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ABSTRACT 19 

Bacterial pathogens that cannot be identified using matrix-assisted laser desorption/ionization 20 

time-of-flight mass spectrometry (MALDI-TOF MS) are occasionally encountered in clinical 21 

laboratories. The 16S rRNA gene is often used for sequence-based analysis to identify these 22 

bacterial species. Nevertheless, traditional Sanger sequencing is laborious, time-consuming and 23 

low-throughput. Here, we compared two commercially available 16S rRNA gene sequencing 24 

tests, which are based on Illumina and Nanopore sequencing technologies, respectively, in their 25 

ability to identify the species of 172 clinical isolates that failed to be identified by MALDI-TOF 26 

MS. Sequencing data were analyzed by respective built-in analysis programs (MiSeq Reporter 27 

Software and Epi2me) and BLAST+ (v2.11.0). Their agreement with Sanger sequencing on 28 

species-level identification was determined. Discrepancies were resolved by whole-genome 29 

sequencing. The diagnostic accuracy of each workflow was determined using the composite 30 

sequencing result as the reference standard. Despite the high base-calling accuracy of Illumina 31 

sequencing, we demonstrated that the Nanopore workflow had a comparatively higher taxonomic 32 

resolution at the species level. Using built-in analysis algorithms, the concordance of Sanger 16S 33 

with the Illumina and Nanopore workflows was 33.14% and 87.79%, respectively. The 34 

agreement was 65.70% and 83.14%, respectively, when BLAST+ was used for analysis. 35 

Compared with the reference standard, the diagnostic accuracy of optimized Nanopore 16S was 36 

96.36%, which was identical to Sanger 16S and was better than Illumina 16S (71.52%). The 37 

turnaround time of the Illumina workflow and the Nanopore workflow was 78h and 8.25h, 38 

respectively. The per-sample cost of the Illumina and Nanopore workflows was US$28.5 and 39 

US$17.7, respectively. 40 

 41 
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 42 

INTROUDUCTION 43 

Traditionally, clinical microbiology laboratories have relied on phenotypic methods to identify 44 

bacterial pathogens. However, conventional biochemical tests are labor-intensive and time-45 

consuming, and the results can be ambiguous when two species share similar biochemical 46 

profiles (1, 2). Nowadays, matrix-assisted laser desorption/ionization time-of-flight mass 47 

spectrometry (MALDI-TOF MS) is widely used for bacterial identification in clinical 48 

laboratories (3). MALDI-TOF MS allows rapid identification of microorganisms by comparing 49 

the mass spectrum of a sample with the reference spectra in the database (4). Although MALDI-50 

TOF MS is a rapid, simple and high-throughput technology for bacterial identification, some 51 

species cannot be well differentiated due to high similarity in the mass spectra of closely related 52 

species or lack of reference spectra (5).  53 

A study from Lau et al. reported that MALDI-TOF MS failed to determine the species of over 54 

70% of phenotypically “difficult-to-identify” bacteria in clinical laboratories(6). In general, 55 

anaerobes, particularly Actinomyces spp., Peptostreptococcus spp., Prevotella spp. and 56 

Fusobacterium spp. (7-9), have a higher failure rate compared with aerobes in bacterial 57 

identification using MALDI-TOF MS (7, 10). Additionally, some Gram-positive aerobes, such 58 

as Nocardia spp. and Streptomyces spp., are poorly identified by MALDI-TOF MS (7, 11). 59 

Regarding Gram-negative aerobes, studies show that MALDI-TOF MS cannot effectively 60 

identify Acinetobacter spp., Chryseobacterium spp. and Moraxella spp. at the species level (11, 61 

12). In such cases, 16S sequencing of cultured isolates is commonly used for species-level 62 

identification. 63 
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Sanger sequencing offers a high base-calling accuracy, but it is laborious and time-consuming 64 

with limited throughput (13). High-throughput sequencing (HTS) technologies have been 65 

proposed as alternatives to generate 16S sequences for rapid identification of bacteria that are of 66 

clinical interest. Next-generation sequencing (NGS), such as can be achieved using Illumina 67 

platforms, can generate vast quantities of accurate sequencing reads. However, the read length is 68 

limited and insufficient to cover the entire 16S rRNA gene. According to the official workflow 69 

for 16S rRNA sequencing developed by Illumina Ltd., bacteria are identified based on variable 70 

regions (V3 and V4) of 16S. Nevertheless, these regions are not equally discriminative between 71 

and across different species, genera and families (14). 72 

The MinION device by Oxford Nanopore Technologies (ONT) enables generation of reads 73 

exceeding 30 kb. The official 16S rRNA sequencing assay allows the entire 16S rRNA gene to 74 

be sequenced with real-time data analysis. Recent studies have demonstrated its potential for 75 

rapid bacterial identification; however, the high read-error rate (8%–15%) of this platform might 76 

hinder the accuracy of species-level identification for diagnostic purposes (15). 77 

Considering the respective limitations of Illumina and Nanopore technologies, a comprehensive 78 

investigation of the clinical utility of these 16S rRNA sequencing approaches for bacterial 79 

identification is required. This study aimed to evaluate the performance of two commercial HTS 80 

workflows for 16S rRNA sequencing, namely the 16S Metagenomic Sequencing Library 81 

Preparation workflow (Nextera XT Index kit v2) from Illumina and the 16S Barcoding Kit 1-24 82 

(SQK-16S024) from ONT, coupled with the respective built-in analysis programs and in-house 83 

BLAST+ (v2.11.0) analysis. These workflows were used to identify bacterial isolates that could 84 

not be differentiated by MALDI-TOF MS. In light of the complexities of evaluating diagnostic 85 

accuracy in the absence of a perfect gold standard, we considered a composite 16S rRNA 86 
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sequencing result inferred by Sanger and the two HTS platforms as a reference standard. In case 87 

of disagreement in taxa inferred by the three sequencing platforms, whole-genome sequencing 88 

(WGS) was conducted to confirm the bacterial identities. In addition, the cost and time-to-result 89 

of the sequencing workflows were also compared. 90 

 91 

MATERIALS AND METHODS 92 

Sample collection and preparation 93 

A total of 172 clinical isolates from 117 species were collected from the clinical microbiology 94 

laboratory of Pamela Youde Nethersole Eastern Hospital. Clinical isolates were included if they 95 

failed to be classified at the species level (score < 2.00) by the IVD MALDI Biotyper (Bruker 96 

