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Abstract 

Neurogenesis is a complex process encompassing neuronal progenitor cell 

expansion/proliferation and differentiation, followed by neuron maturation. In vivo models are 

most commonly used to study neurogenesis; however, human induced pluripotent stem cell-

derived (iPSC) neurons are increasingly used to establish cellular models of human neurological 

processes.  Unfortunately, the differentiation and maturation of iPSC-derived neurons varies in 

methodology, is asynchronous, and has restricted experimental utility because of extended 

differentiation/maturation times. To accelerate and standardize iPS neuronal maturation, we 

differentiated and matured feeder layer-free iPSC-derived neuronal cultures under physiological 

oxygen levels (5%), and modified the underlying extracellular matrix and medium composition. 

Our results demonstrate that calretinin gene expression occurred earlier under our optimized 

iPS conditions and the corresponding “neurogenesis burst” associated with proliferative 

expansion occurred more synchronously, reliably emerging two and three weeks after 

differentiation. As expected, the expression of mature neuronal markers (i.e., NeuN+/Calbindin+) 

started at 4-weeks post-differentiation. qPCR microarray, western blot and single cell analyses 

using high content imaging indicated that 4-week iPS neuronal cultures were non-cycling with 

decreased expression of cyclin D1 and Ki67.  Our data demonstrate that extracellular cues 

influence the kinetics of neurogenesis models and that feeder layer-free iPSC-derived 

neurogenesis can be reproducibly miniaturized. 
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Introduction 

Neurogenesis is the process by which new neurons are formed, or "born", in the brain 

and it comprises neuronal progenitor cell expansion/proliferation and differentiation followed by 

neuron maturation. Prior to maturation, progenitor cells actively participate in the cell cycle 

wherein cells grow and divide; mature neurons no longer cycle. While neurogenesis is a critical 

component of development1, the process persists in some brain regions throughout the human 

lifespan2 (i.e., dentate gyrus of the hippocampus, olfactory lobe) as determined by BrdU 

incorporation, PCNA expression and the expression of neuronal maturation markers, such as 

doublecortin3-5.  

Ongoing deliberations challenge the extent of neurogenesis in the adult human brain6-7. 

Several factors, including human tissue processing methods, may affect our ability to detect 

neurogenesis biomarkers8 and have therefore left the issue unresolved. Nonetheless, ample 

evidence from non-human systems (i.e., rodents, non-human primates, songbirds)9-14 

demonstrates that neurogenesis is not only detectable but can be enhanced by environmental 

cues such as exercise15-16, environmental enrichment (i.e., learning)17 and engagement of the 

extracellular niche (i.e., cell-cell interactions, extracellular matrix, ECM)17. Consequently, 

translating this “cuing” ability to promote healthy neurogenesis in neurological and/or 

neurodegenerative disorders has great appeal. Indeed, dysfunctional neurogenesis may be an 

early contributor to cognitive and behavioral decline in schizophrenia and Alzheimer’s Disease 

(AD)18-21.  While in vivo models have been foundational in the study of neurogenesis, additional 

systems are needed to augment existing capabilities and enhance translation to patients. 

Human induced pluripotent stem cell-derived (iPSC) neurons are increasingly being used 

as models to study neurological processes in healthy and disease states22-23. The utility of iPSC 
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neurons stems mainly from their ability to recapitulate – at the cellular level –  specific aspects 

of human neurodevelopment and neurodegenerative/neurological dysfunction previously only 

detected in patient-derived samples and/or non-human models. Hence, iPSC-derived neuron 

models, including organoids, “brain on a chip”, neurospheres, and various two/three dimensional 

systems are forming key components of neurophysiologically relevant systems to understand, 

for example, neurite outgrowth and neural network function24-27. Similarly, the diverse steps of 

neurogenesis (i.e., neuronal progenitor cell (NPC) proliferation, migration and early 

differentiation of newly formed neurons) can be replicated by iPSC-derived neuron model 

systems28. Despite providing a physiologically relevant neurogenesis model, many studies using 

iPSC-derived neurons do not specifically evaluate neurogenesis and instead target differentiated 

or mature neurons to study later developmental processes such as synaptogenesis, 

electrophysiological signaling, or neurite outgrowth, or to study neurotransmitter receptor 

function29-30. The heightened focus on mature neurons may stem from suboptimal culturing 

conditions that often result in unsynchronized or unregulated proliferation of neuronal progenitor 

populations. Indeed, uncoordinated and unchecked proliferation complicates the study of 

neurogenesis in iPSC-based systems.  

