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8 Abstract

9 Blanket curtailment of turbine operations during low wind conditions has become an accepted 

10 operational minimization tactic to reduce bat mortality at terrestrial wind facilities. Site-specific studies 

11 have demonstrated that operational curtailment effectively reduces impacts, but the exact nature of the 

12 relationship between increased cut-in speed and fatality reduction in bats remains unclear. To evaluate the 

13 efficacy of differing blanket curtailment regimes in reducing bat fatality, we examined data from turbine 

14 curtailment experiments in the United States and Canada in a meta-analysis framework. We tested 

15 multiple statistical models to explore possible linear and non-linear relationships between turbine cut-in 

16 speed and bat fatality reduction while controlling for control cut-in speed. Because the overall sample size 

17 for this meta-analysis was small (n = 36 control-treatment studies from 16 field sites from the American 

18 Wind Wildlife Information Center and a recent review), we conducted a power analysis to assess the 

19 number of control-impact curtailment studies that would be needed to understand the relationship 

20 between fatality rate and change in cut-in speed under different fatality reduction scenarios. We also 

21 identified the characteristics of individual field studies that may influence their power to detect fatality 

22 reduction due to curtailment. Using a response ratio approach, we found any curtailment strategy reduced 

23 fatality rates by 56% for studies included in this analysis (p < 0.001). However, we did not find strong 

24 evidence for linear (p =0 0.07) or non-linear (p > 0.11) associations between increasing cut-in speeds and 

25 fatality reduction. The power analyses showed that the power to detect effects in the meta-analysis was 

26 low if fatality reductions were less than 50%. Synthesizing across all analyses, we need more well-

27 designed curtailment studies to determine the effect of increasing curtailment speed and the effect size is 

28 likely of a magnitude that we had limited power to detect.

29
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30 Introduction

31 Wind energy development is increasing rapidly worldwide and hundreds of thousands of bat 

32 fatalities are estimated to occur per year due to collisions with terrestrial wind energy facilities in North 

33 America [1–3]. Turbine attraction is the leading explanation for high observed fatality rates, particularly 

34 in migratory tree bats [4,5]. Between 70% and 80% of bats killed at wind energy facilities in the U.S. are 

35 migratory tree bats, including hoary bat (Lasiurus cinereus), eastern red bat (L. borealis), and silver-

36 haired bat (Lasionycteris noctivangans; [3,6–8]. While fatality rates are variable among sites, the 

37 magnitude of mortality for some North American bat species is high enough to be considered a serious 

38 conservation concern [9,10].

39 Curtailment of turbine operations during low wind conditions, particularly in late summer and fall 

40 when fatality rates are highest, has become an accepted operational minimization tactic to reduce bat 

41 fatality at terrestrial wind facilities [11]. By increasing the cut-in speed, or the wind speed at which a 

42 turbine generator begins to produce electricity, curtailment reduces turbine blade spinning rates. Below 

43 the cut-in speed, turbine blades still spin with the wind but do so much more slowly, especially if blades 

44 are “feathered” or pitched to catch as little wind as possible. Because bats tend to be more active at lower 

45 wind speeds, increasing turbine cut-in speed can significantly reduce bat fatality [1,12]. However, a great 

46 deal of variability has been reported in the level of fatality reduction achieved by curtailment, likely due 

47 to the effect of myriad factors (e.g., curtailment regime, time of year, weather, turbine dimensions, and 

48 landscape characteristics; [8]) on fatality risk. While site-specific studies have demonstrated that 

49 operational curtailment is effective at reducing impacts, the exact nature of the relationship between 

50 increases in cut-in speed and fatality reduction in bats remains unclear.

51 For this study, “blanket” curtailment, in which wind speed and time of day/year are used to 

52 determine when to curtail, has both operational and financial implications for wind facility operators [13]. 

53 At present, the exact nature of the trade-off between turbine energy production and bat fatality 

54 minimization is poorly understood. Larger increases in cut-in speeds will further reduce power 
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55 generation. Still, the implications for fatality reduction are less clear, in part because this type of 

56 assessment requires intensive monitoring and is subject to errors introduced by imperfect detection and 

57 small sample sizes. Despite limited evidence that raising blanket cut-in speeds above 4.5 m/s will further 

58 reduce bat fatalities [14], regulators now have required operational minimization for some new wind 

59 projects in the United States and Canada at wind speeds up to 6.9 m/s [15]. A synthesis of the available 

60 data from designed curtailment studies will allow us to quantify better the relative benefits of increasing 

61 turbine cut-in speed for reducing bat collision fatality.

62 A meta-analysis framework is used to synthesize data across studies to determine the effect of 

63 curtailment on bat fatality reduction. Meta-analysis provides a method to account for multiple types of 

64 uncertainty and use predictor variables to explain patterns between studies [16]. Random effects meta-

65 analyses are needed to account for the uncertainty in effects from each study and the uncertainty in the 

66 true effect size to which all studies contribute. Using such an approach, we aim to evaluate the current 

67 knowledge of the effectiveness of blanket curtailment regimes in reducing bat fatalities at terrestrial wind 

68 projects in North America. We identified three objectives: 1) evaluate existing control-treatment 

69 curtailment study data for bats in a meta-analysis framework to examine the relative benefit of increased 

70 curtailment cut-in speeds and examine the importance of geography and turbine dimensions on fatality 

71 reduction; 2) assess the power of the meta-analysis approach to quantify fatality reduction using a data 

72 simulation approach; and 3) understand how different site or survey characteristics (e.g., fatality rates, 

73 study length, and carcass persistence) influence the power of individual curtailment field studies to detect 

74 a difference in bat fatality rates between control and treatment groups. These analyses are combined to 

75 identify the most likely effect of blanket curtailment on bat fatality reduction, how much additional 

76 information is needed to be certain of these effects, and how to design curtailment experiments to 

77 maximize the value of their results.