Daltonics, Bremen, Germany). Failure to identify bacterial species occurred due to (i) lack of a 97 

reference spectrum in the database (81 samples); (ii) inclusion of certain species in the 98 

“dangerous database,” named Security Library 1.0, rather than the regular database (two 99 

samples); or (iii) poor-quality samples (89 samples) (Table S1). The IVD MALDI Biotyper used 100 

in this study was microflex
®

 (Bruker Daltonics), and the database version was BD-6763. 101 

Total nucleic acid was extracted from clinical isolates using the AMPLICOR
®

 Respiratory 102 

Specimen Preparation Kit (Roche, Basel, Switzerland) and purified with 1.8X AMPure XP beads 103 

(Beckman Coulter, California, USA). Purified DNA was diluted to targeted concentrations in 104 

subsequent sequencing workflows. The required DNA input for the Illumina and Nanopore 105 

workflows was 12.5 ng and 10 ng, respectively. 106 

 107 

Sanger 16S rRNA sequencing (Sanger 16S)  108 
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The full-length 16S rRNA gene was amplified using primers for 16s_008F (5´-109 

AGAGTTTGATCMTGGC-3´) and 16s_1507R (5´-TACCTTGTTACGACTT-3´) (16). The 110 

reaction mixture was prepared by mixing 36.7 µl of nuclease-free water, 5 µl of 10× polymerase 111 

chain reaction (PCR) buffer, 1 µl of 10-mM deoxynucleoside triphosphate mix (NEB, Ipswich, 112 

Massachusetts, USA), 1 µl of each 25-µM primer, 0.3 µl of HotStarTaq Plus DNA Polymerase 113 

(Qiagen, Hilden, Germany) and 5 µl of DNA template. The PCR conditions were 96°C for 8 114 

min, 37 cycles at 94°C for 1 min, 37°C for 2 min and 72°C for 2 min 30 s, followed by 72°C for 115 

10 min, and a hold step at 4°C. PCR products were purified using ExoSAP-IT reagent (Thermo 116 

Fisher Scientific, Waltham, MA, USA) and then passed to the subsequent cycle sequencing using 117 

eight sequencing primers (17-19) (Table S2). The reaction mixture consisted of 13 µl of 118 

nuclease-free water, 1 µl of BigDye
®

 Terminator v3.1 Ready Reaction Mix (Thermo Fisher 119 

Scientific), 3.5 µl of 5× sequencing buffer, 1 µl of 3.2-µM primer and 1.5 µl of purified PCR 120 

product. The PCR conditions were 96°C for 1 min, 25 cycles at 96°C for 10 sec, 37°C for 30 sec 121 

and 60°C for 4 min, followed by a hold step at 4°C. The sequencing products were purified using 122 

75% isopropanol and resuspended in 12 µl of Hi-Di
™

 Formamide (Thermo Fisher Scientific). 123 

After loading on the Applied Biosystems
®

 3130 Genetic Analyzer (Thermo Fisher Scientific), 124 

the resulting raw trace files were analyzed using the Staden Package (v2.0.0b11). The consensus 125 

sequence of each sample was classified by submitting a Basic Local Alignment Search Tool 126 

(BLAST) query against the 16S ribosomal RNA sequence database.  127 

 128 

Illumina sequencing (NGS 16S) 129 

Library preparation. Libraries were constructed according to the 16S Metagenomic Sequencing 130 

Library Preparation workflow from Illumina. Briefly, the 16S V3 and V4 regions of samples 131 
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were amplified in the first stage of PCR using the primers suggested in the workflow, which 132 

were 16S Amplicon PCR Forward Primer (5´-133 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3´) and 134 

16S Amplicon PCR Reverse Primer (5´-135 

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-136 

3´). The underlined bases in the primer sequences are the overhang adapter sequences for 137 

attachment of the indexed adapters in the second stage of PCR. The size of the amplicon was 138 

approximately 460 bp. After a post-PCR clean-up, a unique indexed sequencing adapter was 139 

added to each sample using the Nextera XT Index kit v2 (Illumina, San Diego, California, USA). 140 

Then, a second post-PCR clean-up was performed, followed by a qualification check of the 141 

purified libraries. 142 

Quantification and sequencing. The size of each library was measured using the 2100 143 

Bioanalyzer system (Agilent, Santa Clara, CA, USA) and the High Sensitivity DNA kit 144 

(Agilent). The quantity of the libraries was measured by real-time PCR using the LightCycler
®

 145 

480 Instrument II (Roche) and QIAseq
™

 Library Quant Assay Kit (Qiagen). Then, the libraries 146 

were diluted to 4 nM and pooled into one tube. After denaturation with 0.2-N NaOH, the pooled 147 

library was diluted to 9 pM and spiked with 15% of 9-pM PhiX prepared from PhiX Control Kit 148 

v3 (Illumina). The pooled library was then loaded on the MiSeq sequencer (Illumina) for 149 

sequencing using MiSeq Reagent Kits v3 (Illumina). The sequencing time was 56 h. 150 

On-instrument data analysis. Sequencing data were analyzed using MiSeq Reporter software 151 

(v2.6.2.3) (MSR) in the MiSeq system. After selecting the metagenomics workflow, sequencing 152 

reads were mapped against reference sequences in the Greengenes database (v13.5, May 2013) 153 
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(http://greengenes.lbl.gov/) for classification. The classification of reads at seven taxonomic 154 

levels from kingdom to species was analyzed in this workflow.  155 

Data analysis using NGS_BLAST+. The paired-end reads of each sample were merged using 156 

the “make.contigs” command in Mothur (v1.44.3) (20). The reads were filtered using the 157 

“screen.seqs” command. Sequences smaller than 400 bp, larger than 500 bp, or with any 158 

ambiguous bases were removed. The resulting fasta files were analyzed by BLAST+ (v2.11.0) 159 

using an in-house Python script 160 

(https://github.com/siupenyau/Pocket_16S/tree/7d3fa9d73a6a35afb47e40e7850cef72b4b91a22). 161 