Herein, we aim to establish methods to refine and standardize neurogenesis in an 

astrocyte feeder layer-free human iPSC-based model system. Through the modification of 

extracellular cues (i.e., underlying ECM, medium composition and culturing conditions (i.e., 5% 

O2)), we accelerated the gene and protein expression of the post-mitotic protein, calretinin, 

providing a biomarker for human iPSC-derived neuron maturation.  Using our high content 

imaging (HCI) platform and normal control NPCs, we have identified and quantified the 

"neurogenesis burst" associated with the rapid proliferation and early differentiation of normal 
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iPSC-derived neuronal progenitor cell populations that lead to the development of mature, 

Calbindin+/NeuN+ iPSC neurons. This "neurogenesis burst" reproducibly occurs and coincides 

with the progressive expression of neuronal maturation markers. We were able to detect a 

subpopulation of mature iPSC-derived neurons (i.e., Calbindin+/NeuN+) as early as 4 weeks 

post-differentiation, underscoring the capacity and robustness of our feeder layer-free culture 

system. Critically, our platform enables the reproducible study of iPSC-derived neurons and 

neurogenesis at the single cell level using a miniaturized assay format.  
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Materials and Methods 

iPS neuronal progenitor cells (NPCs) and culturing procedures. iPS-derived NPC lines (i.e., 

7545-5b and 7753) were derived by and obtained from the University of Virginia Stem Cell Core 

(Charlottesville, VA) and were previously described31. The original fibroblast lines, GM07753 

and GM07545 were purchased from the NIGMS Human Genetic Cell Repository at the Coriell 

Institute for Medical Research (Camden, NJ) by the University of Virginia Stem Cell Core 

(Charlottesville, VA). The identity of each NPC line was confirmed by immunofluorescence (IF) 

for nestin and sox2 with minimal to low expression for doublecortin and MAP2. All NPC lines 

were expanded on MatrigelTM-coated dishes in NPC medium [i.e., DMEM-F12 supplemented 

Glutamax (Gibco, Gaithersburg, MD), 2% B27 without vitamin A (Gibco) and 20 ng/mL 

thermostable recombinant human Fibroblast Growth Factor (Gibco)] unless otherwise noted. 

NPC lines were split approximately 1:4 every week (up to passage 15) using Accutase 

(MilliporeSigma, St. Louis, MO).  

 

Poly-L-ornithine/laminin coating of tissue culture vessels. All tissue culture ware was coated with 

poly-L-ornithine (Sigma Aldrich) for 24 hours at 4oC then rinsed with sterile water x 5.  Mouse 

laminin (Gibco) was then added and incubated at 37oC for 4 hours. Poly-L-ornithine/laminin 

concentrations varied and are as described in the text. 

 

iPS neuronal differentiation and maturation into neurons under feeder layer-free conditions.  

NPCs were seeded onto poly-L-ornithine/laminin-coated 6-well and cyclic olefin co-polymer-

based 96-well Cell Carrier Ultra microtiter plates (Perkin Elmer, Waltham, MA) at 1x105 and 

2x103 cells/well, respectively, unless otherwise noted. For immunofluorescence studies using a 
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Zeiss LSM 700, NPCs were seeded at 1x104 cells per dish onto poly-L-ornithine/laminin coated 

cyclic olefin co-polymer 35 mm petri dishes (ibidi, Munich, Germany). At 24 h post-seeding, the 

NPC medium was aspirated and replaced with neuron differentiation medium 

[DMEM/F12+Glutamax, 2% B27 with vitamin A, 20 ng/mL brain derived neurotrophic factor 

(Shenandoah Biotechnology, Warwick, PA), 20 ng/mL glial cell derived neurotrophic factor 

(Shenandoah Biotechnology), 1 mM dibutyryl cyclic adenosine monophosphate 

(MilliporeSigma), 200 nM ascorbic acid (Millipore Sigma, Burlington, MA), 1 μg/mL mouse 

laminin (Invitrogen, Carlsbad) and penicillin (100 units/mL)-streptomycin (100 µg/mL) (Thermo 

Fisher Scientific, Waltham, MA)] to promote cortical neuronal differentiation and maturation 

unless otherwise noted in the text. BrainPhys32 base medium was obtained from StemCell 

Technologies, (Cambridge, MA) and recombinant human insulin was obtained from Gibco. 