78 Methods
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79 The study's overall goal was to understand the relationship between blanket curtailment cut-in 

80 speed and bat fatality reduction at wind facilities in the United States and Canada. To achieve this goal, 

81 we used a response ratio approach that focused on the differences in fatality rates between control and 

82 curtailment treatments in available studies. We used a meta-analysis approach (hereafter referred to as the 

83 “meta-analysis”) to control for variability among studies. As we did not have a predetermined assumption 

84 about the nature of the relationship between fatality rate and the change in cut-in speed between control 

85 and treatment, we tested multiple statistical models that allowed for both linear and non-linear 

86 relationships between cut-in speed and the response to determine which best described the observed 

87 pattern. Both the absolute cut-in speed and change in cut-in speed were allowed to influence the predicted 

88 fatality rate. Once the best models were selected, we used them to understand how covariates like study 

89 location and turbine dimensions could influence the relationship between fatality rate and change in cut-in 

90 speed.

91 Because the sample size for this analysis was small (n=36 control-treatment pairs), we also 

92 assessed the likelihood that the above meta-analysis would provide statistically significant results and 

93 determined the number of control-treatment pairs needed in this meta-analytical framework to be 

94 confident in our understanding of the relationship between fatality rate and change in cut-in speed. Thus, 

95 we conducted two types of power analyses. The first power analysis (the “meta-analysis power analysis”) 

96 was designed to quantify the power of the meta-analysis under different hypothetical scenarios about the 

97 relationship between fatality rate and change in cut-in speed. The first of these scenarios was an a 

98 posteriori scenario based on the results of the best meta-analysis model using existing data, and four 

99 additional a priori scenarios with different relationships between fatality reduction and cut-in speed were 

100 also examined. The second power analysis (the “fatality estimation power analysis”) was designed to 

101 inform future curtailment studies and fatality monitoring efforts at operating wind energy facilities. This 

102 analysis assessed the relative quality of different fatality studies at the project scale and identified site and 

103 survey characteristics (e.g., fatality rate, study length, and carcass persistence) that influenced the power 
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104 of individual curtailment field studies to detect a difference in bat fatality rates between control and 

105 treatment groups. All analyses were conducted in R [17], and all analysis scripts were documented in 

106 Supplementary Information. 

107 Data Inclusion

108 Data for this analysis were collected in part from the American Wind Wildlife Information Center 

109 (AWWIC, Accessed in August 2019), which compiles private and public data from post-construction 

110 fatality monitoring studies at individual wind energy projects in the United States (n=43) [7]. Data from 

111 several additional studies in the U.S. and Canada were harvested from publicly available reports (n =22 

112 with overlap to the AWWIC studies) [14]. Paired control-treatment curtailment studies (hereafter 

113 ‘studies’) with blanket curtailment treatments were of primary interest for this analysis. Studies were 

114 included in the analysis if there was both a treatment and control group of turbines with fatality estimates 

115 at different cut-in speeds at the same project site (Fig. 1). Data were excluded from analysis if there was 

116 no change in cut-in speed between treatments (e.g., testing other fatality reduction methods) or no 

117 measurement of treatment effect (e.g., no control treatment). The remaining studies in the database (n=36; 

118 Table 1) were conducted at 17 wind energy project sites in the U.S. and Canada from 2005-2016. There 

119 were instances where multiple experimental cut-in speeds were tested simultaneously at the same project, 

120 resulting in multiple studies from the same project and year that shared a control. Studies without 

121 precision estimates for their fatality ratios were included in the analysis by applying the global average 

122 standard error.

123 Figure 1. PRISMA meta-analysis data flow diagram for the study. After receiving a list of all projects in AWWIC 
124 and the CanWea syntheses that reported turbine curtailment we removed duplicates between the two sources. 
125 Individual studies within those projects were determined to be suitable for analysis if they used a blanket curtailment 
126 treatment and there were multiple cut-in speeds that could be compared.

127

128 Fatality estimates in the AWWIC database, which were reported from the original studies, had 

129 already been adjusted for detection probability (observer ability to detect carcasses that are present) and 

130 carcass persistence (rate of removal of carcasses by scavengers) using searcher efficiency trials and 
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131 carcass persistence trials, respectively [18]. There are multiple approaches for correcting fatality estimates 

132 that differ in their assumptions regarding how to account for detection error resulting from carcass 

133 removal and searcher efficiency [18,19].

134 Table 1. Bat fatality curtailment study data from the AWWIC and CanWEA databases, including project name, 
135 year, geographic region, and rotor diameter in meters (RD); control cut-in speed (Cont.), experimental cut-in speed 
136 (Exp.), and change in cut-in speed (Δ), all in m/s; and treatment effect information, including the mean fatality ratio 
137 ± SE (Fatal. Ratio) and percent decrease in fatality between treatments (%). Studies from the same project and year 
138 were tested simultaneously and share a control. Some studies lacked information on fatality uncertainty; for these, 
139 the global average standard error was applied to the fatality ratio.

