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ABSTRACT 

Objective: The goal of this work was to compare afferent fiber recruitment by dorsal root ganglion (DRG) 

stimulation using an injectable polymer electrode (Injectrode®) and a more traditional cylindrical metal 

electrode. 

Approach: We exposed the L6 and L7 DRG in four cats via a partial laminectomy or burr hole. We stimulated 

the DRG using an Injectrode or a stainless steel electrode using biphasic pulses at three different pulse 

widths (80, 150, 300 μs) and pulse amplitudes spanning the range used for clinical DRG stimulation. We 

recorded antidromic evoked compound action potentials (ECAPs) in the sciatic, tibial, and common 

peroneal nerves using nerve cuffs. We calculated the conduction velocity of the ECAPs and determined 

the charge-thresholds and recruitment rates for ECAPs from Aɑ, Aβ, and Aδ fibers. We also performed 

electrochemical impedance spectroscopy measurements for both electrode types. 

Main Results: The ECAP thresholds for the Injectrode did not differ from the stainless steel electrode across 

all primary afferents (Aɑ, Aβ, Aδ) and pulse widths; charge-thresholds increased with wider pulse widths. 

Thresholds for generating ECAPs from Aβ fibers were 100.0 ± 32.3 nC using the stainless steel electrode, 

and 90.9 ± 42.9 nC using the Injectrode. The ECAP thresholds from the Injectrode were consistent over 

several hours of stimulation. The rate of recruitment was similar between the Injectrodes and stainless steel 

electrode and decreased with wider pulse widths.  

Significance: The Injectrode can effectively excite primary afferents when used for DRG stimulation within 

the range of parameters used for clinical DRG stimulation. The Injectrode can be implanted through 

minimally invasive techniques while achieving similar neural activation to conventional electrodes, making 

it an excellent candidate for future DRG stimulation and neuroprosthetic applications.  
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INTRODUCTION 

Over the last several decades, neurostimulation, which is a neuromodulation therapy that involves the 

electrical stimulation of neural structures, has emerged as a promising treatment for various neurological 

conditions, ranging from Parkinson’s disease to depression and chronic pain. In the United States, 25 – 

100 million people are affected by daily chronic pain (Institute of Medicine, 2011; Nahin, 2015), with 

approximately 10-20% suffering chronic pain from neuropathic origins (Bouhassira et al., 2008; van Hecke 

et al., 2014). The consequences of chronic pain go beyond physical pain; chronic pain also causes 

emotional distress, social isolation, and even career and financial strain (Hylands-White et al., 2017). The 

treatment of chronic pain often involves medications including analgesics, non-steroidal anti-inflammatory 

drugs, and opioids. Pharmacological treatment of chronic pain can be ineffective for a large number of 

patients and has greatly contributed to the opioid epidemic (Deyo et al., 2015; Marshall et al., 2019). Chronic 

pain treatment can also be achieved using invasive and permanent surgical procedures, including nerve 

blocks, dorsal root entry zone lesioning, and rhizotomies (Hylands-White et al., 2017). Neurostimulation 

may reduce the required medication dose and reduce the need for permanent surgical interventions (Deer 

et al., 2013).  

A common neurostimulation therapy for chronic pain is epidural spinal cord stimulation (SCS), 

which utilizes electrodes that are implanted in the dorsal epidural space to electrically stimulate the dorsal 

columns and other structures within the spinal cord (Caylor et al., 2019). Presently, an estimated 50,000 

SCS devices are implanted every year (Sdrulla et al., 2018). In recent years, the dorsal root ganglion (DRG) 

has emerged as a new target for neurostimulation (Deer et al., 2013; Liem et al., 2013). A device to stimulate 

the DRG was approved for clinical use in the United States in 2016 (Deer et al., 2019).  

Several hypotheses have been proposed to explain the mechanisms of both SCS and DRG 

stimulation. One common hypothesis is the gate control theory of pain (Melzack and Wall, 1965), in which 

neurostimulation activates Aβ primary afferent fibers, which then activate inhibitory interneurons in the 

substantia gelatinosa of the dorsal horn, reducing the firing of wide dynamic range neurons that also 

respond to Aδ- and C-fiber activation (Caylor et al., 2019; Graham et al., 2019). Therefore, measuring the 

stimulation threshold to activate Aβ fibers is relevant to evaluating neurostimulation devices for treating 

chronic pain. 
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The DRG is an advantageous target for neurostimulation because it offers precise coverage of a 

dermatome corresponding to the painful region (Esposito et al., 2019; Liem, 2015). Multiple clinical trials 

have shown that DRG stimulation is effective in treating chronic pain stemming from various sources, 

including back pain, distal limb pain, phantom limb pain, complex regional pain syndrome, causalgia, pelvic 

pain, groin pain, and mononeuropathies (Eldabe et al., 2015; Harrison et al., 2018; Hunter and Yang, 2019; 

Van Buyten et al., 2015; Zuidema et al., 2014). A recent clinical trial comparing the effectiveness of SCS 

and DRG stimulation for the treatment of complex regional pain syndrome and causalgia showed that DRG 

stimulation produced a greater than 50% reduction in pain in 81.2% of participants, compared to only 55.7% 

of participants who received SCS (Deer et al., 2017).  

A factor limiting adoption of DRG stimulation is the surgical approach (Deer et al., 2013). DRG lead 

delivery methods also differ by spinal level. The surgical technique for placing DRG leads targeting the 

thoracic and lumbar levels involves implanting the leads into the epidural space and steering them laterally 

through the neuroforamen and placed near the DRG (Caylor et al., 2019; Deer et al., 2019; Liem, 2015). 

When targeting the sacral DRG, however, the leads are placed using a transforaminal approach (Deer et 

al., 2019). Using the current lead systems, the transforaminal approach is more likely to result in lead 

migration than the epidural approach (Deer et al., 2019). Furthermore, implanting DRG stimulation leads 

can be uncomfortable for patients and many permanent implants are often done under general anaesthesia 

(Deer et al., 2019; Morgalla et al., 2017). There has also been much debate surrounding the complication 

rates and adverse events related to DRG stimulation. While a recent report suggested DRG stimulation has 

an excellent safety record (Deer et al., 2020), several studies have reported adverse events, such as pain 

near the site of the implantable pulse generator and lead fracture (Deer et al., 2017; Horan et al., 2020; 

Huygen et al., 2020). Some experts believe that the complications are due to the increased time and 

learning curve required for performing the DRG stimulation lead implant procedure, as well as the recency 

of its clinical implementation (Lubenow and Nijhuis, 2020). An electrode that conforms to tissue and can 

still be placed in close proximity to the DRG using a minimally invasive procedure would reduce such 

barriers to adoption of a clinically efficacious treatment. 

To this end, we have developed the Injectrode®, which is a flowable two-part conductive pre-

polymer that can be injected through a needle and syringe into the space adjacent to the neuroanatomical 
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target, and then quickly polymerizes in vivo, creating a highly conformal functioning electrode. The version 

of the Injectrode evaluated here follows previous work, which showed that a conductive polymer Injectrode 

formulation remains soft and flexible after curing, with a Young’s modulus that more closely matches that 

of the tissue compared to traditional metal electrodes (Trevathan et al., 2019). Soft electrodes have been 

shown in other studies to reduce the inflammatory response and improve electrode acceptance (Sohal et 

al., 2016). Trevathan and colleagues also included initial proof of concept data demonstrating that the 

Injectrode can be used for stimulation of the brachial plexus of rats to produce tetanic muscle contractions, 

and stimulation of the vagus nerve in swine to induce a reduction in heart rate (Trevathan et al., 2019). 