 

Quantitative polymerase chain reaction (qPCR) assessments using RT2-PCR microarrays. RNA 

was isolated using an RNAeasyTM kit (Qiagen, Germany) per manufacturer’s instructions.  

Briefly, iPSC-derived neuron cultures were gently rinsed two times with 1X PBS then were lysed 

with Buffer RLT supplemented with 1% -mercaptoethanol. Total RNA was then isolated using 

an RNAeasyTM column and quantified using a NanoDrop 2000 spectrophotometer (Thermo 

Fisher Scientific). Total RNA was used to generate cDNA using a RT2 first strand synthesis kit 

(Qiagen). A control cDNA was made using total RNA from normal human adult frontal lobe tissue 

(BioChain, Newark, CA). RNA concentration was kept consistent within experiments (i.e., 150-

500 ng) including controls. SYBR ROX green qPCR reactions were performed in triplicate and 

data were collected using a BioRad CFX Connect Real-Time PCR Detection System (BioRad, 

Hercules, CA).  Reactions were denatured at 95oC for 10 min then subjected to 95o C for 15 sec 
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and 60o C for 1 min for 40 cycles. Data were analyzed using Microsoft Excel and GraphPad 

Prism 9.0 (GraphPad, La Jolla, CA). Microarray data were analyzed using Qiagen GeneGlobe. 

A housekeeping protein control (GAPDH) was used for normalization, using the geometric mean 

of samples to calculate CT’s and fold change. The experiment was repeated for a total of three 

technical replicates. Validated primer sets were obtained from Qiagen. 

 

Western blotting. Whole cell lysates were generated using M-PERTM (ThermoFisher) with 1X 

HaltTM protease and phosphatase inhibitor (ThermoFisher), and were electrophoresed using 4-

12% SDS-PAGE gels (BioRad).  Proteins were transferred, per manufacturer’s instructions, to 

PVDF membranes using a BioRad Trans-Blot Turbo Transfer System. The membrane was 

allowed to dry at RT for one hour, then was activated with methanol for 2 min and rinsed briefly 

with water. Membranes were then incubated in Intercept blocking buffer (LI-COR, Lincoln, NE) 

overnight with rocking at 4oC. The membranes were then incubated overnight at 4o C in a primary 

antibody diluted to 1 μg/mL in Intercept blocking buffer. Blots were washed three times for five 

minutes with 1XTBS, then incubated for 2 hours at 4o C in either DyLight 800 goat anti-rabbit 

IgG (Invitrogen) or DyLight 800 rabbit anti-mouse IgG (Rockland Immunochemicals, Limerick, 

PA) secondary antibodies diluted to 100 ng/mL in Intercept blocking buffer. Membranes were 

washed three times for five minutes with TBS, then imaged on a LI-COR Odyssey CLx Near-

Infrared Imaging System. Band signals were quantified using Image Studio software (LI-COR). 

Lane normalization factors for each sample were determined per LI-COR recommendations by 

dividing the GAPDH signal for a sample by the highest value signal of GAPDH on the blot. The 

target protein signal was then normalized to GAPDH by dividing the raw signal value by the lane 

normalization factor.  
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Amyloid-β1-42 ELISA. An amyloid-β1-42 ELISA kit was obtained from R&D Systems (Minneapolis, 

MN) and performed using manufacturer’s instructions. For cell supernatant harvesting, 

maintenance medium was aspirated and replaced with 2 mL of new medium. Cultures were 

incubated for 24 h and supernatants were harvested. After clarification by centrifugation at 4o C, 

cell supernatants were stored at -80o C until evaluation. 

 

Electrophysiological assessments of iPSC-derived neurons. Electrophysiological assessments 

were performed as described33. Briefly, 7753 NPCs (1x105) were seeded onto cyclic olefin co-

polymer coverslips (ibidi GmbH, Munich, Germany) that were cut into 2.5 cm diameter circles 

and coated with 50 µg/mL poly-L-ornithine and 25 µg/mL laminin. Cells were allowed to 

differentiate for 4 weeks under 5% O2. All electrophysiology recordings were performed and 

analyzed using pClamp™ and Clampfit™ software (Molecular Devices, LLC, San Jose, CA, 

USA). During the recording procedure, cultures were perfused with BrainPhysTM medium. Action 

potentials were manually measured from the trough of each spike to the peak and events greater 

than 10 mV in amplitude were considered action potentials.  