In brief, the reads were aligned to the reference sequences in the 16S ribosomal RNA database 162 

(https://ftp.ncbi.nlm.nih.gov/blast/db/) downloaded from the National Center for Biotechnology 163 

Information (NCBI). The percentage identity and percentage query coverage were set at 90%.  164 

 165 

Nanopore sequencing (Nanopore 16S) 166 

Library preparation and sequencing. Library preparation was performed using the 16S 167 

Barcoding Kit 1-24 (SQK-16S024) from ONT according to the manufacturer’s protocol. 168 

Libraries were quantified using the Qubit 2.0 Fluorometer (Thermo Fisher Scientific) with the 169 

Qubit
™

 1X dsDNA HS Assay Kit (Thermo Fisher Scientific). Then, 24 barcoded libraries were 170 

pooled into one tube in equal concentrations. After ligation with the rapid adapter, sequencing 171 

was performed using the flow cell FLO-MIN106 R9.4.1 with the MinION sequencer on the 172 

MinKNOW platform for approximately 4 h. 173 

On-instrument real-time data analysis. During sequencing, the passed fastq files, which had a 174 

quality score of >7, were uploaded on the cloud-based data analysis platform Epi2me for 175 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 17, 2021. ; https://doi.org/10.1101/2021.08.16.456588doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.16.456588


analysis. Sequencing reads were aligned to reference sequences in the NCBI 16S bacterial 176 

database using the FASTQ 16S workflow (v2020. 04. 06). Regarding the workflow parameters, 177 

the minimum QSCORE was set at 7, while the minimum percentage coverage and minimum 178 

percentage identity were set at 90%. 179 

Data analysis using NanoBLAST+. In addition to Epi2me, sequencing data were analyzed using 180 

BLAST+ (v2.11.0), similar to the analysis of NGS data. As each sample generated multiple fastq 181 

files in a sequencing run, the fastq files of each sample were first merged into a single fastq file 182 

and then converted to a fasta file before being aligned to reference sequences in the database. 183 

Data analysis using NanoCLUST. Samples with disagreement between EPI2ME and 184 

NanoBLAST+ were further analyzed using another pipeline, NanoCLUST 185 

(https://github.com/genomicsITER/NanoCLUST) (21). Unlike Epi2me and NanoBLAST+, 186 

NanoCLUST does not classify individual reads in a sample. Instead, NanoCLUST forms clusters 187 

of similar reads and classifies the consensus sequence of each cluster. 188 

Whole genome sequencing (WGS) 189 

Samples with complete discordant taxa, as inferred by Sanger 16S, NGS 16S and Nanopore 16S 190 

tests, were subjected to WGS to confirm the definite identities using the ONT platform. Library 191 

preparation was performed using the transpose-based rapid barcoding kit (SQK-RBK110.96) 192 

according to the manufacturer’s protocol. After pooling and adapter ligation, the library was 193 

loaded on the flow cell FLO-MIN106 R9.4.1 and sequenced using the GridION device for 48 h 194 

in high-accuracy base calling mode. The passed fastq files were uploaded to Epi2me and 195 

analyzed using the WIMP workflow (v2021.03.05). 196 

De novo assembly for WGS datasets 197 
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Sequencing reads of each sample were assembled using Shasta (v0.7.0) 198 

(https://github.com/chanzuckerberg/shasta). Sequencing reads were re-aligned to the assembled 199 

consensus sequences using minimap2 (v2.17-r941) and samtools (v1.10). Consensus sequences 200 

were first polished using MarginPolish (v1.3.dev-5492204) (https://github.com/UCSC-nanopore-201 

cgl/MarginPolish) and then further polished using homopolish (v0.2.1) 202 

(https://github.com/ythuang0522/homopolish) (22). To avoid bioinformatic bias in de novo 203 

assembly, each sample was also subjected to a second analysis pipeline. In brief, the sequencing 204 

reads were assembled using miniasm (v0.3-r179) 205 

(https://github.com/lh3/miniasm/releases/tag/v0.3). All-vs-all read self-mapping was performed 206 

using minimap2. Raw consensus sequences were then generated using miniasm. After re-207 

alignment of the raw reads to consensus sequences using minimap2, the consensus sequences 208 

were polished twice using racon (v1.4.3) (https://github.com/isovic/racon).  209 

The longest polished consensus sequences of each sample were classified using BLAST+ 210 

(v2.11.0) with the Prokaryotic RefSeq Genomes database downloaded from the NCBI. The top 211 

classified species with both query coverage and percentage identity were reported. The average 212 

nucleotide identity (ANI) between the query and best-matched reference genomes was calculated 213 

using an ANI calculator (https://www.ezbiocloud.net/tools/ani) (23). ANI >94% indicated that 214 

the samples belong to the same species as the best-matched genomes. 215 

Data and statistical analysis 216 

The top classified taxa obtained from NGS and Nanopore datasets were compared with those 217 

inferred by Sanger 16S using built-in programs and BLAST+ for analysis. Species-level 218 

concordance between the HTS and Sanger workflows was calculated. For samples that did not 219 

match at the species level, concordance at the genus or family level was determined.  220 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 17, 2021. ; https://doi.org/10.1101/2021.08.16.456588doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.16.456588


To assess diagnostic accuracy, a composite 16S rRNA sequencing result of the three sequencing 221 

platforms was considered as the reference standard. Identical species obtained by at least two 222 

sequencing platforms were considered as reference taxa. For samples with complete discordant 223 

species inferred by the three sequencing platforms, WGS was conducted to confirm the reference 224 

taxa.  225 

 226 

  227 
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RESULTS 228 

Statistics of sequencing reads generated from the NGS and Nanopore workflows 229 

Based on the default analysis of MSR, the NGS platform generated an average of 113,381 reads 230 

per sample. After merging the paired-end reads and filtering out unwanted reads with undesired 231 

read lengths and ambiguous bases, an average of 68,652 filtered reads per sample was retained 232 

for NGS_BLAST+ analysis. 233 

The Nanopore MinKNOW platform generated an average of 51,769 reads (QSCORE ≥ 7) per 234 

sample, but an average of 51,419 reads (QSCORE ≥ 7) per sample was analyzed in the FASTQ 235 

