically spaced and Q-factors (ratios of the center frequencies to band-widths) are 

equal for all bins. The non-causal component of displayed responses (e.g., Figure 1d) is 

due to the large bandwidth at lower frequencies of our constant-Q time-frequency 

transform.  

 The amplitude for each frequency bin in the neural signal was normalized relative 

to baseline statistics by z-scoring. The baseline statistics were computed from the periods 

of silence between each stimulus presentation (the 50 ms immediately following each 

stimulus presentation is excluded from the baseline period). Z-scoring largely removes 

the canonical ~1/fα falloff of power with frequency (characteristic of many natural signals), 

highlighting stimulus evoked changes. We note that this procedure is preferred to 

examining the residuals from a ‘fit and subtract’ methodology, given the potential issue of 

fitting power-laws especially at the extremes of the frequency range. 

 Responses to stimuli were taken as the average z-scored activity ±5ms around the 

peak response time after the onset of the auditory stimulus. Peak response time was 

calculated using the High Gamma (65-170 Hz) component of the signal, which was 

computed as the average of z-scores for frequency bands whose center frequency falls 

in that range. The shielding and grounding of our rodent experimental recording systems 
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was sufficient to avoid any significant 60 Hz noise in the μECoG recordings. We 

determined z-scores for the canonical neural frequency bands by taking the mean z-

scores across frequency bins in the corresponding frequency range; Beta (10-27 Hz), 

Gamma (30-57 Hz), High Gamma (65-170 Hz), Ultra-high Gamma (180-450 Hz), and the 

Multi-unit Activity Range (500-1100 Hz). 

 

Analysis of responses to pure tones 

The frequency response area (FRA) depicts the modulation of a CSEP 
components response as a function of frequencies (F) and amplitudes (A). For each 

frequency-amplitude pair (f,a) in the stimulus set (see above, Auditory Stimuli), we 

identified the response peak, "#,%,&, as the maximum amplitude between 10 and 20ms 

after the onset of stimulus i. We took the mean z-scored response across n trials: 

              '()(+, ,) =
/

0
∑ "#,%,&
0

&2/
	∀+ ∈ ', ∀, ∈ )	                 (1) 

We estimated an FRA boundary to define a set of frequency-amplitude pairs that 

evoked a response. Intuitively, this is the stimulus-driven portion of the FRA, and 

corresponds with the part of the FRA that resides within the canonical ‘V’ shape. These 

boundaries were extracted using an approach identical to one used in a previous study 

characterizing rodent auditory responses31. A response-frequency function, '()%(+), 

was computed by taking the mean of the FRA across all amplitudes, 5%, and a response-

amplitude function, '()#(,), was computed by taking the mean of the FRA across 

frequencies, 5#: 

'()%(+) =
1

5%

7'()(+, ,)

08

%2/

  ∀+ ∈ ' 

                  (2) 

'()#(,) =
1

5#

7'()(+, ,)

0:

#2/

  ∀, ∈ )	 
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The '()%(+) function defined the shape of the FRA boundary, and the inflection point of 

the '()#(,) function, ,;, was used to scale and shift that FRA boundary: 

     '()#″(,;) = 0           (3) 

To fit the FRA boundary, >(+), we negated the response-frequency function, normalized 

its height, producing the normalized FRA, 5?@A'()%(+), which was overlaid on the FRA. 

We constrain	5?@A'()%(+∗)	to be 0, where f* is the value of f that minimizes 

5?@A'()%(+). The negated sound-frequency function was shifted via additive constant 

until its minimum coincided with ,;: 

     >(+) = 5?@A'()%(+) + ,;                    (4) 

Portions of the FRA boundary that fell outside of the FRA were removed, resulting in the 

final FRA boundary. This method yielded FRA boundaries that closely resemble those 

curated manually. 