However, a comprehensive characterization of the Injectrode in terms of recruitment profiles of nerve fiber 

types associated with therapeutic effect was not performed. Ongoing work is aimed at developing and 

testing the Injectrode to ensure that it remains soft and flexible, can effectively stimulate neural tissue, can 

be delivered using a simple and minimally invasive procedure (such as a transforaminal approach), and to 

utilize a collector for transcutaneous stimulation to reduce the need for an implantable pulse generator 

(IPG) and likelihood of lead migration. A simplified system using the Injectrode may reduce uptake barriers, 

leading to the DRG stimulation being used at an earlier stage of treatment instead of a last resort. 

The goal of the current study was to investigate if the Injectrode is a viable electrode for DRG 

stimulation. We evaluated the ability of the Injectrode to recruit primary afferents during DRG stimulation in 

cats, as these afferents, particularly Aβ fibers, are thought to drive the therapeutic effects of DRG 

stimulation for the treatment of pain. We compared charge thresholds for recruiting primary afferent fibers 

using the Injectrode and a cylindrical stainless steel electrode placed on the surface of the DRG. A stainless 

steel electrode was chosen as a surrogate for a clinical DRG lead because it is a well characterized material, 

has similar shape and stiffness to clinical leads, is relatively inexpensive to purchase, and readily accessible 

for proof-of-concept testing.  

We demonstrated that the Injectrode can be used to stimulate a range of afferent fibers, including 

Aα, Aβ, and Aδ fibers, in the DRG with charge thresholds similar to or lower than a cylindrical stainless 

steel electrode. Additionally, both electrodes effectively recruited Aβ fibers, the putative target of DRG 

stimulation, across a range of stimulation parameters, including current amplitude, pulse width, and 

frequency, within the range typically used for clinical DRG stimulation. Although further work is needed for 
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validation, this study illustrates that the Injectrode may offer an alternative to standard clinical DRG 

stimulation electrodes. As an injectable and conformal material, the Injectrode may offer important 

advantages, including ease of delivery and greater stability of contact with the DRG. 

 

METHODS 

Experimental Model 

We performed acute experiments in four adult male cats (4.38-7.55 kg). All procedures were approved by 

the University of Pittsburgh Institutional Animal Care and Use Committee. We induced anaesthesia using 

ketamine (cat A; intramuscular, 10 mg/kg) and acepromazine (cat A; intramuscular, 0.1 mg/kg), or 

dexdomitor (cats B-D; intramuscular, 0.04 mg/kg). We then intubated the cat and administered isoflurane 

for the duration of the experiment (inhalation, 2-2.5%). We used antisedan (intramuscular; 1:1 dexdomitor 

dose) to reverse the effects of dexdomitor following the administration of isoflurane. We gave atropine 

intramuscularly (all cats; 0.05 mg/kg) to reduce saliva output. We continuously monitored vital signs 

including heart rate, SpO2, core temperature, respiratory rate, and ETCO2. We also continually administered 

IV fluids (saline, 0.9% sodium chloride) throughout the experiment.  

 

Manufacturing of Dorsal Root Ganglion Electrodes 

Injectrodes were manufactured by Neuronoff, Inc. (Cleveland, OH, USA) using a similar polymer-conductor 

variant of the Injectrode as described previously by Trevathan et al., 2019. Briefly, we mixed two parts of 

Pt-curing silicone elastomers (World Precision Instruments, FL, USA) with metallic silver particles (Sigma-

Aldrich, MO, USA) and loaded the mixture into a syringe that was calibrated to hold 10 µL of Injectrode 

material. Silver was chosen for this proof-of-concept study of a particle-polymer-based electrode (the 

Injectrode) because it was readily available and cost-efficient. An insulated silver wire (AS-766-36; Cooner 

Wire Company, Chatsworth, CA, USA) with de-insulated ends was placed inside the syringe such that it 

became embedded in the Injectrode material upon curing on one end, while the other end was connected 

to the stimulator for DRG stimulation (see below). Based on measurements taken from explanted 

Injectrodes, the lengths and diameters of the Injectrodes ranged from 4.0 – 6.0 (4.4 ± 0.7) mm and 1.3 – 

3.1 (1.8 ± 0.6) mm, respectively. These parameters correspond to an average surface area of 30.8 ± 12.5 
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mm2. We manufactured stainless steel DRG electrodes in-house (University of Pittsburgh) using 1 mm 

diameter hypodermic tubing (McMaster-Carr, Elmhurst, IL, USA) cut to a length of 4.5 mm and crimped to 

a Teflon-insulated lead wire (AS632; Cooner Wire Company, Chatsworth, CA, USA). The surface area of 

the stainless steel electrode was 15.7 mm2, which is 1.96 times smaller than the average surface area of 

the Injectrode.  

 

Implantation of Electrodes 

We placed the DRG electrodes on the L6 and L7 DRG after exposing the DRG via partial 

laminectomy or burr hole in the vertebral laminae. In cat A, we performed a partial laminectomy to expose 

both target DRGs, and in cat B, only the L7 DRG was exposed via a partial laminectomy. For the 

laminectomy exposures, we placed the electrodes on the dorsal surface of the crown of the DRG for 

stimulation. We filled the open cavity with 5 mL of saline to keep the tissue from drying. For the L6 DRG in 

cat B, as well as both the L6 and L7 DRG in cats C and D, we drilled a burr hole through the laminae 

overlying the DRG (Figure 1). For the burr hole exposure, we placed the stainless steel electrode vertically 

in the hole, while the Injectrode was injected into the hole by placing the tip of the blunt needle into the hole 

(Supplementary Video 1). The placement of the burr hole was guided by the exposing and matching the 

locations of the DRG on the contralateral side, which were exposed via a partial laminectomy. Following 

testing with the electrodes delivered through the burr hole, we then removed the lamina to confirm the 

location of the Injectrodes. In all experiments, we placed a stimulation ground electrode (AS636, Cooner 

Wire Company, Chatsworth, CA, USA) with ~5 cm exposure in between the skin and lumbodorsal fascia 

ipsilateral to the DRG electrodes for monopolar stimulation. 

We implanted three spiral nerve cuff electrodes made of silicone with platinum contacts in the hind 

limb ipsilateral to the stimulated DRG (Figure 1; Ardiem Medical, Indiana, PA, USA). A five-contact spiral 

nerve cuff electrode (3 mm diameter, contacts 4 mm apart, center-to-center) was implanted around the 

sciatic nerve. The proximal, center, and distal contacts were shorted together and used as a reference 

electrode. The second and fourth contacts were used for recording and, with the references, created two 

tripolar configurations. Spiral nerve cuff electrodes with three contacts (2 mm diameter, contacts 4 mm 

apart, center-to-center) were implanted around the tibial and common peroneal nerves. The proximal and 
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distal contacts were shorted together to create a tripolar configuration with the center electrode used for 

recording. The nerve cuffs recorded the compound action potentials evoked by stimulation of the DRG.  

 

Data Acquisition and Stimulation Protocol 

We recorded electroneurogram (ENG) signals using a Grapevine Neural Interface Processor (Ripple, Salt 

Lake City, UT, USA) and a single-ended headstage (Surf S2), which has an input range of ±8 mV and 16-

bit resolution with 0.25 μV/bit. We filtered the ENG using a 0.1 Hz high pass filter and a 7.5 kHz low pass 

filter, followed by digitization at 30 kS/s.  

We delivered monopolar stimulation using a high current ECOG + Stim front end (Ripple, Salt Lake 

City, UT, USA; Cats A and B) or an A-M Systems 4100 Stimulator (A-M Systems, Sequim, WA, USA; Cats 

C and D). Stimulation was delivered at 58 Hz using biphasic, symmetric, cathodic-leading pulses. 