16S workflow in Epi2me. The slight difference in the number of average reads per sample was 236 

due to using different algorithms in the demultiplexing step between Epi2me and Guppy 237 

(MinKNOW). An average of 51,769 reads per sample was analyzed using NanoBLAST+. 238 

The total number of reads and the number of classified reads of each sample on both sequencing 239 

platforms are shown in Table S3.  240 

 241 

Taxonomic resolution of sequencing reads 242 

The percentage distribution of classified reads via both sequencing platforms is shown in Figure 243 

1. On average, only 45.74% of the total reads of a sample were successfully classified at the 244 

species level by MSR with reference to the Greengenes database. After merging paired-end reads 245 

and quality filtering, 94.02% of filtered reads were classified at the species level by 246 

NGS_BLAST+ with reference to the NCBI 16S rRNA database. 247 
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In the Nanopore workflow, both Epi2me and NanoBLAST+ use the NCBI 16S rRNA database 248 

for classification of long-read sequencing data. An average of 76.03% of total reads were 249 

classified at the species level in Epi2me, compared with 53.56% in NanoBLAST+.  250 

 251 

Concordance in bacterial speciation by Sanger, Illumina and Nanopore 16S rRNA 252 

sequencing  253 

The top-ranked species obtained from the NGS 16S and Nanopore 16S workflows, coupled with 254 

the respective analysis pipelines, are listed in Table S3 The percentage of samples that matched 255 

with Sanger 16S at each of the species, genus and family levels is illustrated in Figure 2. The 256 

concordance in species-level identification among the sequencing platforms is shown in Figure 257 

3. Overall, in terms of concordance with the Sanger 16S result, Nanopore 16S was better than 258 

NGS 16S (154/172 [89.53%] vs. 113/172 [65.70%], respectively), regardless of analysis 259 

pipeline.  260 

For the NGS 16S workflow, MSR and NGS_BLAST+ demonstrated a concordance of 33.14% 261 

(57/172) and 65.70% (113/172), respectively, with Sanger 16S in species-level identification. A 262 

total of 9.30% of samples (16/172) were unmatched, even at the family level, in MSR, whereas 263 

all samples matched at the family level or below in NGS_BLAST+. Of note, concordance 264 

between the results of MSR and NGS_BLAST+ was low; only 32.56% of samples (56/172) 265 

showed a matched result among the classified species from these two analysis pipelines. 266 

Moreover, only 28.49% of samples (49/172) showed complete agreement in the classified 267 

species among the MSR, NGS_BLAST+, and Sanger datasets. Owing to poor concordance of 268 

the MSR analysis with other sequencing methods, NGS_BLAST+ was considered as the optimal 269 
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analysis method for the Illumina datasets, and its results were regarded as the final identification 270 

inferred by the NGS 16S workflow.  271 

For Nanopore 16S, a concordance of 87.79% (151/172) and 83.14% (143/172) at the species 272 

level was achieved with Epi2me and NanoBLAST+, respectively. A total of 1.16% of samples 273 

(2/172) were unmatched, as reported by Epi2me and NanoBLAST+, respectively. Concordance 274 

between the results of Epi2me and NanoBLAST+ was 80.23% (138/172). Additionally, 76.74% 275 

of samples (132/172) showed agreement in the classified species among the Epi2me, 276 

NanoBLAST+ and Sanger datasets. 277 

A total of 34 samples showed disagreement in the classified species inferred by Epi2me and 278 

NanoBLAST+. The respective Nanopore data were further analyzed using NanoCLUST to 279 

resolve the discrepancies. NanoCLUST agreed with Epi2ME and BLAST+ in 13 (38.24%) and 280 

17 (50.00%) samples, respectively. Four samples failed to reach agreement in terms of species-281 

level identification, in which three were matched in terms of genus-level identification, and one 282 

was considered as having no reliable bacterial ID. Concordance between the resolved Nanopore 283 

16S and Sanger 16S was 89.53% (154/172).  284 

 285 

WGS for bacterial isolates with discrepant species-level ID  286 

Eight samples (4.65% [8/172]) showed complete discordance in bacterial species, as inferred by 287 

the three 16S rRNA sequencing workflows. WGS was conducted to identify definite taxa. 288 

Interestingly, seven of these samples failed to match with the published bacterial genomes, with 289 

query coverage of <70% for the longest consensus sequences (Table 1). The ANIs to the best-290 

matched genomes were <85% (Threshold for the same species should be >94%) , suggesting that 291 
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these seven “difficult-to-identify” isolates were likely novel bacterial species. As the definite 292 

bacterial species could not be confirmed, these samples were excluded from the subsequent 293 

diagnostic evaluation.  294 

The consensus sequence of one sample (R062) showed an overall query coverage of >92%, with 295 

99.17% identity to Klebsiella michiganensis (NZ_CP060111.1). As the ANI achieved 98.71%, 296 

K. michiganensis was therefore considered as the reference taxon for this sample.   297 

 298 

Diagnostic accuracy of the three 16S rRNA sequencing workflows 299 

Considering the composite of 16S rRNA sequencing and WGS results as reference standards, the 300 

diagnostic accuracy of Sanger 16S, NGS 16S and Nanopore 16S was 96.36% (159/165), 71.52% 301 

(118/165) and 96.36% (159/165), respectively, for species-level identification of “difficult-to-302 

identify” bacterial pathogens (Figure 3). The mismatched samples in at least one of the 303 

sequencing methods were listed in Table 2.  The diagnostic performance of each sequencing 304 

workflow was summarized in Table 3.   305 

 306 

Comparison of sample-to-report time and running cost of the two HTS technologies 307 

The Illumina platform enables sequencing of up to 384 samples per run, whereas, owing to the 308 

limited choice of sequencing barcodes, the Nanopore platform can only support a batch of 24 309 

samples per run. Without considering the time for DNA extraction, it took 78 h for the Illumina 310 

workflow to generate sequencing data for each run (Figure 4). With the Nanopore platform, the 311 

sequencing workflow required 8.25 h. Of note, although base-calling and Epi2me analyses are 312 
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real-time processes, their speed is highly dependent on the strength of the computer. However, 313 

Nanopore sequencing can be stopped once sufficient reads have been generated.  314 