Cut-in Speed Effect

Project Name Year Region RD Cont. Exp. Δ Fatal. Ratio % Source
Anonymous East 2014 East 77 3.5 4.5 1.0 0.50 ± 0.16 50 AWWIC2

Anonymous East 2015 East 77 3.5 5.5 2.0 1.00 ± 0.42 0 AWWIC
Anonymous East 2015 East 77 3.0 4.0 1.0 0.91 ± 0.36 9 AWWIC
Anonymous East 2016 East 77 3.0 5.0 2.0 0.69 ± 0.33 31 AWWIC
Anonymous East 2016 East 77 3.0 6.0 3.0 0.53 ± 0.34 47 AWWIC
Casselman Wind 2008 East 77 3.5 5.0 1.5 0.13 ± 0.14 87 AWWIC
Casselman Wind 2008 East 77 3.5 6.5 3.0 0.26 ± 0.18 74 AWWIC
Casselman Wind 2009 East 77 3.5 5.0 1.5 0.32 ± 0.17 68 AWWIC
Casselman Wind 2009 East 77 3.5 6.5 3.0 0.24 ± 0.15 76 AWWIC
Criterion 2012 East 93 4.0 5.0 1.0 0.38 ± 0.14 62 AWWIC
Laurel Mountain 2011 East 82 3.5 4.5 1.0 0.42 ± 0.15 58 AWWIC
Pinnacle Wind Force 2012 East 95 3.0 5.0 2.0 0.53 ± 0.15 47 AWWIC
Pinnacle Wind Force 2013 East 95 3.0 5.0 2.0 0.42 ± 0.21 58 AWWIC
Pinnacle Wind Force 2013 East 95 3.0 6.5 3.5 0.25 ± 0.14 75 AWWIC
Anonymous Midwest 2010 Midwest/West 82 3.5 4.8 1.3 0.53 ± 0.25 47 CanWEA3

Anonymous Midwest 2010 Midwest/West 82 3.5 4.0 0.5 0.28 ± 0.13 72 CanWEA
Anonymous Pac. SW 2012 Midwest/West 101 3.5 4.8 1.3 0.80 ± 0.37 20 CanWEA
Anonymous Pac. SW 2012 Midwest/West 101 3.5 4.0 0.5 0.65 ± 0.30 35 CanWEA
Anonymous Pac. SW 2012 Midwest/West 101 3.5 4.8 1.3 0.62 ± 0.29 38 CanWEA
Fowler Ridge 1 2010 Midwest/West 89 3.5 5.0 1.5 0.50 ± 0.11 50 AWWIC
Fowler Ridge 1 2010 Midwest/West 89 3.5 6.5 3.0 0.21 ± 0.07 79 AWWIC
Fowler Ridge 1 2011 Midwest/West 89 3.5 4.5 1.0 0.64 ± 0.29 36 AWWIC
Fowler Ridge 1 2011 Midwest/West 89 3.5 5.5 2.0 0.38 ± 0.18 62 AWWIC
Fowler Ridge 1 2012 Midwest/West 89 3.5 5.0 1.5 0.16 ± 0.06 84 AWWIC
Lakefield 2016 Midwest/West 77 3.5 5.0 1.5 0.56 ± 0.34 44 AWWIC
Summerview 2005 Midwest/West 80 4.0 7.0 3.0 0.61 ± 0.28 39 CanWEA
Summerview 2007 Midwest/West 80 4.0 5.5 1.5 0.94 ± 0.26 6 CanWEA
Wild Cat 1 2013-15 Midwest/West 100 5.0 7.0 2.0 0.20 ± 0.07 80 AWWIC
Wild Cat 1 2016 Midwest/West 100 5.0 6.9 1.9 0.41 ± 0.33 59 AWWIC
Bull Hill 2013 Northeast 100 3.0 5.0 2.0 0.70 ± 0.23 30 AWWIC
Enbridge Wind 2012 Northeast 82 3.5 5.5 2.0 0.38 ± 0.18 62 CanWEA
Raleigh Wind 2014 Northeast 77 3.5 4.5 1.0 0.23 ± 0.05 77 CanWEA
Sheffield 2012 Northeast 94 4.0 6.0 2.0 0.37 ± 0.13 63 AWWIC
Talbot Wind1 2013 Northeast 101 3.5 5.5 2.0 0.04 ± 0.18 96 CanWEA1

Wolfe Island 2011 Northeast 93 3.2 4.5 1.3 0.52 ± 0.24 48 CanWEA
Wolfe Island 2011 Northeast 93 3.2 5.5 2.3 0.40 ± 0.18 60 CanWEA

140 1 This study was a statistical outlier that did not meet the assumptions of the meta-analysis and thus was excluded
141 2 Data obtained from the American Wind Wildlife Information Center (AWWIC) database, which includes both public and 
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142 private data.
143 3 Data obtained from a review by the Canadian Wind Energy Associate [CanWEA 14] and public reports cited therein.

144

145 Studies in this analysis primarily used the Huso and Shoenfield estimators [20,21]. However, some 

146 studies used the Erickson estimator [22], MNRF estimator [23], or custom calculations to adjust fatality 

147 estimates for carcass persistence and searcher efficiency. Adjusted bat fatality estimates per turbine were 

148 presented in the database with upper and lower 90-95% confidence intervals (CIs). As the experimental 

149 period and hours per night when experiments were implemented varied among studies, fatality estimates 

150 were converted to bat fatality per turbine-hour by dividing fatalities per turbine by the total number of 

151 hours of curtailment (number of nights*hours per night). Study periods varied somewhat between 

152 individual curtailment studies, with some studies examining specific time periods throughout the night or 

153 focusing on different windows of time during fall migration; our approach controls for study-specific 

154 variability by pairing control-treatment groups for analysis, but does assume that the relationship between 

155 turbine-hours and fatalities is robust to potential variation in the effect of curtailment through time. Few 

156 studies reported species-specific fatality rates, so fatality estimates were for all bat species combined.