 

Cell fixation, IF and image acquisition. Cells were fixed using 1% paraformaldehyde (PFA, 

Thermo Scientific) in 1X Dulbecco’s phosphate buffered saline (DPBS) with calcium and 

magnesium and supplemented with 100 nM DAPI (Life Technologies, Eugene, OR).  After 3 

minutes at room temperature, PFA was replaced with ice-cold 100% methanol (Fisher) and 

incubated for 3 min at room temperature.  Four times the volume of DPBS was then added to 

methanol containing wells, immediately removed and then replaced with DPBS. This DPBS 
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replacement step was repeated and the plate was sealed with aluminum film (Axygen 

Biosciences, Corning, NY) for storage at 4° C until immunofluorescence (IF) staining.  

For IF antibody staining, DPBS was removed and cells were incubated with 0.3% Triton-

X in 1X DPBS for 10 minutes, and then were gently washed twice with 1X DPBS for 5 minutes 

each. After the final wash, DPBS was removed and replaced with 300 mM glycine in 1X DPBS 

for 20 minutes. After quenching, the solution was removed and replaced with 1% Fish Skin 

Gelatin (Millipore Sigma) blocking buffer in DPBS containing primary antibody. Primary antibody 

staining was carried out at 4°C in a humidified chamber for 16-18 hours. Antibody solution was 

then removed and wells were washed 3 times with 1X DPBS for 5 minutes each. If primary 

antibodies were not directly conjugated with fluorophore, conjugated secondary antibodies in 

1% Fish Skin Gelatin blocking buffer were added and incubated for 24 hours at 4°C, protected 

from light in a humidified chamber. Conjugated secondary antibody solution was then removed, 

wells were washed three times for 5 minutes each at room temperature, and 1X DPBS storage 

buffer was added for imaging. 

The Perkin Elmer Operetta high content imaging system, located in the University of 

Virginia Advanced Microscopy Core Facility, was used for image acquisition unless otherwise 

noted. Perkin-Elmer Harmony 4.1 software was used to analyze acquired images. 

 

Antibodies. Antibodies were obtained and used as described in Supplemental Table 1. 

 

Statistical analysis. Data were analyzed using GraphPad Prism 9.0. Data are presented as mean 

± standard deviation or standard error of the mean. p Values were calculated with Student’s t-
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test for comparisons involving 2 groups or one-way or two-way analysis of variance for 

comparisons involving >2 groups. p < 0.05 was considered statistically significant.  
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Results 

Tracking iPSC-derived neuron maturation at environmental O2 (21%). We differentiated NPCs 

derived from healthy individuals under feeder layer-free conditions in environmental O2 (21%) 

for 12 weeks. At 2 week intervals, we isolated total RNA for qPCR and protein for western 

blotting. Calretinin, the first post-mitotic protein expressed in “early” mature neurons34, was 

expressed ~6-8 weeks post-differentiation of 7753 cells (Figure 1, panels A, D). Detection of βIII-

tubulin at just 2 weeks post-differentiation confirmed the presence of cells on the neuron 

differentiation pathway (Figure 1, panel A; Supplemental Figure 1). Similar results were 

observed using another NPC line, 7545-5b, derived from a healthy patient (Supplemental Figure 

2). In contrast, gene expression of other neuronal maturity markers, including Calbindin, NeuN, 

MAP2 and Tau, rose appreciably from initially low levels only after 4-10 weeks of differentiation 

(Figure 1, panels A and D). Moreover, while the NPC marker, nestin, and the cycling cell 

markers, PCNA and cyclin D1, decreased with time (Figure 1, panels A, B, and C), their 

persistent detection at 12 weeks post-differentiation imply that subpopulations within the iPSC-

derived neuronal cultures were actively proliferating and differentiating for at least 12 weeks.  