The running cost of the Nanopore workflow is relatively lower than that of the Illumina 315 

workflow. The cost of the Illumina workflow per sequencing run is US $4,931 (172 samples), 316 

and the cost per sample is approximately US $28.7. If the sample size is increased to 384, the 317 

cost of the Illumina workflow per sequencing run is US $8,279; therefore, the cost per sample is 318 

reduced to US $21.6. For the Nanopore workflow, the cost per sequencing run (24 samples) is 319 

US $424, which means that the cost per sample is approximately US $17.7. 320 

  321 
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DISCUSSION 322 

Although the majority of bacterial pathogens can be identified by MALDI-TOF MS, 16S rRNA 323 

gene sequencing is needed in clinical microbiology laboratories to confirm the identities of 324 

“difficult-to-identify” clinical isolates. With reduced costs, simplified protocols and automated 325 

bioinformatics pipelines, HTS has been proposed as a better alternative to Sanger sequencing for 326 

sequence-based bacterial identification in clinical laboratories. This is the first study to compare 327 

the performance (and evaluate the clinical utility) of two commercially available high-throughput 328 

16S rRNA gene sequencing assays with built-in analysis software for taxonomic assignment of 329 

bacterial pathogens that are unidentifiable using MALDI-TOF MS. 330 

With the Illumina platform, the concordance of the classified species between MSR and Sanger 331 

16S was exceptionally low; only 33.14% of samples matched the reference at top classified 332 

species compared with 65.70% when using NGS_BLAST+. As described in previous studies, the 333 

use of different bioinformatic tools and 16S rRNA sequence databases could result in different 334 

taxonomic assignments, especially at lower taxonomic levels (24, 25). The latest version of the 335 

Greengenes database for MSR was updated in 2013 and does not contain certain new bacterial 336 

taxa, which accounts for the poor agreement of this workflow compared with others (25).  337 

Nevertheless, mismatches between NGS and Sanger sequencing were observed in 34.33% of 338 

samples, even when the same aligner (i.e., BLAST+) and database (i.e., NCBI 16S bacterial 339 

database) were used. One may argue that, with the constraint of low sequencing depth, the 340 

Sanger 16S result alone should not be considered as the final reference. We used a composite of 341 

16S sequencing results generated by three platforms, and any discrepancies were resolved by 342 

WGS as the reference standard to determine the diagnostic accuracy of the HTS workflows. 343 

Eventually, a total of 47 samples, including 29 genera and 37 species (Table S3), remained 344 
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discordant between NGS 16S and the reference standard. As indicated by Johnson et al., 345 

although some sub-regions (e.g., V1–V3) of 16S s rRNA gene provide a reasonable 346 

approximation of 16S diversity, most do not capture sufficient sequence variation to discriminate 347 

between closely related taxa. Also, different sub-regions show bias in the bacterial taxa that can 348 

be identified (26). In this study, V3–V4 regions might perform poorly in classifying the genera 349 

of discordant samples.  350 

Availability of third-generation technologies means that it is becoming possible to exploit the 351 

full discriminatory potential of the entire 16S rRNA gene in a high-throughput manner. The 352 

Nanopore 16S workflow demonstrated a considerably higher percentage concordance with the 353 

Sanger 16S workflow compared with the NGS 16S workflow, regardless of the analysis pipeline 354 

used. In contrast to the built-in analysis on the Illumina platform (i.e., MSR), the performance of 355 

Epi2me with Nanopore 16S was comparable to that of nanoBLAST+ (83.14%), with 87.79% of 356 

samples matching Sanger 16S at top classified species.  357 

Notably, species-level disagreement between Epi2me and nanoBLAST+ was observed in 34 358 

samples (19.77%) and was subsequently resolved by NanoCLUST. Epi2me and BLAST+ rely 359 

on read-by-read alignment to reference sequences in the database. As the base-calling accuracy 360 

of Nanopore sequencing is relatively low, the prevalence of sequencing errors in Nanopore reads 361 

could limit its ability to resolve highly similar sequences. Alternatively, NanoCLUST generates 362 

clusters based on Uniform Manifold Approximation and Projection and classifies the 363 

representative consensus read in each cluster using BLAST. The effect of sequencing errors in 364 

individual sequences can be minimized by forming clusters, which reduces the chance of 365 

misclassification. Comparing the species resolved using NanoCLUST with the reference 366 
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standard, there was a slight improvement in diagnostic accuracy from 89.09% (Epi2me) and 367 

89.70% (nanoBLAST+) to 96.36%.  368 

Six samples (3.64%) failed to match the reference at the species level in the optimized Nanopore 369 

16S workflow. One possible reason for this discordance is the high similarity in 16S rRNA gene 370 

sequences between the inferred species and the reference taxa. Based on the now historic 371 

assumption of 16S rRNA sequencing, sequences with >95% identity represent the same genus, 372 

whereas sequences with >97% identity represent closely related species (27). Many researchers 373 

have reported that the taxonomic resolution of 16S rRNA gene is lower and is unable to 374 

discriminate the closely related species in certain genera, including but not limited to Bacillus, 375 

Burkholderia, Acinetobacter baumannii-calcoaceticus complex, Achromobacter, Actinomyces 376 

and Staphylococcus and the Enterobacteriaceae family (28, 29). In this study, all six taxa inferred 377 

by Nanopore 16S had >97% sequence identity with the reference standard (Table 2).  378 

In this study, WGS was performed to identify the definite bacterial taxa for samples with 379 

completely discordant 16S results. To validate the transposase-based rapid sequencing protocol 380 

for bacterial genome construction, two reference strains, namely Klebsiella pneumoniae 381 

BAA3079 and Staphylococcus aureus BAA3114, were sequenced and analyzed in parallel with 382 

the eight discordant samples. Both strains successfully yielded consensus sequences of >3Mb, 383 

which covered 94% of the genomes of the respective target organisms with 99% identity. This 384 

indicated that the WGS protocol was able to construct reliable consensus prokaryotic genomes 385 