Stimulation pulse widths were either 80, 150, or 300 μs per phase. In cat A, only 80 and 150 μs pulse widths 

were tested. At each DRG location and for both stainless steel electrodes and Injectrodes, we constructed 

recruitment curves by varying the stimulation amplitude from below sensory threshold up to motor threshold 

in steps of 20 - 250 μA (for coarse and fine steps). We determined motor threshold by delivering a train of 

five stimulation pulses and observing twitches in the hindlimb. The order of stimulation amplitudes in the 

recruitment curve was randomized, with 600 pulses repeated at each amplitude, and 5 – 10 s pauses 

between changes in amplitude. We repeated this process for each pulse width.  

 

ENG Analysis 

We conducted all analyses using custom written programs in MATLAB (MathWorks, Natick, MA, USA). 

During experiments, we visualized responses online to select the stimulation amplitude range for the 

recruitment curves. We interpolated over a 1-ms window to blank stimulation artefacts. We filtered the ENG 

using a second-order high-pass filter with a cutoff frequency of 300 Hz, and we stimulation-triggered 

averaged the responses to 600 stimulus pulses. We determined the presence of an ECAP at a particular 

stimulation amplitude by comparing the root-mean-square (RMS) amplitude of the ENG to a threshold 

value, as shown in prior work (Ayers et al., 2016; Nanivadekar et al., 2019). We used a bootstrapping 

method to verify consistency of the evoked responses. For each stimulation amplitude, we generated a 
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stimulus-triggered average of the ENG on each nerve cuff electrode using a random sample of 80% of the 

600 total stimulus repetitions. This step was repeated 200 times. The averaged waveforms were then 

rectified and smoothed by calculating the RMS of each averaged ENG signal using a 100-μs sliding window 

with a 33-μs overlap with the previous window. From each averaged RMS ENG signal, we defined the 

ECAP threshold as one standard deviation above the upper limit of the 99% confidence interval of the 

baseline RMS amplitude during a 1-ms period before each stimulation pulse. An ECAP was detected if 95% 

of the subsets of random samples were supra-threshold during the same 100-μs window of the RMS ENG 

signal. Since we used a total of four nerve cuff electrodes (two on the sciatic plus one each on the tibial 

and common peroneal nerves), we defined threshold to be the lowest stimulation amplitude that evoked a 

response in any of the four nerve cuff electrodes. We confirmed the accuracy of the automated approach 

by visually identifying stimulation thresholds.  

We calculated the conduction velocity of the ECAPs using the ENG from the sciatic nerve cuffs by 

following a procedure described previously by our group (Fisher et al., 2014). Briefly, we measured the time 

difference between the peaks of the first, short-latency ECAP recorded from the proximal and distal tripoles 

in the five-contact cuff (contacts 2 and 4; Figure 2). Contacts 2 and 4 are 8 mm apart, center-to-center. We 

divided that distance by the time difference (dt) between peaks of the ECAPs to obtain the conduction 

velocity for the lowest latency ECAP. If multiple ECAPs were present, we calculated the conduction velocity 

of the longer latency ECAP(s) by first determining the distance between the DRG electrode and the proximal 

tripole using the conduction velocity of the first ECAP and the latency between the onset of the stimulus 

and the peak of that ECAP. Then, we divided the distance between the stimulating and recording electrodes 

by the latency of the later ECAP(s) to obtain their conduction velocity.  

Using the calculated distance between the DRG electrode and cuff electrode, and the known 

conduction velocity ranges for primary afferent axons, Aɑ (80-120 m/s), Aβ (35-80 m/s), or Aδ fibers (5-35 

m/s) (Bear et al., 2007), we also defined latency windows from the onset of stimulation for each fiber type. 

The latency windows corresponding to the conduction velocities of the primary afferents were approximately 

1.3 - 2.2 ms (Aɑ), 2.2 - 6.5 ms (Aβ), and 6.5 - 45 ms (Aδ), varying slightly according to the distance between 

the stimulation and recording electrodes. Using those latency windows, we found the ECAP threshold for 

the different fiber types (Aɑ, Aβ, and Aδ) and constructed recruitment curves for Aɑ and Aβ thresholds and 
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each pulse width and depicted the peak-to-peak amplitude of the ECAP as a function of stimulation charge 

(current amplitude × pulse width).  

We determined the recruitment rate for Aɑ and Aβ fibers by fitting a line to the linear region of the 

recruitment curves using least squares regression (MATLAB’s polyfit function, first order). Recruitment 

curves were not constructed for Aδ fibers because there were not enough data points for each condition; 

ECAPs from Aδ fibers were only detected when stimulation amplitude was very high (close to motor 

threshold). The recruitment rate is the slope of the best-fit line. To compare the recruitment rates across all 

trials, we normalized all slope values to the slope of the recruitment curve obtained for the stainless steel 

electrode and a pulse width of 300 μs, which is the pulse width used typically in clinical applications of DRG 

stimulation (Deer et al., 2017; Graham et al., 2019; Kent et al., 2018; Liem et al., 2013). 

 

Electrochemical Impedance Spectroscopy 

We conducted in vivo electrochemical impedance spectroscopy (EIS) measurements of the stainless steel 

electrode and Injectrode on the L7 DRG contralateral to those used for stimulation in cats C-D at the 

beginning of each experiment, as well as for the Injectrodes that were left in the insertion holes in cat D 

following all stimulation trials. We used a three-electrode setup, where the working electrode was the DRG 

stimulation electrode (either stainless steel or Injectrode), the counter electrode was a Platinum wire 

(CHI115, CH Instruments, Inc., Austin, TX, USA; 32 mm long, 0.5 mm diameter) placed distally in between 

the skin and muscle of the leg ipsilateral to the active electrode, and the reference electrode was a Ag|AgCl 

wire (CHI111, CH Instruments, Inc., Austin, TX, USA; 40 mm long, 0.5 mm diameter) placed in between 

the skin and muscle of the back near the active electrode. We used a potentiostat (CompactStat, Ivium 

Technologies, Eindhoven, The Netherlands) to perform EIS measurements. EIS frequency values ranged 

from 1 to 100,000 Hz at eight points per decade and a peak-to-peak voltage of 25 mV.  

 

Statistical Methods 

We used the Shapiro–Wilk test to test for normality and Levene’s test to assess the homogeneity of 

variance. We used a student’s t-test to compare threshold and recruitment rate means between the L6 and 

L7 DRG. We performed a two-way analysis of variance (ANOVA) to test for effects of material (Injectrode  
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or stainless steel) and fiber type (Aɑ, Aβ, or Aδ) on ECAP thresholds. We also performed two-way ANOVAs 

to test for significant effects of material and pulse width (80, 150, or 300 μs) on ECAP thresholds and 

recruitment rate. We used the Bonferroni correction for multiple comparisons. ANOVA and the post-hoc 

tests were performed using SPSS Statistics (version 26; IBM, Armonk, NY, USA). We used a paired t-test 

to compare ECAP thresholds over time using Excel (version 2108; Microsoft Corporation, Redmond, WA, 

USA). We performed equivalence testing using the two one-sided t-test (TOST) method (Lakens, 2017) in 

MATLAB using the TOST function (Rastogi, 2017) to compare the thresholds of the Injectrode versus the 

stainless steel electrode across fiber types and over time. We considered a p-value ≤ 0.05 to indicate 

significance. Results are presented as mean ± standard deviation.  