157 Meta-analysis

158 The effect size of each study was calculated as a log-transformed ratio between the estimated 

159 fatality of the treatment and the control, both in the unit of bat fatalities per turbine hour (i.e., the log-

160 transformed response ratio, hereafter ‘RR’). In instances where only a percent decrease was reported, this 

161 was used to calculate the RR (log(1-(% decrease/100)) = RR). This effect size approach controls for 

162 differences in study design ranging from site-specific effects to the choice of fatality estimator. 

163 Manufacturer cut-in speed can vary among turbine makes and models. In most studies, the control 

164 group’s cut-in speed was 3.5 m/s (a common cut-in speed set by turbine manufacturers), though values 

165 ranged from 3.0 to 5.0 m/s. Experimental cut-in speeds varied from 4.0 to 7.0 m/s. Due to this variation 

166 and the small sample size of available studies, the change in cut-in speed between treatment and control 
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167 (Δ cut-in speed) was used as the estimate of treatment magnitude. Thus, the analysis focused on the effect 

168 of relative rather than absolute change in curtailment cut-in speed.

169 We used a random effects meta-analysis that accounts for heterogeneity in the true effect 

170 (between-study variance) and sampling error (within-study variance; [24]). The inclusion of between-

171 study variance (i.e., the random effect τ) allows for the incorporation of additional uncertainty in the 

172 analysis by assuming the true effect is a random variable that is realized at different magnitudes in 

173 different studies. Confidence intervals (90% or 95% depending on the estimator used) for control and 

174 treatment fatality estimates were converted into standard error (SE) estimates assuming an approximately 

175 normal distribution. While confidence intervals were slightly asymmetrical, a normal approximation was 

176 the best available strategy for conversion given the variation in fatality estimators used across studies. For 

177 independent studies (i.e., those with no shared control), standard error estimates of the RR were 

178 calculated using the delta method [25,26]. In instances where multiple studies shared a common control 

179 (i.e., were conducted simultaneously at the same project site; n=23), the correlation among the studies 

180 was calculated by decoupling the associated dependence into a single estimate of uncertainty for each 

181 study [26,27]. In instances where no estimate of uncertainty was provided in the original study, the mean 

182 SE of all studies after decoupling was applied to the estimate. 

183 To conduct the meta-analysis and explore the possible relationships between Δ cut-in speed and 

184 bat fatality rates, we ran two types of models with the RR as the dependent variable and Δ cut-in as the 

185 primary explanatory variable, with control cut-in speed included as an additional covariate. Using the 

186 ‘metagen’ and ‘metareg’ functions from the meta R package [28] we tested: 1) non-linear categorical 

187 model specifications where studies were binned into three discrete categories to simplify model fitting 

188 (1= Δ cut-in values ≥ 0.5 and < 1.4 m/s, 2= Δ values ≥1.4 and < 2.6 m/s, and 3= Δ values ≥ 2.6 m/s); and 

189 2) linear continuous model specifications that treated Δ cut-in as a continuous variable. As the categorical 

190 model ignored the ordinal relationships among treatment groups, the continuous model was implemented 

191 to help determine the degree of bias in this approach. We also explored the influence of bin choice on the 
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192 fit of the categorical model (Appendix A) and other types of models that test for non-linear relationships 

193 in fatality ratio and Δ cut-in (e.g., continuous quadratic relationships) before determining the best 

194 approach for this question.

195 For all model types, variation in individual study precision (within-study variance) was accounted 

196 for using a weighted regression approach, so that studies with higher precision influenced the model 

197 parameter estimates more than studies with lower precision. Study weight was determined as a function of 

198 the inverse square of the study standard error plus the overall between-study variance (τ2). τ2 was 

199 estimated using a restricted maximum likelihood approach [29]. One study (Talbot Wind) was determined 

200 to be an outlier and was removed due to disproportionately high leverage compared other studies. 

201 Additional covariates included rotor diameter (RD) and geographic region. Geographic region (Northeast, 

202 East, Midwest/West) was based upon EPA ecoregions (https://www.epa.gov/eco-research/ecoregions) but 

203 consolidated to ensure enough studies per category for inclusion in the model (Table 1). Hub height was 

204 considered for inclusion as a covariate but had little variation across studies (n=30 studies with hub height 

205 of 80 m). There was not enough data to consider interactions among these covariates. We also lacked data 

206 to consider controlling site dependencies among studies using a random effect. We examined between-

207 study heterogeneity and model goodness of fit using Cochran’s Q (QE), τ2, and I2 model statistics [30]. 

208 Model selection was performed based on AICc values and model weights were calculated based on these 

209 values for each model type separately. 