 

Enhancement of iPSC-derived neuron maturation under physiological O2 (5%). Since normal 

oxygen levels in the human brain are ~5%35, environmental O2 culturing conditions (~21%) may 

not accurately reflect the brain physiological milieu. To determine the effects of physiological 

oxygen tension (5%) on the differentiation and maturation of iPSC-derived feeder layer-free 

neuronal cultures, we tracked calretinin gene expression over an 8-week period to resolve the 

“calretinin spike.” Thus, normal, healthy NPCs were differentiated and matured as described36 

under environmental (21%) or physiological (5%) O2 tension using the same ECM composition 
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(5 µg/mL laminin and 10 µg/mL poly-L-ornithine [PLO]), medium formulation and medium 

change schedule. RNA was collected at the specified times and resulting qPCR data indicated 

that the calretinin spike occurred at 6 weeks post-differentiation under both O2 culturing 

conditions, but the magnitude of the calretinin spike was significantly more pronounced with 5% 

O2 (Figure 2, panel A). Calretinin protein expression was confirmed by western blot (Figure 2, 

panels B and C). As expected, nestin protein expression declined with neuronal maturation 

(Figure 2, panels B and D), but the decrease was more pronounced under 5% O2. The lower O2 

level also was associated with less Aβ42 peptide accumulation in the medium (Supplemental 

Figure 3), which may enhance neuron viability in long term culture37. Overall, these data favor 

the hypothesis that iPSC-derived neurons mature more quickly in 5% versus 21% O2. Moreover, 

they underscore the ability of physicochemical cues to modulate progenitor cell fate and 

function38, which may be particularly critical for NPC-derived model systems.  

 

Shifting the “calretinin spike” through modifications of extracellular cues. The six-week time 

course for the switch to a more mature neuronal phenotype is consistent with previous studies39; 

however, the extended maturation duration required for derivation of mature neuron populations 

is experimentally limiting, especially for miniaturized assay formats. To further accelerate iPSC 

neuron differentiation and maturation, we modified the composition of the ECM and culture 

media. Using 50 μg/mL poly-L-ornithine (PLO)/15 μg/mL laminin as the ECM and a gradual 

transition to a 100% BrainPhys32-based differentiation medium (2% B27 with insulin, 20 ng/mL 

BDNF, 20 ng/mL GDNF, 0.2 μM ascorbic acid, 1 μg/mL laminin, 1 mM cAMP, and Pen (5,000 

units/mL)-Strep (5,000 μg/mL)) over 48 h, the “calretinin spike” shifted from 6 weeks (Figure 2, 

panel A) to 4 weeks (Figure 3, panel A). Moreover, increasing the laminin concentration to 25 
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μg/mL further shifted the “calretinin spike” to two weeks (Figure 3, panel A) indicating an 

acceleration of the differentiation/maturation of iPSC-derived neurons through manipulation of 

the extracellular environment. The magnitude of the “calretinin spike” differs between the two 

ECM conditions, potentially reflecting the existence of specific neuronal progenitor 

subpopulations which may be more receptive to the extracellular cues leading to 

differentiation/maturation. Nonetheless, western blotting and immunofluorescence studies 

confirmed the expression of Tau and NeuN at four weeks post-differentiation (Figure 3, panels 

B and C) verifying that feeder layer-free culturing conditions can support differentiation of mature 

iPSC-derived neurons. 

 

Identification and quantification of the “neurogenesis burst.”  Using the optimized ECM and 

culture medium transitions, we miniaturized the assay format to a 96 well plate to permit high 

content imaging (HCI). We initially seeded 1,500 NPCs per well of a 96 well plate and allowed 

them to differentiate and mature over a 6-week time course with medium changes occurring 

twice weekly. Each week a microtiter plate was fixed and stained with the nuclear dye, 4′,6-

diamidino-2-phenylindole (DAPI), and total DAPI+ cells (i.e., nuclei) were quantified.  This 

showed that between weeks 2 and 3 in differentiation medium, the NPC cultures undergo a 

“neurogenesis burst” characterized by a rapid increase in total DAPI+ cells (Figure 4, panels A 

and B). By week 4 post-differentiation, each well contained ~15,000 neurons, representing a 10-

fold increase in cell number versus NPC seeding. After 3-weeks post-differentiation, DAPI+ cell 

number plateaued suggesting a cessation in the proliferation of early/intermediate neuronal 

progenitor cells. By 4 weeks, the expression of markers of a more mature neuronal phenotype 

(i.e., Calbindin+, NeuN+) was detectable by immunofluorescence in a subpopulation of DAPI+ 
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cells (Figure 5, panel A-C). Specifically, data showed that at 4-weeks post-differentiation 30-

40% of DAPI+ cells stained positive for Calbindin and between 10-15% of Calbindin+ cells also 

expressed NeuN (Figure 5, panels A and B). Although these percentages are low for “advanced 

maturation”, we note that the maturation of the cell cultures is asynchronous and with additional 

incubation, the Calbindin+/NeuN+ subpopulation would be expected to increase. Moreover, it is 

likely not all of the cells will progress to mature neurons (i.e., as defined by Calbindin+/NeuN+) 

under feeder layer-free culturing conditions. 