 

RESULTS 

We stimulated the L6 and L7 DRG in four cats using either a stainless steel electrode or an Injectrode. We 

recorded ECAPs in sensory nerve fibers measured using nerve cuff electrodes placed on the sciatic, tibial, 

and common peroneal nerves. We placed stimulation electrodes on the DRG after exposure via partial 

laminectomy or a burr hole. For all performance metrics, there were no significant differences in recruitment 

properties between the partial laminectomy exposure and the burr hole exposure. Therefore, we grouped 

these data together for all analyses.  

Following data collection, we explanted several of the Injectrodes and measured their widths and 

lengths. Injectrodes delivered on the DRG exposed with a partial laminectomy were cylindrical in shape, 

having been formed by the needle used for delivery. Injectrodes that were injected into the burr-hole were 

still somewhat cylindrically shaped, but flatter as they filled the cavity between the DRG and the bone.  

 

DRG stimulation excites multiple types of primary afferent neurons 

DRG stimulation is thought to induce analgesic effects through the activation of afferent fibers. Here, DRG 

stimulation generated ECAPs at multiple latencies in each of the nerve cuff recordings (Figure 3a), 

indicating recruitment of multiple fiber types. By measuring the propagation delay between ECAPs recorded 

at the two tripolar recording sites in the sciatic nerve cuff, we calculated the conduction velocities of the 

ECAPs and used them to classify the response as from Aɑ (80-120 m/s), Aβ (35-80 m/s), or Aδ (5-35 m/s) 
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fibers (Bear et al., 2007). Evoked responses included conduction velocities ranging from 13 m/s to 120 m/s, 

which includes three primary afferent fiber types. Our method did not detect any C fiber responses. 

Aɑ fibers had the lowest threshold (77.8 ± 33.3 nC; Figure 3b). The threshold for recruiting Aβ fibers 

was 23% higher than the Aɑ threshold (95.4 ± 37.9 nC), which was significant (p = 0.034). The threshold 

for recruiting Aδ fibers was 118.0 ± 36.8 nC, which was 52% higher than the Aɑ threshold (p < 0.001) and 

24% higher than the Aβ threshold (p = 0.033). We found no significant differences between the ECAP 

thresholds for the Injectrode versus the stainless steel electrode across all primary afferent fiber types (p = 

0.412). The thresholds from the Injectrode were equivalent to the thresholds from the stainless steel 

electrode within a ±30% window for Aɑ (p = 0.007), Aβ (p = 0.024), and Aδ (p = 0.031) fibers.  

 

The Injectrode® and stainless steel electrodes have similar ECAP thresholds that vary by pulse 

width 

ECAP thresholds were significantly higher when stimulation was delivered to L7 compared to L6 for Aɑ and 

Aβ fibers (p < 0.001). There was no difference between the L6 and L7 thresholds for Aδ fibers (p = 0.63). 

Because there were differences in the Aɑ and Aβ fiber thresholds, we kept these analyses separate for 

each DRG level. 

 Differences in ECAP thresholds due to pulse width were not consistent across DRG levels. For Aɑ 

fibers, there were no significant differences between ECAP thresholds when stimulation was applied with 

a pulse width of 80 μs (49.0 ± 19.8 nC), 150 μs (57.8 ± 21.5 nC), or 300 μs (65.6 ± 29.3 nC) on the L6 DRG 

(Figure 4a; p = 0.34). However, on the L7 DRG, thresholds corresponding to stimulation with a 300-μs 

(124.9 ± 24.0 nC) pulse width were significantly higher than those corresponding to stimulation with an 80-

μs (76.7 ± 22.4 nC; p < 0.001) pulse width, but not a 150-μs pulse width (97.7 ± 20.6 nC; p = 0.063). In 

general, the ECAP threshold increased with a longer pulse width. Notably, the ECAP thresholds for Aɑ 

fibers for the Injectrode were not significantly different from thresholds for stainless steel electrodes at L6 

(Injectrode = 49.6 ± 22.4 nC; stainless steel = 63.7 ± 23.4 nC; p = 0.12) or L7 (Injectrode = 100.4 ± 32.2 nC; 

stainless steel = 93.3 ± 25.3 nC; p = 0.52). There were also no interaction effects between electrode type 

and pulse width (L6: p = 0.98; L7: p = 0.99).  
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The ECAP threshold for Aβ fibers was significantly higher for the longest versus shortest pulses 

(300 μs vs 80 μs, Figure 4b), and the threshold difference was slightly greater at L7 compared to L6. At the 

L6 DRG, stimulation with a pulse width of 80 μs (60.9 ± 21.0 nC) had a significantly lower threshold than 

stimulation at 300 μs (97.1 ± 35.7 nC; p = 0.028). Similarly, stimulation on the L7 DRG with a pulse width 

of 80 μs (91.8 ± 26.2 nC) had a significantly lower threshold than stimulation at 300 μs (145.7 ± 28.8 nC; p 

= 0.002). Similar to the Aɑ fibers, the ECAP threshold increased with a longer pulse width. The thresholds 

for evoking ECAPS in Aβ fibers using the Injectrode were significantly lower than with the stainless steel 

electrodes at L6 (Inj = 64.0 ± 32.6 nC; SS = 84.8 ± 25.7 nC; p = 0.049) but not L7 (Inj = 115.9 ± 36.0 nC; 

SS = 116.4 ± 31.4 nC; p = 0.95). There were no interaction effects between the electrode type and pulse 

width (L6: p = 0.91; L7: p = 0.91).  

Finally, for Aδ fibers, the ECAP thresholds did not differ across pulse widths for the L6 DRG (p = 

0.27) or the L7 DRG (Figure 4c; p = 0.14). Furthermore, ECAP thresholds between the Injectrode and 

stainless steel electrodes were not significantly different at the L6 (Inj = 103.8 ± 31.9 nC; SS = 122.9 ± 29.1 

nC; p = 0.25) or L7 (Inj = 123.1 ± 48.8 nC; SS = 119.3 ± 40.5 nC; p = 0.90) DRG. There were also no 

interaction effects between the electrode type and pulse width (L6: p = 0.67; L7: p = 0.96). However, there 

is a general but insignificant trend of an increasing threshold for longer pulse widths.  

Taken together, ECAP thresholds for each fiber type (Aɑ, Aβ, Aδ) for DRG stimulation delivered 

through an Injectrode were either not different or significantly lower than the ECAP thresholds from 

stimulation with a stainless steel electrode. Generally, the ECAP thresholds increased as pulse width 

increased, but this trend was not always significant. 

 

Injectrodes have similar ECAP thresholds over time 

We compared the stability of ECAP thresholds for evoking responses in Aɑ and Aβ fibers using DRG 

stimulation between the stainless steel electrode and the Injectrode. We measured thresholds early in the 

experiment and repeated those measurements 2 to 10.5 hours later (Figure 5). Early thresholds for evoking 

a response in Aɑ fibers was not significantly different from the later thresholds for the stainless steel 

electrode (early = 106.7 ± 25.1 nC; late = 102.8 ± 29.7 nC; p = 0.45) or the Injectrode  (early = 89.7 ± 38.9 

nC; late = 85.6 ± 34.5 nC; p = 0.27). There were also no significant differences over time for the Aβ 
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thresholds for the stainless steel electrode (early = 120.7 ± 31.6 nC; late = 118.2 ± 37.6 nC; p = 0.64) or 

the Injectrode (early = 98.1 ± 34.8 nC; late = 102.2 ± 44.1 nC; p = 0.48). The thresholds measured at early 

and late timepoints were equivalent within a ±35% window for both Aɑ (p = 0.031) and Aβ (p = 0.038) fibers 

using the stainless steel electrode. The thresholds measured at early and late timepoints using the 

Injectrode were equivalent within a ±40% window for both Aɑ (p = 0.035) and Aβ (p = 0.032) fibers. 