210 Meta-analysis Power Analysis

211 To determine the number of studies required in a random effects meta-analysis to detect relative 

212 changes in RR with changing cut-in speed reliably, we implemented a power analysis at the meta-analysis 

213 scale using a simulation approach [31]. We conducted meta-analysis power analyses for the non-linear 

214 categorical and linear continuous descriptions of the relationship between Δ cut-in speed and RR. For the 

215 categorical relationship power analysis, simulations were designed using the Δ cut-in speed categories 

216 defined above to replicate the meta-analysis under multiple scenarios. The number of studies per Δ cut-in 
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217 category, fatality reduction for the first Δ cut-in speed category (β0), and the subsequent reduction in the 

218 second and third categories (β1, β2), were varied across simulations. The following linear regression 

219 equation was used for the categorical model:

220 𝑅𝑅 =  𝛽0 +  𝛽1𝑋1 + 𝛽2𝑋2 + 𝜀 + τ

221 where X1 and X2 are dummy covariates that represent Δ cut-in Categories 2 and 3, respectively. The 

222 uncertainty from the Gaussian error term (ε) and inter-study differences (τ) were added by using a normal 

223 distribution with a mean of 0 and a standard deviation equal to that observed in the fatality ratio of 

224 control-treatment data (Table 1; SD = 0.24). We used a uniform distribution to randomly assign a SE to 

225 each simulated study, which ranged between the minimum and maximum of the observed study standard 

226 errors (Table 1; range: 0.05-0.34). Once the model was simulated, we used the methods described above 

227 to estimate parameters. Each scenario was simulated 10,000 times with 5, 10, 20, and 30 studies per Δ 

228 cut-in category to achieve precise estimates of power. The statistical power of each parameter (β0, β1, and 

229 β2) and sign error (the probability that the estimate was the same sign as the given parameter; [32]) were 

230 calculated to determine the effectiveness of the model in estimating the scenario parameters. Power was 

231 determined by examining whether the results were significantly different from the value of no effect (1 

232 for β0, and 0 for β1 and β2; α = 0.05), and the sign error was computed by comparing the signs of the true 

233 parameter value and the estimated value.

234 For the linear continuous models, Δ cut-in speed was randomly assigned to each study. To do 

235 this, we used the same category framework (where 5, 10, 20, or 30 studies were assigned to each Δ cut-in 

236 category), and studies in this category were randomly assigned a Δ cut-in speed from that category that 

237 was observed in the studies included in the meta-analysis. These values were then scaled (centered on 

238 zero) and used to build a linear model:

239 𝑅𝑅 =  𝛽0 +  𝛽1𝑋1 + 𝜀 + τ

240 where 𝑋1 is the scaled continuous Δ cut-in speed value for each study.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 17, 2021. ; https://doi.org/10.1101/2021.08.17.456654doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.17.456654
http://creativecommons.org/licenses/by/4.0/


12

241 Five scenarios were simulated for the power analysis for the two model types (Table 2). Each 

242 scenario was replicated at four different sample sizes (5, 10, 20, and 30 studies per Δ cut-in category). 

243 Four of these scenarios were selected a priori to explore our power to detect different types of 

244 relationships between fatality ratio and Δ cut-in. We included three scenarios thought to represent 

245 plausible hypotheses based on observed results to date: 1) a 25% linear decrease in fatality per 1 m/s 

246 increase in cut-in speed; 2) a 50% initial decrease in fatality with Category 1 Δ cut-in speed and 

247 subsequently stable fatality rates; and 3) an initial 50% decrease in fatality with Category 1 Δ cut-in speed 

248 and then 10% subsequent declines in fatality for Categories 2-3. The fourth scenario, a more extreme 50% 

249 exponential decrease per 1 m/s increase in cut-in speed, was intended to provide context for interpreting 

250 the results of other scenarios. We also included an a posteriori ‘current knowledge’ scenario that used 

251 parameter estimates obtained from the top model in our meta-analysis (above).

252
253 Table 2. Parameters used in simulation scenarios for the meta-analysis scale power analysis of bat fatality with 
254 changes in cut-in speed. A total of 20 scenarios for each model type were run with different β0, β1, and β2 values and 
255 differing numbers of studies per category (n Studies). Parameters are log-transformed.

Model Scenario β0 β1 β2 n Studies

Non-Linear 
Categorical

Current Knowledge -0.67 -0.19 -0.46 5, 10, 20, 30

25% Linear Decrease -0.29 -0.41 -1.1 5, 10, 20, 30
50% Decrease then Stable -0.69 0.00 0.00 5, 10, 20, 30
50% Decrease then 10% Decline -0.69 -0.22 -0.51 5, 10, 20, 30
50% Exponential Decrease -0.69 -0.69 -0.99 5, 10, 20, 30 

Linear Continuous Current Knowledge -0.84 -0.17  5, 10, 20, 30
25% Linear Decrease -0.59 -0.59 5, 10, 20, 30
50% Decrease then Stable -0.52 -0.27 5, 10, 20, 30
50% Decrease then 10% Decline -0.70 -0.5 5, 10, 20, 30
50% Exponential Decrease -1.04 -0.89 5, 10, 20, 30 

256

257 Thus, this power analysis represented a combination of a priori and a posteriori approaches designed to 

258 understand the efficacy of the current study, estimate the number of studies needed to reduce uncertainty 

259 in the meta-analysis, and inform the likelihood that the observed data could be generated by the a priori 

260 scenarios.
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261 Fatality Estimation Power Analysis

262 To understand the traits of effective curtailment experiments and provide guidelines for future 

263 studies, we used a data simulation approach to determine the effectiveness of project-scale curtailment 

264 studies at detecting differences in bat fatality rates using a hierarchical simulation approach [33]. Three 

265 different data sets were simulated to replicate the process by which true fatalities rates are estimated in 

266 curtailment field studies. First, the true number of bat mortalities was simulated using a Poisson process. 