We determined if a recording site was tuned using a permutation test. For a given 

FRA, we once again define '()%(') as mean of the FRA values across stimulus 

amplitudes. The standard deviation of the '()%(') function, evaluated on the data is a 

measure of a site’s tuning to a narrow band of frequencies. We compared the standard 

deviation (s) of the original '()%(') with a null distribution '()D%0E,% consisting of 100 

random shufflings of that FRA along both the frequency and amplitude axes. A channel 

is considered tuned if the standard deviation of its average stimulus frequency response, 

'()%('), exceeds the 95th percentile of a null distribution generated from 100 

permutations of the FRA. 

    F('()%(')) > 0.95 ∗ F('()D%0E,%('))                    (5) 

A tuned response exhibits a larger standard deviation across frequencies than an untuned 

(flat) '()%('). Randomly shuffling a tuned FRA removes the tuning structure and 

consequently reduces the resulting standard deviation. All subsequent tone analysis only 

included tuned sites. 
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We used the FRA boundary to further characterize the response properties of each 

recording site. We defined a best frequency (BF) as the weighted average of the FRA 

boundary, and calculated bandwidth (BW) as the full width of FRA boundary at half-

maximum, 'KLM: 

        >' =
∑ #∗N(#)

O
:

:PQ

∑ N(#)

O
:

:PQ

	            (6) 

>K = 'KLM(>) 

Spatial Analysis of CSEPs 

 We assessed the spatial spread of CSEPs by fitting a general linear model. For a 

given CSEP component, the responses at an individual single electrode (Ri) was modeled 

as a linear combination of responses at all other active electrodes (Rj ≠ i), corrupted by 

independent and identically distributed (i.i.d.) Gaussian noise (R):  

										(& = 	S•(TU& + 	R, R	~	W(0, XFY)																																														(7)   

Where I is the identity matrix. For each frequency component separately, both the 

dependent (Ri) and independent responses (Rj ≠ i) are standardized to have a mean 

response of 0 and a variance of 1 (thus, there is no y-intercept term). This standardization 

enables comparison of weights across frequency component. After fitting, we arranged 

the estimated weights (S[) for each recording site (independent variables) relative to the 

position of the dependent variable (electrode i) on the μECoG grid, which allowed us to 

compare the relative spatial distribution of weights across all recording sites. 

 

The UoILasso algorithm 

 As mentioned above, we used a novel statistical inference procedure (UoILasso33) 

to fit the general linear model in equation (7). While a detailed description of this algorithm 

is outside the scope of this manuscript, here we provide the motivation, outline the 

innovations, and summarize the main statistical result of these innovations. The 

interested reader is encouraged to see Bouchard, et al., 2017, for further details.  

 Generally speaking, in regression and classification, it is common to employ 

sparsity-inducing regularization to attempt to achieve simultaneously two related but quite 
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different goals: to identify the features important for prediction (i.e., model selection) and 

to estimate the associated model parameters (i.e., model estimation). For example, the 

Lasso algorithm in linear regression uses L1-regularization to penalize the total magnitude 

of model parameters (‖S‖/), and this often results in feature compression by setting some 

parameters exactly to zero. Using the notation in equation (7) for a given ‘target’ electrode 

(Ri), this corresponds to solving the constrained convex optimization problem: 

  S[ ∈ ,@]A^5_	‖(& − 	S(TU&‖Y + 	a‖S‖/																																							(8)	 
 

It is well known that this type of regularization implies a prior assumption about the 

distribution of the parameter (e.g., L1-regularization implicitly assumes a Laplacian prior 

distribution). However, strong sparsity-inducing regularization (i.e., large values of a), 

which is common when there are many more potential features (p) than data samples (n) 

(i.e., the so-called small n/p regime) can severely hinder the interpretation of model 

parameters. For example, while sparsity may be achieved, incorrect features may be 

chosen and parameters estimates may be biased. In addition, it can impede model 

selection and estimation when the true model distribution deviates from the assumed 

distribution. 

 To overcome these and other issues, we have recently introduced a novel 

statistical-machine learning framework called Union of Intersections (UoI)33. Methods 

based on UoI perform model selection and model estimation through intersection and 

union operations, respectively, leading to enhanced model selection and estimation. 