Therefore, the stainless steel electrode, and more importantly, the Injectrode, had stable ECAP thresholds 

over many hours and thousands of stimulation pulses.  

 

Aɑ and Aβ fibers are more likely to be excited within the usable range than Aδ fibers 

Clinical DRG stimulation generally operates within a current amplitude range above sensory threshold, 

where paresthesias are elicited, but below a level where any pain or movement is produced. We defined 

the usable range of DRG stimulation as the stimulation amplitudes between the ECAP threshold and just 

below the motor threshold. The ECAP threshold was defined as the lowest stimulation amplitude that 

evoked an ECAP, and the motor threshold was the stimulation amplitude that evoked a visible twitch in the 

lower limb. Data were combined for both electrode types to evaluate the mechanistic activation of afferent 

fibers using DRG stimulation. At the top of the usable range, or the maximum stimulation amplitude below 

motor threshold, ECAPs from Aɑ fibers were always present (100% of the trials), ECAPs from Aβ fibers 

were present in 85.7% of the trials, and ECAPs from Aδ fibers were present in 37.5% of the trials (Figure 

6a). However, at the half-maximum point, which we defined as the stimulation amplitude mid-way between 

the ECAP threshold and top of the usable range, there were far fewer ECAPs from Aδ fibers detected (5.4% 

of the trials). ECAPs from Aɑ fibers (100% of trials) and Aβ fibers (75.0% of trials) remained prevalent.  

 

ECAP thresholds for all afferents were most often recorded from the sciatic and tibial nerves 

In order to compare the activation profiles of specific nerves with DRG stimulation using each 

electrode type, we also examined the nerve recording site from which we detected the ECAP response at 

threshold for each fiber type (Figure 6b). We detected Aɑ fiber ECAPs in only the tibial or sciatic nerves 

17.9% and 5.4% of the time, respectively. At threshold, we detected a majority of Aɑ fiber ECAP responses 

in both the tibial and sciatic nerves (53.6%). At threshold, we did not detect Aɑ fiber ECAP responses from 
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the common peroneal nerve, except when the response occurred simultaneously at all three nerve sites, 

which occurred in 23.2% of the thresholds detected. We detected ECAP thresholds for Aβ fibers in each of 

the three nerves. At threshold, we detected responses from Aβ fibers from only one of the tibial, common 

peroneal, or sciatic nerves 22.2%, 9.3%, and 22.2% of the time, respectively. Similar to the Aɑ fiber 

responses, we detected many Aβ fiber responses in both the tibial and sciatic nerves (25.9%), and seldomly 

from the common peroneal nerve (common peroneal and tibial = 1.9%; common peroneal and sciatic = 

1.9%). At threshold, we detected some Aβ fiber responses from all three nerves (16.7%). The ECAP 

thresholds for Aδ fibers followed a similar trend, in which almost half of the responses that we detected 

were from both the tibial and sciatic nerves (48.0%), and approximately a quarter from each of those nerves 

separately (tibial = 12.0%; sciatic = 12.0%). We did not record responses from Aδ fibers from the common 

peroneal nerve alone, but 16.0% of the responses that we detected were from both the common peroneal 

and sciatic nerves, and 12.0% of the responses from all three nerves. In summary, we recorded ECAP 

responses at threshold most often from the sciatic and tibial nerves, either individually or in combination, 

for all three primary afferent fiber types.  

 

Injectrodes and stainless steel electrodes have similar recruitment rates that decrease as pulse 

width increases 

We constructed recruitment curves for Aɑ and Aβ fibers by plotting the peak-to-peak amplitude of the ECAP 

versus the stimulation charge (current amplitude × pulse width) for each pulse width for the Injectrode  and 

stainless steel electrode. Representative recruitment curves for Aɑ and Aβ fibers recorded from cat D with 

stimulation on the L6 DRG are shown in Figure 7a. The separation of the curves by threshold between the 

stainless steel electrode and Injectrode is consistent with the trends and differences noted in the group 

thresholds for L6 (Figure 4a-b).  

We defined the recruitment rates for Aɑ and Aβ fibers as the slope of the linear region of the 

recruitment curves. The slopes were normalized to the slope of the recruitment curve for the stainless steel 

electrode and a pulse width of 300 μs. For both Aɑ and Aβ fibers, the slope of the recruitment curves 

generally decreased as pulse width increased (Figure 7b); however, this difference was only significant for 

the Aɑ recruitment curves at 80 μs versus 300 μs (p = 0.011). The recruitment rates for the Injectrode were 
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not statistically different from the recruitment rates for the stainless steel electrode across pulse widths for 

both Aɑ fibers (slopeINJECTRODE = 1.69 ± 0.87; slopeSTAINLESS_STEEL = 1.87 ± 1.22; p = 0.54) and Aβ fibers 

(slopeINJECTRODE = 1.50 ± 0.87; slopeSTAINLESS_STEEL = 1.52 ± 1.47; p = 0.95). Additionally, there were no 

interaction effects between the electrode type and pulse width (Aɑ: p = 0.89; Aβ: p = 0.87). 

 

Injectrodes have similar impedances that are lower than stainless steel electrodes 

We measured EIS of the Injectrode and stainless steel electrode in cats C and D before stimulation began. 

The stainless steel electrode used in both cats was the same; however, the Injectrodes were freshly mixed 

and injected for each experiment. The stainless steel electrode and the Injectrodes had similar 1 kHz 

impedance magnitudes (stainless steel |Z| = 0.19 kΩ, 0.19 kΩ; Injectrode |Z| = 0.30 kΩ, 0.36 kΩ). Higher-

frequency impedances (> 1 kHz) were similar between the two electrode types, indicating a similar 

electrolyte resistance (Figure 8a-b). At lower frequencies (< 100 Hz), the Injectrode had a smaller 

impedance magnitude and became less capacitive (impedance phase approached zero) at a lower 

frequency value than the stainless steel electrode. In cat D, we also collected EIS data after stimulation 

trials were completed for three separate Injectrodes placed on different DRG (Figure 8c-d). Following 

thousands of stimulation pulses over several hours (between 6 and 11 hours), the three different Injectrodes 

had similar EIS profiles across the frequency spectra. Notably, the impedance magnitude of the Injectrodes 

at 1 kHz remained below 1 kΩ after stimulation (|Z|1 = 0.26, |Z|2 = 0.41, |Z|3 = 0.35 kΩ). These values were 

also similar to the 1 kHz impedance of the Injectrodes prior to stimulation.  

 

DISCUSSION 

 

The Injectrode® for DRG Stimulation 

We compared the ECAP threshold and recruitment rate between the Injectrode and stainless steel electrode 

across several pulse widths. Data for stimulation of the L6 versus L7 DRG were analyzed separately 

because there were significant differences between the ECAP thresholds for Aα and Aβ fibers between the 

levels. Differences for Aδ fibers were not detected between levels but may be due to the small number of 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 7, 2021. ; https://doi.org/10.1101/2021.08.16.456553doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.16.456553


17 

ECAPs from these small diameter fibers. Different levels of the DRG have different distributions of cell 

bodies and axons (Sperry et al., 2020), which may affect recruitment.  

Our results show that the threshold for eliciting ECAPs using the Injectrode was not different or was 

significantly lower than the ECAP threshold using the stainless steel electrode (Figure 4). The average 

surface area of the Injectrodes were 1.96 times larger than the surface area of the stainless steel electrode. 