 

Cessation of the “neurogenesis burst” coincides with the acquisition of a non-cycling phenotype. 

The neuronal population evaluated at 4-weeks post-differentiation was also non-cycling, 

supporting the acquisition of a more mature neuronal phenotype. Specifically, on a population 

level, qPCR microarray data showed that the expression of cyclin D1 and Ki67, two biomarkers 

for proliferation, was significantly downregulated (Figure 6, panels A and B).  Cyclin D1 also 

plays a key role in regulating iPSC-derived neuronal differentiation40. Downregulation of cyclin 

D1 and Ki67 gene expression in these asynchronously differentiating cultures coincided with 

upregulated expression of genes associated with neuronal maturation including CDK7 (e.g., 

synaptic plasticity41), CDK5RAP1 (i.e., neuronal differentiation42), and CASP3 (e.g., synaptic 

activity, dendrite pruning43).  Moreover, we detected the expression of genes associated with 

normal post-mitotic neurons (e.g., CCNH44) or those that are involved with neuronal cell 

maintenance (i.e., ATR45). Although most commonly associated with senescence46, CDKN2B 

inhibits iPSC division and regulates tissue remodeling46-47. Nonetheless, Ki67 gene expression 

data were confirmed on a single cell basis using immunofluorescence (<7% expression, Figure 

6, panels C and D) in our miniaturized format with data showing that by 3-4-weeks post-
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differentiation Ki67 expression levels were significantly decreased (Figure 6, panels C and D, 

Supplemental Figure 4).  Within the Calbindin+/NeuN+ subpopulation of cells, Ki67 positivity 

was <~2% (data not shown).  

  Electrophysiological assessments of our 4-week cultures also demonstrated that feeder 

layer-free iPSC-derived neurons were electrically excitable. Specifically, recorded neurons 

maintained the relatively depolarized resting membrane potential of ~-40mV and generated 

action potentials in response to current injection (Figure 7). The amplitude of the action potential 

was generally smaller during depolarizing current injection than during hyperpolarizing current 

injection, suggesting that voltage hyperpolarization-dependent sodium channel de-inactivation 

was necessary for the generation of robust, large amplitude action potentials. This observation, 

in combination with the depolarized resting voltage, indicates that while 4-week old neurons are 

generally mature and electrically-excitable, these neurons nonetheless lack a pronounced 

resting potassium conductance found in adult neurons.  
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Discussion 

Dysfunctional neurogenesis is evident in multiple neurological (e.g., epilepsy, 

schizophrenia, depression, anxiety, addiction)48-50 and neurodegenerative disorders (e.g., 

Parkinson’s Disease, Alzheimer’s Disease, Huntington’s Disease, Prion Disease)51-52.  

Unfortunately, deficits in neurogenesis, which lead to neuronal decline, most likely initiate many 

years prior to the manifestation of cognitive, memory and/or behavioral issues underscoring their 

enduring repercussions. Hence, there is intense interest to generate new model systems to 

study and promote neurogenesis.  

iPSC-derived neurons offer physiologically relevant cell populations to study neurological 

processes, including neurogenesis. In contrast, “iNeurons”, which are directly converted from 

adult fibroblasts and retain adult, rather than embryonic epigenetic signatures, bypass the 

proliferating multi-functional progenitor (i.e., NPC) stage and, hence, are more limiting as models 

of early events in neurogenesis53.  Regardless, the prolonged differentiation and maturation 

durations present experimental challenges and limit the usefulness of iPSC-derived cell 

populations (as well as iNeurons) especially in miniaturized formats. Through minimal 

modification of extracellular cues (underlying ECM, medium composition32/transitions and 

culturing conditions [5% O2]), however, we determined that iPSC-derived differentiation and 

maturation of a feeder layer-free system can be accelerated suggesting that with the 

incorporation of more bio-complex and -relevant extracellular signals or cues, neurogenesis may 

be further advanced and regulated without the need for an astrocyte feeder layer. 