Focusing on linear regression, the UoILasso algorithm has three central innovations: (1) 

calculate model supports (Sl) using an intersection operation over bootstrap resamples 

for a range of regularization parameters λ (increases in λ shrink all values of β towards 

0), efficiently constructing a family of potential model supports {d:	df ∈ 	 dfgh for k 

sufficiently large}; (2) use a novel form of model averaging in the union step to directly 

optimize prediction accuracy (this can be thought of as a hybrid of bagging and boosting); 

and (3) combine pure model selection using an intersection operation with model 

selection/estimation using a union operation in that order (which controls both false 

negatives and false positives in model selection). Together, these innovations lead to 
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state-of-the-art selection (the selected parameters are a Union of Intersections, hence the 

name), estimation, and prediction accuracy. This is done without explicitly imposing a 

prior on the distribution of parameter values, and without formulating a non-convex 

optimization problem.  

Biophysically detailed simulation of cortical column 

 Using the NEURON simulation environment running on 64 nodes of Cori (Cray 

XC70) at NERSC, we implemented and successfully executed a biophysically detailed 

model of a cortical column and the CSEP produced by the activity of this neuronal 

network. Our simulation is a compartmental model, in which the electrical activity of one 

or more neurons is simulated by modeling the neuron(s) as a series of small cylindrical 

segments over which the membrane potential and currents can be taken as 

approximately constant. The evolution of the membrane potential is given by the cable 

equation: 

ij

kl

km
+ ^j(n, m) = 	

1

@

k
Y
l

knY
																																																								(9) 

Where ij is the membrane capacitance per unit length, @ is the axial resistance of the 

compartment per unit length, l is the membrane potential, and ^j is the current per unit 

length entering or leaving the compartment through the membrane. Each neuronal 

compartment is subject to Kirchhoff's current law: 

^j(n, m) −
1

@

kl

kn
= 0																																																												(10) 

Which states that the net current entering or leaving the compartment must vanish (the 

second term on the left-hand side represents the net current loss to adjacent segments). 

NEURON also has the capability to model ion channels and synapses (which 

contribute to ^j) defined by ordinary differential equations of arbitrary complexity. 

We constructed a compartmental model of the neurons in one column of rat 

sensory cortex based on publicly available data from the Blue Brain Project (BBP)28. This 

data included the spatial location and connectivity matrix of all cells in the column, as well 

as tuned and experimentally validated models of individual neurons from all cortical 

laminae including their electrical characteristics (ion channel models and associated 

parameters such as spatially varying ionic conductances, membrane 
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resistance/capacitance, etc.) and their detailed morphologies based on full 

reconstructions of neurons observed experimentally (or algorithmically generated clones 

thereof), reflecting the full diversity of neurons known to be found in rat somatosensory 

cortex. To save computation time, we instantiate 80% of the cells in the model, selected 

at random.  We confirmed that there was no difference in the spectrum between 80% and 

100%. The BBP dataset provides 5 reconstructed (or cloned) morphologies for each of 

207 distinct cell types28. Each neuron in our model is represented by one of the 5 

morphologies for that neuron's cell type, chosen at random and rotated by a random angle 

about a line passing through the cell's soma parallel to the longitudinal axis of the column. 

Neurons in our simulated column are innervated by synapses from three 

populations: 1.) Wop%f 	= 	5000 excitatory thalamic neurons conveying feed-forward 

sensory input (thalamocortical connections) modeled as rate-modulated Poisson spike 

trains, 2.) W;hq,q 	= 	25000 excitatory and W;hq,& 	= 	25000 inhibitory background cortical 

neurons from other columns (external cortico-cortical connections) also modeled as 

Poisson spike trains, and 3.) other neurons in the simulated column (internal cortico-

cortical connections). The rate constant of the Poisson processes generating 

thalamocortical spike trains increases from a baseline rate of s
op%f

;%tq
= 1 hz to a stimulus-

induced rate of s
op%f

to&j
= 35 hz for 50 ms out of every 1000ms (onset and offset are cosine 

ramps 5 ms in duration), reflecting the temporal structure of tone pips in our experimental 

preparation, while the rate constant of the external cortico-cortical spike trains remains 

constant at s;hv = 7 hz for the duration of the simulation. Thalamic synapses are 

distributed within the column in a depth-dependent manner, with peaks at 670 μm and 

1300 μm below the cortical surface. Synapses from background neurons are formed on 

neuronal segments in the simulated column with probability proportional to each 

segment's surface area. 