(Table 1). Nonetheless, the longest consensus sequences of the seven discordant samples failed 386 

to obtain a query coverage >50% when mapped to the NCBI Prokaryotic RefSeq Genomes 387 

database, suggesting no significant matches between these samples and published bacterial 388 

genomes. The ANIs to the best-matched genomes were <94%. These “difficult-to-identify” 389 
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isolates were therefore considered as novel bacterial species (30). WGS confirmed that R062 390 

belonged to K. michiganensis (ANI = 98.71%), which shared a high degree of 16S rRNA identity 391 

with the taxa assigned by Sanger 16S (Klebsiella grimontii; 99.20%), NGS 16S (Enterobacter 392 

cloacae; 97.07%) and Nanopore 16S (Yokenella regensburgei; 98.56%) (Table 1). This explains 393 

why 16S rRNA sequencing was not able to accurately differentiate these species.  394 

Considering the time-to-result of the two sequencing platforms, the Nanopore workflow has a 395 

much shorter turnaround time compared with the Illumina workflow (8.25 h and 78 h, 396 

respectively). Therefore, faster results can be obtained with the Nanopore workflow. However, 397 

the sample size is limited to 24 samples per batch. Comparing the cost per sample in a 398 

sequencing run, Nanopore sequencing is relatively cheaper than Illumina sequencing (US $17.7 399 

vs. US $28.6, respectively). Additionally, the startup cost of Nanopore sequencing is remarkably 400 

lower than that of Illumina sequencing. The starter package of Nanopore sequencing costs only 401 

US $1,000, whereas Illumina MiSeq costs approximately US $125,000.  402 

The reusable flow cell FLO-MIN106 R9.4.1, which enables sequencing for up to 72 h, was used 403 

for Nanopore 16S in this study. However, library carry over from previous run was observed in a 404 

pilot study. This is problematic when the same barcode set is used in consecutive sequencing 405 

run. To avoid contamination by library carry over, a new flow cell was used in each sequencing 406 

run, and used flow cells were reserved for other sequencing runs using different barcodes. In this 407 

context, the disposable Flongle flow cell from ONT is more suitable in a clinical setting. The 408 

Flongle flow cell, which costs only US $90, can sequence for up to 16 h. Although the number of 409 

active pores available in the Flongle flow cell is lower, it is more cost- and time-effective when 410 

the sample size is small. Since it takes time to accumulate a batch of 24 “difficult-to-identify” 411 
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isolates in clinical laboratories, a small sample size per sequencing run will be beneficial, 412 

especially for cases that require urgent diagnosis. 413 

There are some limitations in this study that should be noted. First, the aim of this study was to 414 

compare commercially available kits for 16S rRNA gene sequencing from Illumina and 415 

Nanopore. Therefore, by using the 16S Metagenomic Sequencing Library Preparation kit, only 416 

the V3–V4 sub-regions of 16S rRNA gene were sequenced in the Illumina workflow. But it is 417 

possible to sequence full-length 16S rRNA gene using Ilumina MiSeq with a laboratory 418 

developed protocol(31), which may increase the taxonomic resolution of the Illumina workflow 419 

at the species level. Second, except for the eight discordant samples, the reference taxa of 420 

isolates were defined by 16S rRNA sequencing without being confirmed by WGS. However, 421 

some closely related species may have identical 16S rRNA genes; thus, 16S rRNA sequencing 422 

results may not represent the definite taxa of these samples. Third, regarding the eight samples 423 

that underwent WGS, the taxonomic assignment was based on the contigs of consensus 424 

sequences after de novo assembly. Circular, gap-free bacterial genomes were not constructed. 425 

Finally, bacterial DNA for 16S sequencing was extracted from cultured isolates. The 426 

performance of the NGS 16S and Nanopore 16S workflows on direct bacterial identification in 427 

microbial and polymicrobial specimens was not evaluated.  428 

 429 

CONCLUSION 430 

In conclusion, the commercial 16S rRNA gene sequencing workflow from ONT (SQK-16S024), 431 

coupled with NanoCLUST, is the most accurate for bacterial identification in a clinical setting, 432 
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with higher flexibility in sample size and sequencing time, a lower running cost, and higher 433 

concordance with the reference standard. 434 
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Table 1: Whole genome sequencing analysis for the samples with complete discordant taxonomic assiagnment by Sanger, NGS and Nanopore 16s rRNA sequencing   

Sample ID 

Species inferred 

by Sanger 16s 

Species inferred 

by NGS 16s 

Species inferred by 

Nanopore 16s 

Whole genome sequencing (WGS) 

Best-matched Species 

by WGS (reference 

genome) 

Genome assembly method 

Shasta Miniasm 

Query 

coverage 

(%) 

Identity 

(%) 

ANI 

(%)
b
 

Query 

coverage 

(%) 

Identity 

(%) 

ANI 

(%)
b
 

Klebsiella 

pneumoniae 

BAA3079a 

Klebsiella 

pneumoniae 

Klebsiella 

pneumoniae 

Klebsiella     

pneumoniae 

Klebsiella pneumoniae 

(NC_016845.1) 

99 97.00 98.92 92.13 99.40 99.14 

Staphylococcus 

aureus BAA3114a 

Staphylococcus 

aureus 

Staphylococcus 

aureus 

Staphylococcus 

aureus 

Staphylococcus aureus 

(NC_007795.1) 

94.06 99.95 99.30 88.39 99.92 99.23 

R001 Kocuria koreensis

  

Kocuria 

massiliensis 

Kocuria spp. Kocuria massiliensis 

(NZ_LT835161.1) 

42.21 87.44 78.29 42.42 87.41 78.55 

R006 Kocuria koreensis

  

Kocuria 

massiliensis 

Kocuria spp. Kocuria massiliensis 

(NZ_LT835161.1) 

43.04 79.12 78.49 42.04 87.49 78.44 

R062 Klebsiella             

    grimontii  

Enterobacter 

cloacae 

Yokenella    

regensburgei  

Klebsiella michiganensis 

(NZ_CP060111.1) 

92.17 99.17 98.71 86.30 98.99 98.69 

R120 Brachybacterium 

             

conglomeratum  

Brachybacterium 

faecium 

Brachybacterium 

paraconglomeratum 

Brachybacterium 

saurashtrense 

(NZ_CP031356.1) 

62.15 85.18 82.30 62.30 85.12 82.39 

R121 Schaalia               

     odontolytica  

Schaalia 

vaccimaxillae  

Sphingomonas 

paucimobilis 

Schaalia odontolytica 

(NZ_CP046315.1) 