If the Injectrode and stainless steel electrode had a similar threshold, which was the case most of the time, 

then the Injectrode had a charge density at threshold that was 1.96 times lower than the stainless steel 

electrode. When the Injectrode had a lower threshold than the stainless steel electrode, which occurred for 

Aβ fibers at L6, then the Injectrode had an even smaller charge density compared to the stainless steel 

electrode. These approximations are based on the geometric surface area of the Injectrode; however, 

because the Injectrode is a polymer, it has a high porosity (Trevathan et al., 2019). A high porosity increases 

the permeability of the electrolyte, which increases the effective electrochemical surface area and likely 

reduces the charge density further. The similar-to-lower charge density of the Injectrode, as compared to 

the stainless steel electrode, is beneficial in several ways. First, it highlights the benefits of using a soft, 

flexible electrode that conforms to the DRG. Due to the small sub-laminar space in the cat model, the 

Injectrode made close-contact with the DRG, which increased the contact area between the Injectrode and 

the neural tissue. When an electrode is placed closer to neural tissue, it is able to excite more neurons at 

the same charge density (Gaines et al., 2018). Because the thresholds using the Injectrode were not 

different or smaller than the thresholds for the stainless steel electrode, resulting in a similar or lower charge 

density, stimulation through the Injectrode may reduce irreversible electrochemical reactions and the 

generation of toxic by-products that are harmful to tissue (Cogan, 2008). The Injectrodes also showed 

consistency over time: the ECAP thresholds measured at two timepoints separated over several hours were 

equivalent within a ±40% window. Consistent ECAP thresholds suggest that the cured Injectrode was able 

to maintain its material properties, such as high porosity, after several hours of interfacing with the tissue, 

as well as after thousands of stimulation pulses. 

We measured recruitment of Aα, Aβ, and Aδ fibers with stimulation amplitudes below motor 

threshold, and Aα and Aβ fibers were recruited at thresholds much lower than Aδ fibers. We detected 

responses from large-diameter fibers in the majority of trials at maximum stimulation amplitude (Aα, 100%; 
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Aβ, 85.7%) and at half-maximum amplitude (Aα, 100%; Aβ, 75.0%); however, responses from small-

diameter Aδ fibers were identified in only 37.5% and 5.4% of trials at maximum and half-maximum, 

respectively. Our data, in agreement with previous studies (Bourbeau et al., 2011; Fisher et al., 2014; Gaunt 

et al., 2009; Nanivadekar et al., 2019), showed that DRG stimulation preferentially recruits large and 

medium diameter afferents, including Aβ fibers purported to promote analgesia according to the gate control 

theory of pain (Chao et al., 2020; Graham et al., 2019; Kent et al., 2018). Here, we show that the Injectrode 

is equally or more effective at recruiting Aβ fibers as the stainless steel electrode, highlighting that the 

Injectrode would be an appropriate electrode choice for DRG stimulation and treating chronic pain.  

Avoiding activation of small-diameter fibers is ideal because some of these fibers transmit 

nociceptive signals that can cause pain. We stimulated the DRG across a range of amplitudes from 

subthreshold to relatively high amplitudes (up to 3.4 mA; motor threshold) in order to generate the 

recruitment curves. In preclinical studies, motor threshold is generally used as the upper bound of the 

amplitude range for stimulation (Chao et al., 2020). Clinical DRG stimulation is generally delivered at a 

current level that evokes paresthesias, indicative of Aβ fiber activation, but does not generate muscle 

activity (Kramer et al., 2015; Liem et al., 2013; Mekhail et al., 2020; Van Buyten et al., 2015). Recent 

modeling studies suggest that amplitudes greater than 4 mA are required to activate C fibers in human 

DRG (Graham et al., 2019; Kent et al., 2018). This amplitude is greater than the thresholds for evoking 

responses in Aβ fibers with a 300 µs pulse width using the Injectrode (331.7 µA) and stainless steel 

electrode (428.6 µA), as well as the typical clinical range of 1 mA or lower (Deer et al., 2017). We detected 

responses from Aδ fibers infrequently and at much higher thresholds than Aα and Aβ fibers, which is 

supported by computational models (Graham et al., 2020). Therefore, using the Injectrode for DRG 

stimulation with parameters that are used clinically should result in minimal activation of small-diameter 

fibers.  

We measured recruitment thresholds using stimulation pulse widths of 80, 150, and 300 µs. Our 

data also showed that ECAP thresholds increased as the pulse width became longer in duration (Figure 

4a-c). Although our trends were not always significant, likely due to being underpowered, this result is 

expected based on known charge-duration curves (Durand, 2006; Merrill et al., 2005). Clinical studies of 

DRG stimulation have reported mean pulse widths of approximately 300 µs (Deer et al., 2017; Graham et 
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al., 2019; Kent et al., 2018; Liem et al., 2013) with the median pulse width decreasing to 255 µs at one year 

post-implant to reduce paresthesias (Deer et al., 2019). Our data suggest that it may be worthwhile to 

explore even shorter pulse widths clinically, as they may achieve comparable levels of Aβ fiber recruitment 

at lower charge levels. This is consistent with findings reported from a computational modeling study of 

DRG stimulation (Graham et al., 2020). Reducing charge delivery would also extend the battery life of DRG 

implants.  

Although only a small number of EIS measurements were performed in this study, the results 

indicate that the impedances of Injectrodes were lower than the stainless steel electrode (Figure 8a-b), 

which is likely due to the larger surface area and porosity of the Injectrode. The 1 kHz impedance of the 

Injectrodes was below 1 kΩ, which is consistent with the benchtop data (Trevathan et al., 2019). The high-

frequency impedances were similar for the stainless steel electrode and the Injectrodes before stimulation. 

This result is to be expected since the high frequency spectra indicate the component of the impedance 

due to the electrolyte resistance (Cogan, 2008; Dalrymple, 2021), which in this case is the same tissue and 

saline environment. The low-frequency impedances are dominated by the properties of the electrode-tissue 

interface and demonstrate the standard constant phase element behaviour of solid metal electrodes 

(Cogan, 2008; Dalrymple et al., 2019; Lempka et al., 2009; Lisdat and Schäfer, 2008). The Injectrodes have 

a lower impedance that is more resistive and less capacitive than the stainless steel electrode, indicated 

by the lower impedance magnitude and an impedance phase that is closer to zero degrees. This is 

advantageous because it shows that the Injectrodes have less electrode polarization, or charge 

accumulation (Dalrymple et al., 2019). Pt electrodes, which are more clinically-relevant, also exhibit more 

capacitive behaviour at low frequencies, indicated by a phase closer to -90°. This behaviour has been 

reported in several in vivo studies using Pt electrodes, in which the low frequency (1 Hz) impedance phase 

was approximately -66° (Shepherd et al., 2021) and the 100 Hz impedance phase ranged from -56° to -72° 

(Dalrymple et al., 2020a, 2020b; Shepherd et al., 2021). This is similar to how the stainless steel electrode 

behaved here, suggesting that the Injectrode may also accumulate less charge than a Pt electrode. 

However, a direct comparison must and will be done in the future. The small low-frequency impedances of 

the Injectrodes are likely due to the porosity of the silicone matrix, making the silver particles more 

accessible to the ions in the electrolyte/tissue (Ludwig et al., 2006; Trevathan et al., 2019). The more 
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resistive impedance is also characteristic of silver electrodes, which form silver chloride during stimulation 

(Trevathan et al., 2019).  