 Synapses from all populations produce membrane currents ^tw0(m) according to 

^tw0(m) = G(Vz −	{Dq|)}~
o/ÄÅ − ~

o/ÄQÇ                               (11) 

Where m is the time since the synapse was activated, lj is the membrane potential, {Dq| 

is the reversal potential of the synapse, É is the weight (max conductance) of the synapse, 

which is randomly drawn from a lognormal distribution with different center and spread 

for each input source, and Ñ/ and ÑY are the time constants of the exponential 
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activation/deactivation of the synapse. The values of these parameters for different types 

of synapses is given in the table below: 

Synapse type Ñ/(ms) ÑY(ms) {Dq| (mV) 

AMPA (e à e) 1.0 3.0 0 

AMPA (e à i) 0.1 0.5 0 

GABA (i à e) 2.7 15.0 -70 

GABA (i à i) 0.2 8.0 -70 

 

We applied a modest amount of hand-tuning of these parameters to achieve reasonable 

baseline firing rate (3-10 Hz) during time periods when the thalamocortical spike trains 

fire at s
op%f

;%tq  and reproduce the experimentally observed sharp transient stimulus-evoked 

response (after the transition to s
op%f

to&j) within the simulated column. 

 

CSEP of the simulated column 

The Line Source Approximation (LSA) is used to simulate the extracellular 

potential at the cortical surface due to the transmembrane currents in each segment of 

each neuron in the simulation, assuming an isotropic and purely Ohmic extracellular 

medium58. These contributions from individual neuronal segments are summed to 

compute the total CSEP due to the entire simulated column: 

Where n(Ö, m) is the extracellular potential, ^&(m) is the current going through neuronal 

segment ^ at time m, F	 = 	0.3 S/m is the conductivity of the extracellular medium, and the 

variable of integration Ö′ runs from one end of segment ̂  to the other. The sum in equation 

(12) runs over all segments ^ in the simulated column. To account for the nonzero spatial 

extent of the μECoG electrode, we compute n(Ö, m) at 100 randomly and uniformly 

sampled points within the 20 μm radius of the μECoG electrode and average them. 

 

Dependence of response magnitude and frequency on input amplitude 

 
n(Ö, m) =7

^&(m)

4àF
â

äÖ
ã

|Ö − Öã|
&

 (12) 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 17, 2021. ; https://doi.org/10.1101/2021.08.16.456540doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.16.456540


39 
 

We determined the relationship between z-scored response magnitude (between 

10-200 Hz) and the frequency of CSEPs (between 10-200 Hz) by varying the magnitude 

of inputs in both the experimental data and in the simulations. For simulation data, we 

varied the frequency  s
op%f

to&j
	of the feed-forward thalamocortical input and measured the 

frequency at the maximum of the mean (across stimuli) Z-scored response. Each of the 

8 simulations shown in figure 5 is an average over 20 stimuli, performed at  s
op%f

to&j
=	5 Hz, 

10 Hz, 15 Hz, 26 Hz, 35 Hz, 44 Hz. For experimental data, at each tuned electrode, we 

varied the input amplitude (stimulus attenuation) of the best-frequency in the tone stimuli, 

and measured the frequency at the maximum of the mean (across stimuli) Z-scored 

response. To compare/combine data, the frequency and responses were normalized to 

[0 1] for each electrode, and across the simulations. For the experimental data, we only 

included auditory stimulus attenuations that fell within the FRA to prevent floor effects, 

and only include tuned channels that had a maximum response above 3 (z-scored) and 

an FRA boundary that included more than 2 attenuations (as this is the variable that is 

being ‘manipulated’, i.e., the independent variable). Because of this set of selection 

criteria, for the experimental data, each of the 6 attenuations had a different number of 

samples (electrodes) included. Thus, in Figure 5c, the grey-to-black points (experimental 

data) contain, from left-to-right [(attenuation) sample size]: (-50db) N = 206, (-40db) N = 

259, (-30db) N = 289, (-20db) N = 299, (-10db) N = 299, (0db) N = 299. 