267 New fatalities were generated each night for each turbine using a fatality rate per turbine-night as a 

268 Poisson mean. Second, carcass persistence rate was estimated using a carcass persistence trial format. 

269 Here, we used the exponential distribution to simulate the survival rates of 50 carcasses at the site based 

270 on the predefined median number of days of carcass persistence. Carcass searches were assumed to occur 

271 every three days for the duration of the study, and the survival probability of the carcasses was used to 

272 estimate daily carcass persistence probabilities for the survey. Third, searcher efficiency data were 

273 simulated based on 100 detection trials using a binomial distribution. These data sets were combined to 

274 determine the number of carcasses detected by the surveyors at each survey interval. Detection 

275 probability for each carcass was a function of carcass persistence, which changed in a time-dependent 

276 manner following the fatality event, and searcher efficiency, which was constant across time. The number 

277 of observed mortalities was determined using a binomial draw from the combined probability of 

278 persistence and detection for each fatality.

279 Forty-eight scenarios were used in this power analysis to explore the effects of effect size, study 

280 period, and carcass persistence on study design, and were based upon information from an early version 

281 of the subset AWWIC database with curtailment studies (June 2019). Simulation parameters were 

282 selected based on averages and ranges from the interim database, and are useful approximations of values 

283 in typical curtailment studies. The curtailment treatment effect was defined as either a 25% or 50% 

284 reduction in fatality rates (n=24 scenarios for each effect). These values were selected basedon the 50% 

285 reduction approximated the average fatality reduction. The number of turbines (10 or 15), number of 
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286 experiment nights (45 or 90), fatality rate (0.1 or 0.3 mortalities/turbine-night), and carcass persistence 

287 rate (3, 6, or 9 mean days of persistence) were varied to determine the effect of these variables on 

288 statistical power. The number of turbines and experiment nights are combined as turbine-nights to 

289 describe study effort. Chosen carcass persistence values tended to be on the lower end of the range of 

290 observed values to test the power of these studies in more challenging environmental conditions. 

291 Detection probability was fixed at 50% for all studies, the approximate median of the described studies.

292 Data were simulated for each scenario using base functions in R v. 3.6 [17] and package simsurv 

293 [34]. Package GenEst [35] was then used to estimate the true number of fatalities for each treatment group 

294 with the simulated data sets. This process was repeated 50,000 times to obtain consistent estimates of 

295 statistical power. This generalized fatality estimator (‘GenEst’) differs from those used by studies in the 

296 AWWIC database but is considered the current best practice for estimating fatality from wind turbines 

297 when the sample size is sufficiently large to estimate known biases [35]. The Bayesian posterior 

298 distribution of the number of fatalities for each treatment group was estimated using the function ‘estM’ 

299 in package GenEst. Simulated carcass observations, carcass persistence trial data, and searcher efficiency 

300 data were used as inputs along with assumed static values for the proportion of area searched (50% for all 

301 turbines) and the search schedule (once every three days for all turbines). The mean number of mortalities 

302 in the 25% and 50% reduction treatment groups (along with 95% credible intervals) were estimated using 

303 a parametric bootstrapping approach (n = 1000). The 95% credible interval of the difference of the 

304 GenEst-derived fatality estimates between these two groups was calculated to determine overlap with 

305 zero and used to estimate statistical power for each scenario, and was determined by subtracting the 

306 bootstrapped simulations for each treatment group. If a simulation study group did not detect any 

307 carcasses, we did not include it in the power analysis calculation.

308

309 Results
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310 Fatality ratios in the database representing fatality reduction due to curtailment ranged from 0.13 

311 (87% decrease in fatalities) to 1.00 (0% decrease in fatalities) with an arithmetic mean of 0.46 (53% 

312 decrease; n=35 studies). Lower fatality ratio values represented a greater reduction in bat fatality per 

313 turbine-hour, while a value of one indicates no difference between curtailment treatment and control (0% 

314 decrease). When examining fatality ratios by Δ cut-in category, the mean fatality ratio for Category 1 was 

315 0.60 (n = 12), Category 2 was 0.41 (n = 18), and Category 3 was 0.37 (n = 6), suggesting a possible non-

316 linear relationship with Δ cut-in speed (Fig. 1).

317 Figure 2. The relationship between bat fatality and curtailment difference (Δ cut-in; calculated as a change in m/s 
318 between the treatment and control groups) for 16 wind farms in North America. Some wind farms have multiple 
319 data points as there were multiple years of experiments or multiple treatments tested within a year (n=36 studies). 
320 Error bars represent the standard error of the fatality ratio. Talbot Wind was excluded from the meta-analysis as an 
321 outlier.

322

323 Meta-analysis

324 Thirty-five individual studies (from 16 projects) were included in the meta-analysis modeling. 

325 The estimated fatality ratio across all studies (i.e., the estimate before controlling for Δ cut-in speed) was 

326 0.44 (95% CI: 0.36-0.49, z = -9.18, p < 0.001; Fig. 2). For both categorical and continuous model types, 

327 the models with Δ cut-in and control cut-in as covariates represented the best model fit, as indicated by 

328 AICc (Appendix A). Comparing across model types, the linear model represented the best fit (AICc = 

329 55.67), likely due to model simplicity; the categorical model showed slightly worse fit (AICc=58.48). A 

330 forest plot was used to show that there was not evidence of publication bias.

331 The best fit linear model had a large and significant amount of residual heterogeneity between 

332 studies (QE32= 50.50, p = 0.02), with an among-study variance estimate (τ2) of 0.10 (CI: 0.00, 0.19), while 

333 the percentage of overall variation across studies due to heterogeneity (I2) was 39.2% (CI: 1.1-53.9%). 