The EIS traces for the three different Injectrodes following stimulation were similar across the 

frequency spectra (Figure 8c-d). This result is especially interesting for two reasons. First, each of these 

Injectrodes were delivered through a burr hole in the lamina. Therefore, we had no control over the shape 

and distribution of the Injectrode material within the intraforaminal space; only the volume of Injectrode was 

held constant. Secondly, EIS was recorded after stimulation was completed. The Injectrodes were 

implanted between 6 and 11 hours prior to the EIS recordings, and they were stimulated intermittently within 

that time. This result indicates that, at least in the acute setting, repeated stimulation through the Injectrode, 

and interaction with the tissue over several hours, does not induce a measurable change in the electrical 

properties of the Injectrode or its ability to stimulate nerve fibers. 

 

Limitations, Relevance, and Translation to Humans  

ECAPs were recorded from the peripheral nerves in response to DRG stimulation in anaesthetized cats. 

Cats were chosen as a model because they are a common model for DRG stimulation, particularly by our 

group (Ayers et al., 2016; Fisher et al., 2014; Gaunt et al., 2009; Nanivadekar et al., 2019). Clinical 

stimulation typically uses a bipolar configuration, where two contacts are placed to straddle the DRG (Deer 

et al., 2019). We utilized monopolar stimulation to first ensure that DRG stimulation was possible with the 

Injectrode, and future iterations will include more flexibility with contact configurations. Nonetheless, our 

results showing that Aα and Aβ fibers exhibit the lowest thresholds for activation, which is consistent with 

previous findings using computational models (Bourbeau et al., 2011; Chao et al., 2020; Graham et al., 

2019, 2020; Kent et al., 2018).  

At ECAP threshold, the majority of responses were identified in the sciatic and tibial nerves. Despite 

the tibial and common peroneal nerves being distal branches of the larger sciatic nerve, ECAPs were not 

always detected in the sciatic nerve when detected in the smaller branches. This result has been reported 

previously and it likely occurs because the sciatic nerve is larger, making it more difficult to detect responses 

in smaller nerve fibers using the nerve cuff electrode (Ayers et al., 2016). We detected more than three-

quarters of Aα ECAPs at threshold in either the tibial or sciatic nerve, while the remaining ECAPs were 
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detected across all nerves (Fig. 6b). Responses in Aβ fibers were spread across all nerves, but less than 

10% of ECAPs were identified only in the common peroneal at threshold (Fig. 6b). Similar to our findings, 

at threshold, Aα ECAP responses from a prior study using epineural stimulation of the L6 and L7 DRG were 

most often present in the sciatic and tibial nerves, both individually and in combination (Nanivadekar et al., 

2019). Anatomical differences between the tibial and common peroneal nerves likely explain their varying 

patterns of activation by DRG stimulation. The tibial nerve is much larger than the common peroneal nerve, 

containing many more axons and thus increasing the likelihood of activation during stimulation (Apaydin 

and Bozkurt, 2015). The tibial nerve innervates the muscles and skin of the calf, lower leg, and foot, and 

plays a critical role in ankle control and stability during standing and walking (Akazawa et al., 1982; Capaday 

and Stein, 1986; Konradsen et al., 1993). Therefore, proprioceptive information (relayed by Aα fibers) from 

the ankle is important and may explain the prevalence and ease of detection of Aα ECAPs from the tibial 

nerve. The tibial and common peroneal nerves innervate the heel and dorsum of the foot, respectively. 

Mechanosensation from the foot, innervated by the tibial and common peroneal nerves, plays a large role 

in modulating gait and reflexive responses to perturbations (Van Wezel et al., 1997; Zehr et al., 1997). This 

anatomy may explain why we were able to detect ECAPs from Aβ fibers at threshold in each of the nerves 

(Bear et al., 2007). 

The mechanisms of pain differ between males and females, as do their responses to therapies 

(Bartley and Fillingim, 2013; Catuneanu et al., 2019; Fillingim et al., 2009; Mogil, 2012). In the current study, 

all experiments were performed in male cats. We aimed to compare the recruitment properties of DRG 

stimulation using the Injectrode or a stainless steel electrode, which did not require us to evaluate a model 

of neuropathic pain. In the future, as we seek to validate the Injectrode in models of neuropathic pain, we 

will use both male and female animals.  

We demonstrated that the Injectrode can be delivered onto the DRG using a needle and syringe. 

We were able to successfully target the DRG by injecting the Injectrode into a burr hole made in the lamina. 

We were able to identify the location of the DRG by using the exposed contralateral DRG as a guide, 

assuming symmetry about the spinal cord. However, fluoroscopic guidance could also be used to locate 

the target DRG, as is the standard practice for implanting electrodes for SCS and DRG stimulation. The 

burr hole exposure worked well for targeting the lumbar DRG in the cats because their DRG are close to 
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the spinal canal and lie almost parallel to the spinal cord. Depending on the spinal level, the DRG in humans 

can lie either inside the spinal canal (sacral) or in the intraforaminal space (lumbar) (Haberberger et al., 

2019; Kikuchi et al., 1994). We are currently exploring alternative Injectrode delivery approaches for 

translation to humans, including a transforaminal approach similar to what is used for steroid injections 

(Rivera, 2018). This type of approach has also been proposed as a method to locate the optimal DRG level 

using radio frequency stimulation (Hunter et al., 2017; Zuidema et al., 2014) and is used to target the sacral 

DRG (Deer et al., 2019). Additionally, one study has reported the use of a DRG stimulation system 

(StimWave Inc., Pompano Beach, FL, USA) implanted transforaminally in 11 subjects at the L1 to L5 DRG 

levels (Weiner et al., 2016). A transforaminal approach may be simpler than the current surgical approach 

for implanting DRG stimulation leads, as it would not require steering of the leads outside of the cannula 

into the foramen (Caylor et al., 2019; Deer et al., 2013; Liem, 2015).  

The formulation of the Injectrode employed in this study had silver particles mixed within a polymer. 

In large quantities, silver and silver compounds are neurotoxic (Drake and Hazelwood, 2005; Lansdown, 

2007). However, silver is a cost-effective conductive material, and was used in this proof-of-concept study 

to demonstrate that (i) the Injectrode can easily be delivered onto the DRG using a burr hole method; (ii) 

the Injectrode can effectively excite primary afferent neurons in the DRG; and (iii) the Injectrode has similar 

recruitment properties as a cylindrical stainless steel electrode. While clinical DRG leads are designed for 

chronic stimulation and made of platinum, which offers superior corrosion resistance (Cogan, 2008; 

Harnack et al., 2004; Stevenson et al., 2010; Wellman et al., 2018) and higher charge storage capacity 

(Merrill et al., 2005), the custom stainless steel electrode used in this study exhibited low impedance and 

stable performance over the relatively short duration of this study. Stainless steel electrodes are frequently 

used in electrical stimulation studies (Babb and Kupfer, 1984; Desai et al., 2014; Gordon et al., 2010; 

Popovic et al., 1991; Walter et al., 1993) because they are an effective alternative to more expensive metals 

used in clinical leads that are implanted chronically (ex. platinum).  

Silver and other metallic particles, including gold and carbon black, are commonly used in the 

development of soft and flexible electronics (Araki et al., 2011; Cong and Pan, 2009; Larmagnac et al., 

2014; Minev et al., 2015; Niu et al., 2007). In preparation for chronic studies, and the eventual translation 

to human implants, we are exploring other Injectrode formulations that use gold or platinum particulates, as 
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well as other Injectable electrode designs that are wire-based, which would be easier to remove if needed. 