 

Laminar lesions and isolations 

By summing only neuronal segments belonging to neurons in an individual cortical 

layer, we obtain the in silico contributions nT(Ö, m)	to the CSEP from distinct layers: 

nT(Ö, m) = 7
^&(m)

4àF
â

äÖ′

|Ö − Öã|
&∈çé

																																																					(13) 

Where è ∈ [1,6] denotes the layer whose contribution to n(Ö, m)		is represented by nT(Ö, m), 

and ìT is the set consisting of all neuronal segments comprising neurons in layer è. The 

full signal n(Ö, m)		 is the sum of these contributions: 

n(Ö, m) 	=7nT(Ö, m)			

T

																																																							(14)	 
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Similarly, we perform the superposition of LSA-computed potentials excluding those 

segments belonging to neurons in a particular layer: 

n¬T(Ö, m) = 7
^&(m)

4àF
â

äÖ
ã

|Ö − Öã|
&∉çé

= 	n(Ö, m) 	− nT(Ö, m)																											(15) 

Finally, by summing only the neuronal segments located within a particular range of 

depths below the surface, we obtain the in silico contributions to the CSEP from 200 μm 

slices of the column: 

nh(Ö, m) =7
^&(m)

4àF
â

äÖ′

|Ö − Öã|
ñó

																																															(16) 

Where dh ∶= {^: ô& ∈ [ö, ö + 1] × 200	µm} is the set of neuronal segments whose midpoints 

are between 200ö and 200(ö + 1) μm below the surface. Note that most neurons' 

dendritic arbors extend beyond the slice boundaries, therefore each slice contains 

segments from neurons in a multitude of layers, and a given neuron may contribute to 

multiple slices.  

 

Normalization of simulated CSEP components to baseline 

 To assess the contributions of sources at different depths to CSEPs (Fig.6,7), we 

would like to normalize the CSEP contributions to baseline in a way that preserves their 

relative magnitudes. Using the z-score of each contribution to its own baseline does not 

preserve relative magnitudes between contributions. For example, two contributions that 

differ only by a constant multiplicative factor will have the same z-score. That is, if nT(m) =

	i ⋅ n&(m) for two layers	^ and è, and for some constant	i, then the z-scores of these two 

contributions are 

ô&(m) =
†°(o)¢%|v£§(†°)

toE£§(†°)
	 and ôT(m) = 	

†é(o)¢%|v£§(†é)

toE£§(†é)
=

•⋅†°(o)¢%|v£§(•⋅†°)

toE£§(•⋅†°)
= ô&(m) 

(where ,¶];f(n) and ßmä;f(n) denote the average and standard deviation, respectively, 

of n during the baseline periods – the silence between tone pips) whereas we would like 

a normalization procedure that gives ôT(m) = i ⋅ ô&(m) in such a case. To achieve this, in 

Figure 6 & 7, we use the ratio of each contribution during the stimulus to the total 

simulated baseline signal. The ratio @& for a contribution n&(m) (representing an anatomical 

layer or 200 μm slice) is then given by 
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@&(m) = 	
n&(m)

,¶];f(n)
																																																																		(17) 

As with the z-score analysis used for the full CSEP (both in experiments and simulations, 

Fig.4,5), this normalization is done independently for each neural frequency bin. In 

Supplementary Figures 2 & 3, we show that our conclusions are robust to the choice of 

normalization. 