334 Based on the linear model, the RR tended to decrease with increasing Δ cut-in (slope parameter β = -0.17, 

335 CI: -0.36-0.02; Fig 3); this relationship nearly met the requirement for statistical significance (z = -1.78, p 

336 = 0.07). Control cut-in speed was not a significant covariate (β = -0.14, CI: -0.32-0.05, z = -1.47, p = 
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337 0.14). There was no significant effect of rotor diameter (95% CI: -0.16- 0.24, z = 0.35, p = 0.72) or 

338 geographic region (Midwest vs. East, CI: -0.35- 0.49, z = 0.32, p = 0.75; Northeast vs. East, CI: -0.65, 

339 0.33, z = -0.63, p = 0.53) on bat fatality ratios. The addition of these covariates did result in a slight 

340 decrease in model heterogeneity, however (rotor diameter: QE31= 50.0, p = 0.02, τ2 = 0.11, τ2 CI = 0.00-

341 0.20, I2 = 40.1%, I2 CI=1.9-55.2%; geographic region: QE30= 46.3, p = 0.03, τ2 = 0.11, τ2 CI = 0.00-0.21, 

342 I2 = 38.7%, I2 CI=0.0-55.3%).

343 Figure 3. The effect of curtailment regime on bat fatalities at terrestrial wind farms in North America from a meta-
344 analysis incorporating within- and among-study variance. The plot shows the fatality ratio (black square) and 95% 
345 CI (error bars) of individual studies along with the mean effect size for each Δ cut-in category (grey diamonds). The 
346 95% confidence interval of the overall effect is shown at the bottom (black diamond). Individual studies were 
347 weighted (out of 100%) based on study uncertainty (CI, in brackets) and distance from category mean effect, with 
348 square size indicating relative weighting. A fatality ratio of 1 indicates no difference in fatality rate between the 
349 control and experimental curtailment treatments.

350

351 The best fit model with a categorical response to Δ cut-in speed also had a large and significant 

352 amount of residual heterogeneity between studies (QE31= 50.76, p = 0.01), with an among-study variance 

353 estimate (τ2) of 0.11 (CI: 0.01-0.21), while the percentage of overall variation across studies due to 

354 heterogeneity (I2) was 41.2% (CI: 2.9-56.0%). When examining fatality reduction by Δ cut-in speed, the 

355 model predicted a fatality ratio estimate for Category 1 of 0.52 and represented a significant reduction in 

356 fatality rates (β=-0.67, CI: -0.97 to -0.37, z = -4.38, p < 0.0001).

357 Figure 4. Meta-analysis estimated linear (black line) and categorical (pink) effect of Δ cut-in speed on bat fatality 
358 ratio at North American wind energy projects. Black dots represent fatality ratios for individual studies; note that 
359 uncertainty in individual study estimates, which influenced the meta-analysis parameter estimates, are not shown 
360 here (see Table 2 for these values). Categorical model points are based on mean Δ cut-in speed for the category. 
361 Error bars are 95% confidence intervals of estimates.

362

363 The model estimates for fatality ratios for Categories 2 and 3 were 0.42 and 0.34 respectively, but the 

364 marginal change of increasing Δ cut-in from Category 1 to Category 2 (β1 = -0.19, CI: -0.59-0.20, z = -

365 0.96, p = 0.33) and from Category 1 to Category 3 (β2 = -0.46, CI: -1.02-0.11, z = -1.58, p = 0.11) were 

366 small, with high amounts of uncertainty in the estimates (Fig. 3).Control cut-in speed was not a 

367 significant covariate (β = -0.13, CI: -0.32-0.06, z = -1.31, p =0.19). Analysis of study-scale covariates 
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368 revealed no significant effect of rotor diameter (95% CI: -0.19- 0.23, z = 0.16, p= 0.87) or geographic 

369 region (Midwest vs. East, CI: -0.35- 0.55, z = 0.45, p = 0.65; Northeast vs. East, CI: -0.71, 0.32, z = -0.73, 

370 p = 0.46) on bat fatality ratios. The addition of these covariates did not result in decreases in model 

371 residual heterogeneity.

372

373 Meta-analysis Power Analysis

374 Power analysis of the categorical model revealed that for most scenarios, five studies were 

375 required to have adequate statistical power (>0.8) to determine an effect of curtailment on the fatality 

376 ratios for Category 1 (β0; 0.5-1.3 m/s Δ cut-in; Fig. 4). The exception was the 25% linear decrease 

377 scenario, which required over 30 studies to achieve adequate power due to smaller changes at lower Δ 

378 cut-in speeds. The statistical power of β1 and β2 (Δ cut-in Categories 2-3) were more variable across 

379 scenarios (Fig. 4). For β1 (1.5-2.3 m/s Δ cut-in speed), the 50% exponential decrease scenario had 

380 sufficient power at 20 or more studies, and the 25% linear decrease scenario had sufficient power at 30 

381 studies per group, but no other scenario met the criteria for sufficient power. For β2 (3-3.5 m/s Δ cut-in 

382 speed), two scenarios achieved sufficient power with less than 10 studies per group (50 % exponential 

383 decrease, 25% linear decrease), while another two achieved sufficient power with 20-30 studies per group 

384 (50% decrease followed by 10% decreases, and current knowledge scenario). Sign error decreased with 

385 increasing sample size for all parameters except those that were set at zero (β1 and β2 in the 50% decrease 

386 then stable scenario) and decreased below 10% at 10 studies per category for most other parameter 

387 estimates. 