6.07 78.55 70.34 6.04 78.24 70.86 

R131 Schaalia               

     odontolytica  

Schaalia 

vaccimaxillae  

No reliable ID Schaalia odontolytica 

(NZ_CP046315.1) 

6.19 82.12 71.21 6.29 78.25 71.26 

R158 Microbacterium   

            ginsengite

rrae  

Microbacterium 

assamensis 

Microbacterium 

foliorum 

Microbacterium foliorum 

(NZ_CP041040.1 ) 

65.41 84.52 82.24 65.21 84.51 82.15 

R181 Sphingomonas     

             yabuuchi

ae  

Sphingomonas 

paucimobilis 

Sphingomonas 

sanguinis  

Sphingomonas hominis 

(NZ_JABULH01000000

7.1) 

31.48 89.67 82.09 30.68 89.59 81.95 

a Klebsiella pneumoniae BAA3079 and Staphylococcus aureus BAA3114 served as QC sample, which were sequenced and analyzed in parallel with the discordant samples for WGS and 

bioinformatics analysis.  

b Average Nucleotide Identity (ANI) > 94% indicated that the samples belong to the same species as the best-matched genomes.  
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Table 2: The samples with mismatched taxa inferred by at least one sequencing platform  

Sample 

ID  

Species-level ID (Reference 

Standard) 

Sanger Sequencing (Sanger 16s)  Illumina Sequencing (NGS 16s)  Nanopore Sequencing (Nanopore 16s)  

Classified species from Sanger 16s a 16s Identity 

against the 

reference 

(%) 

Classified species from NGS 16s a 16s Identity 

against the 

reference 

(%) 

Classified species from 

Nanopore 16s a 

16s Identity 

against the 

reference 

(%) 

R003 Pseudoglutamicibacter albus Pseudoglutamicibacter cumminsii  99.26% Pseudoglutamicibacter albus matched Pseudoglutamicibacter albus  matched 

R013  Microbacterium hominis Microbacterium hominis  matched Microbacterium aerolatum  97.47%  Microbacterium hominis  matched 

R017  Microbacterium hominis  Microbacterium hominis  matched Microbacterium aerolatum 97.47%  Microbacterium hominis  matched 

R021  Microbacterium hominis Microbacterium hominis  matched Microbacterium aerolatum 97.47%  Microbacterium hominis matched 

R024 Bacillus idriensis Bacillus idriensis matched Bacillus idriensis matched Bacillus indicus 97.62% 

R025  Varibaculum cambriense Varibaculum cambriense  matched Varibaculum anthropi 98.50% Varibaculum cambriense matched 

R026  Varibaculum cambriense Varibaculum cambriense  matched Varibaculum anthropi 98.50% Varibaculum cambriense matched 

R036  Corynebacterium lowii  Corynebacterium lowii  matched Corynebacterium bovis 93.29% Corynebacterium lowii  matched 

R040  Weissella cibaria Weissella cibaria  matched Weissella confusa 99.26% Weissella cibaria matched 

R043  Proteus vulgaris Proteus vulgaris  matched Proteus alimentorum 99.64% Proteus vulgaris matched 

R045  Brucella microti Brucella microti matched Brucella papionis 99.86% Brucella microti matched 

R047  Proteus cibarius Proteus cibarius   matched Proteus terrae 99.65% Proteus cibarius matched 

R049  Dermacoccus barathri Dermacoccus barathri  matched Dermacoccus profundi 99.86% Dermacoccus barathri matched 

R052  Arcanobacterium wilhelmae Arcanobacterium wilhelmae  matched Arcanobacterium pinnipediorum  96.60% Arcanobacterium wilhelmae matched 

R053  Dermacoccus barathri  Dermacoccus barathri  matched Dermacoccus profundi 99.86% Dermacoccus barathri  matched 

R056  Corynebacterium simulans Corynebacterium simulans  matched Corynebacterium glutamicum 93.74% Corynebacterium simulans matched 

R058  Corynebacterium mastitidis Corynebacterium mastitidis  matched Corynebacterium 

tuberculostearicum 

94.67% Corynebacterium mastitidis matched 

R062  Klebsiella michiganensis Klebsiella grimontii  99.20% Enterobacter cloacae 97.07% Yokenella regensburgei  98.56% 

R063  Corynebacterium pilbarense Corynebacterium pilbarense  matched Corynebacterium coyleae  98.04% Corynebacterium pilbarense matched 

R069  Eikenella corrodens Eikenella corrodens  matched Eikenella halliae 98.69% Eikenella corrodens matched 

R071 Corynebacterium xerosis  Corynebacterium hansenii  99.07% Corynebacterium xerosis matched Corynebacterium xerosis matched 

R072  Mycolicibacterium fortuitum Mycolicibacterium fortuitum  matched Mycolicibacterium arcueilense 98.96% Mycolicibacterium fortuitum matched 

R073  Tessaracoccus oleiagri Tessaracoccus oleiagri  matched Tessaracoccus flavescens 95.95% Tessaracoccus oleiagri matched 

R078  Vagococcus teuberi Vagococcus teuberi  matched Vagococcus martis 99.22% Vagococcus teuberi matched 

R079 Corynebacterium xerosis  Corynebacterium hansenii  99.07% Corynebacterium xerosis matched Corynebacterium xerosis matched 

R083  Tessaracoccus oleiagri Tessaracoccus oleiagri  matched Tessaracoccus flavescens 95.95% Tessaracoccus oleiagri matched 

R086 Raoultella planticola Raoultella planticola  matched Raoultella planticola  matched Klebsiella aerogenes 99.06% 

R094 Corynebacterium xerosis  Corynebacterium hansenii  99.07% Corynebacterium xerosis matched Corynebacterium xerosis matched 
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R096  Streptomyces thermodiastaticus  Streptomyces thermodiastaticus  matched Streptomyces thermoviolaceus 98.86% Streptomyces 

thermodiastaticus  

matched 

R097  Pseudoxanthomonas helianthi Pseudoxanthomonas helianthi  matched Pseudoxanthomonas spadix 97.04% Pseudoxanthomonas helianthi matched 