Our current ECM has two primary components, laminin and poly-D/L-ornithine (PLO), 

both of which frequently are used in ECMs for iPSC-derived neuronal differentiation and 

maturation54-55. Although laminin is physiologically relevant, it represents a single ECM 
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component whereas the brain ECM consists of multiple macromolecules56, including 

glycosaminoglycans, proteoglycans, glycoproteins and fibrous proteins. Moreover, the 

composition of the brain ECM changes during neurodevelopment in order to provide the 

extracellular/environmental cues necessary to control neurogenesis57 suggesting that the brain 

ECM is more fluid than previously surmised. Unsurprisingly, recent studies have shown that 

neural development is accelerated when using ECM from decellularized brain tissue57, which 

comprises ECM proteins from all cell populations within the brain.  However, as is the case for 

Matrigel, decellularized brain ECM it is subject to substantial batch-to-batch variation. Moreover, 

studies examining the role of a more bio-complex ECM in neuronal development tend to be in 

lower density formats58 (6-24 well plates) while also relying on astrocyte feeder layers to derive 

mature neurons, two conditions that are not conducive to single cell analyses. 

Normal tissue O2 levels are variable but generally fall in a range of 3–9%59, which is less 

than atmospheric O2 (i.e., 21%) in the air we breathe and what is commonly used in cell culturing 

activities. Studies have also shown that physiological O2 levels are not only critical for neuronal 

stem cell self-renewal, but also limit spontaneous differentiation60. Unfortunately, the use of 

physiological O2 for differentiating and maintaining iPSC-derived neurons is only sporadically 

mentioned in the literature58. Moreover, the prevalence of atmospheric O2 usage in neuronal 

studies may contribute to the lack of reproducibility, at least with respect to iPSC-derived 

neuronal differentiation and maturation. 

Additional modifications to our iPSC-derived neuron culturing medium and transitions 

limited the asynchronous proliferation of early progenitor cells (Supplemental Figure 5).  As a 

result, we were able to miniaturize the iPSC-derived neuronal differentiation and maturation 

process. Through the use of a HCI platform, we identified and quantified the “neurogenesis burst” 
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associated with the rapid proliferation of progenitor cells, which leads to the development of 

mature iPSC-derived neurons as identified by Calbindin and NeuN co-expression.    
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Figure and Table Legends 

 

Figure 1. Expression of neuronal differentiation and maturation markers under 

environmental (21%) O2. Neuronal progenitor cells (i.e., 7753) from healthy patients were 

differentiated under 21% O2 using feeder layer-free conditions. RNA and protein lysates were 

isolated every two weeks for 12 weeks. Panel A, western blot assessments for neuronal 

maturation markers and cell cycle associated signaling effectors. Panels B and C, GAPDH 

normalized signals for select proteins. Panel D, qPCR time course data for neuronal maturation 

markers. N=3, mean ± SD. 

 

Figure 2. Enhanced calretinin gene and protein expression under 5% O2 and feeder layer-

free culturing conditions. Neuronal progenitor cells (line 7753) derived from apparently healthy 

patients were matured under environmental (●, 21%) vs. physiological (■, 5%) O2 in 6 well plates. 

Panel A, Calretinin gene expression was quantified by qPCR. Statistics were performed using 

two-way ANOVA. N=3. Panel B, Calretinin, nestin and GAPDH protein expression as detected 

by western blot. PD=post-differentiation. Panels C and D, Quantification of calretinin and nestin 

western blots. Proteins were normalized using GAPDH.  

Figure 3. Extracellular cues shift the "calretinin spike" during feeder layer free iPSC-

neuronal differentiation and maturation. Panel A, iPSC-derived neurons from apparently 

healthy patients were matured under physiological (5%) O2 in 6 well plates coated with (●) 15 

ug/mL laminin and 50 ug/mL PLO or (■) 25 ug/mL laminin and 50 ug/mL PLO. Calretinin gene 

expression was quantified by qPCR. Statistics were performed using two-way ANOVA. N=3. 

Panel B, Expression of proteins associated with neuronal maturation. Panel C, Expression of 
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Tau and NeuN in four-week feeder layer free iPSC-derived neuron cultures as detected by 

immunofluorescence.  

Figure 4. Quantification of the “neurogenesis burst” over a six-week time course under 

feeder layer free conditions. 1-6 week iPSC-derived neuron cultures were stained with DAPI 

to track the “neurogenesis burst.” Panel A, DAPI+ nuclei were quantified in 25 fields of view per 

well of a 96 well plate comprising differentiating neuronal populations. NPCs were seeded at 

1,500 cells per well on 25 μg/mL laminin and 50 μg/mL poly-L-lysine. N=3 technical replicates. 