Gold or platinum are more appropriate than silver for chronic implants because they are biocompatible and 

are less likely to elicit a strong tissue response (Wellman et al., 2018). A strong tissue response would 

increase the impedance at the electrode-tissue interface, thereby requiring more charge injection to 

effectively stimulate the neural target (Cogan, 2008; Dalrymple, 2021; Dalrymple et al., 2020a). The 

Injectrode design is promising for chronic use as it conforms to the tissue around it, limiting the potential for 

compression of nearby structures, like the DRG, as compared to stiffer electrode leads currently used for 

DRG stimulation. In-body curing polymers are being explored for other uses as well, including for aneurysm 

grafts but have been limited to in vitro and human ex vivo studies (Bosman et al., 2010; van der Steenhoven 

et al., 2012). Other types of injectable electrodes are also under investigation in animal models, such as an 

injectable mesh electronic probe used to record neural activity from the rat basal ganglia (Schuhmann et 

al., 2017). Collectively, the recent developments towards soft, flexible, in-body curing electrodes aim to 

reduce the invasiveness and stiffness of implanted electrodes and, ultimately, reduce the biotic reactions 

and extend the lifetime of neural interfaces. So far, the Injectrode has been used to stimulate the brachial 

plexus in rats and the swine vagus nerve (Trevathan et al., 2019), and now, the feline DRG. Our studies 

demonstrate that the Injectrode has a wide range of potential uses in the field of neurostimulation. An 

improvement to the Injectrode design that is currently underway includes wireless stimulation, which will 

reduce the invasiveness and allow more flexibility with programming and power supply upgrades.  

Further success of the Injectrode for neurostimulation applications can be achieved by creating a 

multi-contact Injectrode. Typically, DRG stimulation utilizes bipolar stimulation, where the best results occur 

when two electrode contacts straddle the DRG (Deer et al., 2019; Eldabe et al., 2015; Graham et al., 2019) 

due to maximal Aβ fiber activation (Graham et al., 2020). Furthermore, multi-contact electrode arrays allow 

for more options for electrode selection and target areas over the neural target. This capability is especially 

useful for expanding the use of the Injectrode to other neuromodulatory applications, such as SCS, and will 

be explored in future work.  

 

CONCLUSIONS 
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We stimulated the feline L6 and L7 DRG with either the Injectrode or a cylindrical stainless steel electrode 

to evaluate the Injectrode as an effective device for DRG stimulation. We exposed the DRG via a partial 

laminectomy or a burr hole. Overall, DRG stimulation using the Injectrode had a similar or lower threshold 

to evoke compound action potentials in Aα, Aβ, Aδ fibers than a cylindrical stainless steel electrode; 

thresholds increased as pulse width increased. Thresholds for the Injectrode were consistent over several 

hours and thousands of stimuli. The rates of recruitment for Aα and Aβ fibers were not different between 

the Injectrode and stainless steel electrodes and generally decreased as pulse width increased. Injectrodes  

had lower or similar impedances relative to the stainless steel electrode across frequency spectra that were 

consistent after stimulation, despite having cured with slightly different conformations following injection 

through the burr hole. The Injectrode is less-stiff than traditional DRG electrodes and can conform to the 

shape of the implant target and surrounding cavity. These properties may improve the recruitment of Aβ 

fibers and enhance the stability of DRG stimulation to provide pain relief to patients suffering from chronic 

pain.  
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FIGURES 
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Figure 1. Experimental setup. (a) Exposure of dorsal root ganglion (DRG) by either a partial laminectomy 

or a burr hole. Inset: Injectrode delivered through a burr hole over the DRG. (b) An Injectrode or a stainless 

steel electrode were placed on top of a DRG for delivering stimulation. Antidromic evoked compound action 

potentials were recorded using spiral nerve cuffs placed on the sciatic, tibial, and common peroneal nerves. 

Inset: five-contact nerve cuff placed on sciatic nerve. Cuff contacts were 4 mm apart. Gray nerve cuff 

contacts (1, 3, 5 for sciatic or 1, 3 for tibial and common peroneal) were shorted together and used as a 

reference. Green nerve cuff contacts (2, 4 for sciatic or 2 for tibial and common peroneal) were used for 

recording. P= proximal; D = distal. Inset: Scaled illustration of the stainless steel electrode and Injectrode. 

 

 

Figure 2. Calculating conduction velocity. Evoked compound action potentials (ECAPs) from the proximal 

(P Sci; contact 2) and distal (D Sci; contact 4) recording sites on the sciatic nerve cuff were aligned to the 

stimulation onset (arrow). The stimulation artefact was blanked in the region shown by the hashed bar. The 

time difference between the peaks of each ECAP was measured (dt). The two recording electrodes in the 

nerve cuff were 8 mm apart. That distance, along with dt, were used to calculate the conduction velocity of 

the first ECAP. Then, that conduction velocity and the latency of the first ECAP were used to calculate the 
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distance between the stimulation and recording sites. Finally, the distance between the stimulation and 

recording sites, and the latency of the second ECAP, were used to determine the conduction velocity of the 

second ECAP.  
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Figure 3. DRG stimulation evoked responses in primary afferents. (a) Examples of evoked compound action 

potentials (ECAPs) for Aα, Aβ, and Aδ fibers (highlighted). The stimulation onset is indicated by an arrow 

and the artefact was blanked (indicated by the hashed region). The ECAPs from the Aα and Aβ fibers are 

scaled according to the left y-axis; the ECAP from the Aδ fiber is scaled according to the right y-axis; the 

change in scales is indicated by the vertical dashed gray line (~5 seconds). (b) Stimulation thresholds 

required to elicit ECAPs from Aα, Aβ, and Aδ fibers using either the stainless steel (SS) electrode or the 

Injectrode (Inj). *p ≤ 0.05; ***p ≤ 0.001. ≡30 indicates that the thresholds of the Injectrode were equivalent 

to the thresholds of the stainless steel electrode within a ±30% window.  
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Figure 4. Stimulation thresholds to elicit evoked compound action potentials (ECAPs) for the L6 and L7 

DRG for (a) Aα, (b) Aβ, and (c) Aδ fibers, across pulse widths. *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001. NS = not 

significant.  
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Figure 5. Stimulation thresholds to elicit evoked compound action potentials using the stainless steel (SS) 

electrode or the Injectrode (Inj) over time (2 to 10.5 hours) for (a) Aα and (b) Aβ fibers. NS = not significant. 

≡35 and ≡40 indicate that the later thresholds were equivalent to the early thresholds within a ±35% and 

±40% window, respectfully. 
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Figure 6. Detection of evoked compound action potentials (ECAPs) from primary afferents using both 

electrode types. (a) Proportion of ECAPs from each primary afferent (Aα, Aβ, and Aδ) at the maximum 

stimulation amplitude (just below the motor threshold; solid) and at half-max (the stimulation amplitude mid-

way between threshold and the maximum; horizontal bars). (b) Proportion of Aα, Aβ, and Aδ thresholds 

that were detected at each nerve. Tib = tibial nerve; CP = common peroneal nerve; Sci = sciatic nerve. 

Where the circles intersect and overlap, the response at threshold were detected simultaneously on multiple 

cuff electrodes. 
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Figure 7. Recruitment properties of the evoked compound action potentials (ECAPs). (a) Recruitment 

curves for Aα and Aβ fibers showing the peak-to-peak amplitude of the ECAPs as a function of stimulation 

charge, for the stainless steel (SS) electrode and Injectrode (Inj) and across stimulation pulse widths. 

Representative data are from cat D, L6. (b) The rate of recruitment is the slope of the linear region of the 

recruitment curve. For each condition, the slope was normalized to the slope from the stainless steel 

electrode at 300 µs (black). *p ≤ 0.05; NS = not significant.  
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Figure 8. Electrochemical impedance spectroscopy. Impedance magnitude (a) and phase (b) for the 

stainless steel electrode and Injectrodes (from cats C and D) before stimulation. Impedance magnitude (c) 

and phase (d) for three different Injectrodes (cat D) after stimulation.  
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