  

Dependence of simulated CSEP contributions on number of segments/neurons, 

depth, and synchronicity 

 The CSEP contribution from a given subset of the column (anatomically defined 

layer, or 200 μm slice) will depend on the number of neuronal segments in the subset, 

the distance of those neurons from the recording electrodes, and the synchronicity of 

those neurons’ activity. To determine the relative importance of these three factors, we 

performed an L2-regularized regression to fit the magnitude of each contribution’s high-

gamma peak (the maximum of each normalized CSEP contribution across frequency 

bins) as a linear function of the number of simulated neurons in each layer, or the number 

of neuronal segments in each 200 μm slice, the average depth of the contributing 

segments below the surface, and the synchronicity between somatic membrane 

potentials, defined as the average of Pearson’s correlation coefficient of the membrane 

potentials over all pairs of somas in the subset. Each of the 3 independent variables, and 

the dependent variable (high-gamma contribution magnitude) was normalized by dividing 

by the maximum across layers or slices. The L2 regularization parameter was chosen to 

be ® = 0.01. The magnitude of the fit coefficients gave the relative importance of each 

factor in determining the magnitude of the CSEP contributions in our model. 

 

Data and Software Availability 

The datasets and software are available upon request. 
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SFig. 1 High gamma peak is greatly diminished when layer V is lesioned. We computed the 

simulated CSEP from the column with each layer lesioned (Methods, main text). Each trace in 

SFig.1 shows the difference between the full CSEP and the corresponding trace in Figure 6b in 

the main text. The high gamma peak survives lesioning of all layers except layer V, suggesting 

that this component of the signal originates primarily in layer V neurons. Lesion of layer V 

produced the sharpest decrease in CSEP amplitude across almost the entire range of frequencies 

analyzed. 
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SFig. 2 Z-scored evoked responses are strongest in infragranular layers Due to difficulties 

interpreting z-scored evoked laminar contributions relative to baseline, in Figures 6-7 we applied 

a ratio-based normalization procedure in which the stimulus-evoked activity is simply divided by 

the baseline average activity level (see Methods). While this allows us to accurately capture the 

relative magnitudes of each of the laminar contributions, information about which layers respond 

strongest above their baseline level remains hidden when the normalization factor (denominator 

in equation (19)) is not layer-specific. To address this, we revert to the z-score normalization 

procedure, z-scoring each laminar contribution to that layer’s baseline statistics (mean and 

standard deviation during interstimulus silence), then reproduce Figure 6. The z-scored evoked 

responses are shown in SFigure 2b, where layers V and VI can be seen dominating the high 

gamma peak, with layers I – IV contributing minimally, as observed in Figure 6b. This suggests 

that in addition to contributing the largest fraction of the CSEP, layers V and VI also have by far 

the largest evoked response above baseline. Still, most layers, excepting layer I, exhibit strong 

responses several standard deviations above baseline levels. Thus, although all layers are 

stimulus-driven to an extent, layer I is the least stimulus-driven, which may owe to its relative lack 

of input (Figure 4b). Finally, the frequency of the peak in the infragranular layers is slightly higher 

than when using ratio normalization. 
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SFig. 3 Z-scored evoked responses are strongest in infragranular layers. In SFigure 1, we 

analyzed each layer’s contribution to the stimulus evoked CSEP relative to that layer’s activity 

during baseline. Here, we apply the same technique to the CSEP contributions from 200μm slices 

of the column, normalizing contributions to their own baseline statistics instead of using equation 

(19), thereby sacrificing information about the relative magnitudes of the slices’ contributions in 

favor of information about magnitude of each slice’s response above baseline. In SFigure 3d, the 

z-scored evoked responses of the slices are shown. As seen in SFigure 1, the peak of the 

response in most slices is found at a slightly higher frequency. Contributions to the high gamma 

peak at 106 Hz are more equally divided across the slices when looking at this z-scored data as 

compared to the ratio-normalized data shown in Figure 7d. However, infragranular layers are still 

seen to respond more strongly above baseline than layers I – IV, and the biophysical parameters 

are of similar proportions (SFig.3e).  
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