One-way ANOVA. ns, not significant. Panel B, DAPI+ images of fields of view from 1, 3 and 6 

week differentiating neuronal cultures.  

Figure 5. Immunofluorescence detection of Calbindin and NeuN expression by four-week 

iPSC-derived neuronal cultures. 1-4 week iPSC-derived neuron cultures were stained with 

DAPI, Calbindin and NeuN to identify mature neurons. DAPI+ nuclei were identified and 

quantified using 25 fields per well. Panel A, Calbindin+ cells were identified using anti-Calbindin-

Alexa-488 (Cell Signaling, #88831). Panel B, NeuN+ cells were identified using anti-NeuN-

Alexa-fluor-647 (Millipore-Sigma, HPA030790). Colocalized signals were quantified to 

determine the percent Calbindin+/NeuN+ cells. N=3 technical replicates. One-way ANOVA. 

Panel C, Immunofluorescence images of Calbindin+, NeuN+ and Calbindin+/NeuN+ cells.  

Figure 6. Decrease in Cyclin D1 and Ki67 gene expression with iPSC-derived neuronal 

differentiation and maturation under feeder layer-free conditions. Panels A and B, qPCR 

microarray data comparing cell cycle associated gene expression in week 3 (A) and 4 (B) iPSC-

derived neuronal cultures. Panel C, Ki67+ positive cells were quantified over a 4 week culturing 

period. Twenty-five fields of view were captured per well (N=3) and Ki67 was detected using 
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anti-Ki67-Alexa-488 conjugate. One-way ANOVA. Panel D, representative field of view of Ki67 

positivity in week 1 versus week 4 iPSC-derived neuronal cultures. 

 

Figure 7. iPSC-derived neurons cultured under feeder layer-free conditions conduct 

action potentials.  Panel A, Patch clamp recording of a 4 week iPSC-derived neuron. Panel B, 

Electrophysiological assessments of iPSC-derived neurons at 4 weeks post-differentiation 

indicate they conduct action potentials. Panel B, The neuron’s resting membrane potential is 

around -40 mV (versus ~60 mV for most adult neurons). In response to hyperpolarizing current 

injection (B1), the neuron produced multiple action potentials characterized by a large amplitude. 

These action potentials were typically +60 mV in amplitude and persisted for a duration of ~4-5 

msec. In response to positive current (B2), the recorded neuron produced a single action 

potential of moderate amplitude. The discrepancy in action potential amplitude observed during 

hyperpolarizing versus depolarizing current injection is consistent with the hypothesis that the 

relatively depolarized resting membrane potential of recorded neurons promotes steady-state 

sodium channel inactivation, which can be removed by hyperpolarizing the voltage of the neuron.  
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Table 1. Antibodies used for immunofluorescence and western blotting  

Protein target Vendor 
Catalog 
number Concentration Application 

      (μg/mL)   

Calbindin Novus NBP2-67200 1 μg/mL WB 

Calretinin Cell Signaling 17114S 1 μg/mL WB 

CyclinD1 Cell Signaling 55506S 1 μg/mL WB 

Doublecortin Cell Signaling 4604S 1 μg/mL WB 

GAPDH Cell Signaling 2118S 1 μg/mL WB 

Ki67-Alexa 488 Cell Signaling 11882  0.5 μg/mL IF 

MAP2 Cell Signaling 4542S 1 μg/mL WB 

Nestin Cell Signaling 33475S 1 μg/mL WB 

NeuN Cell Signaling 12943S 1 μg/mL WB 

NeuN (RBFOX3) Sigma HPA030790  0.4 μg/mL IF 

PCNA Cell Signaling 2586S 1 μg/mL WB 

Tau Cell Signaling 4019S 1 μg/mL WB, IF 

Tau Cell Signaling 46687 4 μg/mL IF 

Tuj1 (βIII tubulin, TUBB3) 
From Bloom 
lab N/A 1 μg/mL WB 

Synaptophysin Abcam ab8049 1:1000 dilution WB, IF 

          

Anti-Mouse Alexa 488 Cell Signaling 4408  2-4 μg/mL IF 

Anti-Mouse Alexa 647 Cell Signaling 4410  2-4 μg/mL IF 

Anti-Rabbit Alexa 488 Invitrogen A11008  2-4 μg/mL IF 

Anti-Rabbit Alexa 647 Cell Signaling 4414  2-4 μg/mL IF 
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