R098 Brachybacterium 

huguangmaarense 

Brachybacterium huguangmaarense  matched Brachybacterium huguangmaarense  matched Brachybacterium nesterenkovii  97.84% 

R104  Gordonia sputi  Gordonia sputi  matched Gordonia otitidis 99.07% Gordonia sputi  matched 

R105  Gordonia sputi  Gordonia sputi  matched Gordonia otitidis 99.07% Gordonia sputi matched 

R108  Staphylococcus saccharolyticus Staphylococcus saccharolyticus  matched Staphylococcus epidermidis 99.19% Staphylococcus 

saccharolyticus 

matched 

R112  Citrobacter sedlakii  Citrobacter sedlakii  matched Citrobacter youngae 98.32% Citrobacter sedlakii  matched 

R116  Tsukamurella tyrosinosolvens Tsukamurella tyrosinosolvens  matched Tsukamurella ocularis 99.86% Tsukamurella tyrosinosolvens matched 

R123 Pseudoglutamicibacter albus Pseudoglutamicibacter cumminsii  99.26% Pseudoglutamicibacter albus matched Pseudoglutamicibacter albus  matched 

R133  Nocardia brasiliensis Nocardia brasiliensis  matched Nocardia vulneris 99.31% Nocardia brasiliensis matched 

R140  Moraxella lacunata Moraxella lacunata  matched Moraxella equi 99.38% Moraxella lacunata matched 

R141  Ottowia beijingensis Ottowia beijingensis  matched Brachymonas denitrificans 93.33% Ottowia beijingensis matched 

R149  Ornithinibacillus californiensis Ornithinibacillus californiensis  matched Ornithinibacillus scapharcae 98.48% Ornithinibacillus californiensis matched 

R151  Dermacoccus barathri Dermacoccus barathri  matched Dermacoccus profundi 99.86% Dermacoccus barathri matched 

R153  Corynebacterium mastitidis Corynebacterium mastitidis  matched Corynebacterium 

tuberculostearicum 

94.67% Corynebacterium mastitidis matched 

R175  Corynebacterium pollutisoli Corynebacterium pollutisoli  matched Corynebacterium humireducens 98.07% Corynebacterium pollutisoli matched 

R176 Tsukamurella ocularis  Tsukamurella ocularis  matched Tsukamurella ocularis  matched Tsukamurella hominis 100.00% 

R178 Acinetobacter soli  Acinetobacter soli  matched Acinetobacter soli  matched Acinetobacter lactucae 97.82% 

R179  Corynebacterium 

lipophiloflavum 

Corynebacterium lipophiloflavum  matched Corynebacterium mycetoides 97.16% Corynebacterium 

lipophiloflavum 

matched 

R180  Corynebacterium mastitidis Corynebacterium mastitidis  matched Corynebacterium 

tuberculostearicum 

94.67% Corynebacterium mastitidis matched 

R182  Fusobacterium nucleatum Fusobacterium nucleatum  matched Fusobacterium canifelinum  98.34% Fusobacterium nucleatum  matched 

R183  Parabacteroides faecis Parabacteroides faecis  matched Parabacteroides chongii  97.15% Parabacteroides faecis matched 

R190  Bacillus xiamenensis  Bacillus xiamenensis  matched Bacillus aerius 97.16% Bacillus xiamenensis  matched 

R192  Corynebacterium pilbarense Corynebacterium pilbarense  matched Corynebacterium ureicelerivorans 98.85% Corynebacterium pilbarense matched 

R204  Prevotella scopos Prevotella scopos  matched Prevotella jejuni  97.41% Prevotella scopos matched 

R205  Pasteurella multocida Pasteurella multocida  matched Pasteurella stomatis 93.74% Pasteurella multocida matched 

R206  Staphylococcus cohnii  Staphylococcus cohnii  matched Staphylococcus auricularis 98.16% Staphylococcus cohnii  matched 

R208  Achromobacter denitrificans Achromobacter denitrificans  matched Achromobacter xylosoxidans 99.15% Achromobacter denitrificans matched 

R210  Bacillus licheniformis Bacillus licheniformis  matched Bacillus piscis  97.37% Bacillus licheniformis matched 

 a The mismatched taxa were underlined.  544 
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Table 3: Diagnostic accuracies of the Sanger, NGS and Nanopore 16s rRNA sequencing methods  

Sequencing method  No. of 

sample 

analyzed  

No. of 

samples with 

matched taxa 

Diagnostic 

Accuracy (%) 

95% CI 

Sanger 16s 165 159 96.36 92.25 - 98.65 

Optimized NGS 16s 
a
 165 118 71.52 63.98 - 78.26 

Analyzed by MSR 165 59 35.76 28.46 - 43.58 

Analyzed by NGS_BLAST+ 165 118 71.52 63.98 - 78.26 

Optimized Nanopore 16s 
b
 165 159 96.36 92.25 - 98.65 

Analyzed by Epi2ME 165 147 89.09 83.31 - 93.41 

Analyzed by NanoBLAST+ 165 148 89.7 84.02 - 93. 88 
a Owing to the poor concordance of MSR with other methods, the NGS_BLAST+ was considered as the 

optimal analysis method for the Illumina datasets 
b The mismatched taxa inferred by Epi2ME and NanoBLAST+ were resolved by NanoCLUST.  
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FIGURE LEGENDS547 

 548 

Figure 1. The boxplots showing the distribution of percentage of classified reads of all samples in (a) 549 

Illumina and (b) Nanopore sequencing. 550 
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 551 

Figure 2. The concordance between bacterial taxa inferred by the two HTS workflows and the Sanger 552 

sequencing. 553 

  554 
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 555 

Figure 3. The Venn Diagram showing the concordance of bacterial taxa inferred by different 16S rRNA 556 

sequencing platforms. (a) Concordance of top classified species between Illumina sequencing, coupled 557 

with MSR and NGS_BLAST+ analysis, and Sanger sequencing. (b) Concordance of top classified 558 

species between Nanopore sequencing, coupled with Epi2ME and nanoBLAST+, and Sanger 559 

sequencing. (c) Concordance of top classified species among Sanger 16S, NGS 16S, Nanopore 16S and 560 

reference standard.  561 
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 570 

 571 

Figure 4. 16S rRNA gene sequencing workflow of the HTS technologies. 572 
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