388 Figure 5. The relationship of statistical power and sign error with sample size in the categorical meta-analysis-scale 
389 power analysis of curtailment studies to reduce bat fatality rates. We examined the relationship between the number 
390 of studies per category of Δ cut-in speed (Category 1 = β0 = 0.5-1.3 m/s Δ cut-in speed, Category 2 = β1 = 1.5-2.3 Δ 
391 cut-in speed, Category 3 = β2 = 3-3.5 m/s Δ cut-in speed) and 1) the statistical power to detect change between 
392 categories (at top), and 2) the rate at which models would be expected to incorrectly predict the sign of parameter 
393 estimates (at bottom). Colors represent different curtailment regime scenarios. The horizontal dashed lines represent 
394 the 0.8 power threshold and 50% sign error threshold, respectively.

395
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396 In comparison, the continuous model often had higher power, particularly for constant or 

397 increasing relationships between RR and Δ cut-in (Fig. 5). Power to detect linear trends (β1), particularly 

398 for the scenarios with decreases at Δ cut-in speeds greater than 1.3 m/s, was greater than 0.8 even with 

399 only 5 studies per group.  Only the 50% then stable and current knowledge scenarios showed poor power, 

400 likely needing 20-30 studies per group to measure the decrease accurately. The average value (or 

401 intercept, β0) was more difficult to precisely estimate, though this parameter is less important to the 

402 present study as it does not estimate the change in effect with Δ cut-in. As the current knowledge scenario 

403 had the smallest slope out of all the scenarios, it required the largest sample size to have sufficient 

404 statistical power—around 30 studies per category. Sign error was low across all scenarios; it was lower 

405 than 10% whenever the number of studies per group was greater than 10.

406 Figure 6. The relationship of statistical power and sign error with sample size in the linear continuous meta-analysis-
407 scale power analysis of curtailment studies to reduce bat fatality rates. We examined the relationship between the 
408 number of studies per Δ cut-in speed category (Category 1 = β0 = 0.5-1.3 m/s Δ cut-in speed, Category 2 = β1 = 1.5-
409 2.3 Δ cut-in speed, Category 3 = β2 = 3-3.5 m/s Δ cut-in speed) and 1) the statistical power to detect change in 
410 fatality ratio (at top), and 2) the rate at which models would be expected to incorrectly predict the sign of parameter 
411 estimates (at bottom). Colors represent different curtailment regime scenarios. The horizontal dashed lines represent 
412 the 0.8 power threshold and 50% sign error threshold, respectively.

413

414 Fatality Estimation Study Power Analysis

415 At the scale of individual curtailment experiments at wind facilities, many factors influenced 

416 these studies’ statistical power and sign error. More turbine-nights increased the power of studies in all 

417 scenarios (Fig. 6). However, the importance of turbine-nights varied with several variables outside of 

418 researcher control, such as effect size and carcass persistence. With a 25% fatality reduction between 

419 experimental and control treatments, no tested scenario achieved statistical power of 0.8 when the control 

420 fatality rate was low (0.1 mortalities/turbine-night). For scenarios with a 25% reduction in fatality, 

421 statistical power was high only when fatality rate, carcass persistence, and turbine-nights were also high 

422 (Fig. 6A). The statistical power of studies in the 50% fatality reduction scenarios was more resilient to 

423 changes in sampling period and carcasses persistence than the lower-reduction scenarios. Statistical 

424 power was above the 0.8 threshold across almost all scenarios with high fatality rates (0.3 fatalities per 
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425 turbine-night), and a large number of turbine-nights yielded strong statistical power even when the fatality 

426 rate was lower (Fig. 6B). Sign error followed a similar pattern, errors occurred more often when fatality 

427 rates and fatality reduction from curtailment were low (Fig. 6C). When fatality reduction was 50%, sign 

428 error was almost always less than 10% (Fig. 6D). In summary, these simulation results suggest that many 

429 curtailment study designs could be effective at detecting differences between treatments in situations with 

430 high fatality rates and high carcass persistence. None of the tested study designs were effective in 

431 detecting change when fatality reduction and carcass persistence were low. Based on the studies in our 

432 database (which had a median number of 14 turbines and 75 experimental nights, 1050 turbine-nights, 

433 and 16 of 36 studies with percent fatality reductions <50%), many studies could have low power and high 

434 sign error if fatality rate and carcass persistence is low.

435 Figure 7. The relationship of statistical power (A, B) and sign error (C, D) with sample size for curtailment 
436 treatment groups using a simulation approach (n=50,000) using the Generalized Mortality Estimator (GenEst). 
437 Variation in power across turbine-nights of study (T-N), fatality rates, and carcass persistence (in mean days of 
438 persistence) is shown when curtailment is simulated to reduce fatality by 25% (A, C) and 50% (B, D). Simulations 
439 assume a three-day search interval for fatality searches and 50% searcher efficiency.

440

441 Discussion

442 Like past studies, we found evidence that turbine blanket curtailment reduces fatality rates of bats 

443 at wind farms at sites that have implemented the technique (as reviewed by Arnett et al. [36]). However, 

444 the marginal effect of increasing turbine cut-in speed on fatality rates is more difficult to assess. Using a 

445 meta-analysis approach, we estimated that the effect of a 0.5-1.3 m/s increase in cut-in speed resulted in a 

446 fatality ratio of 0.52, or a 48% reduction in bat fatalities. Estimated reductions in bat fatalities at higher ∆ 

447 cut-in speeds were not found to be significantly different than this value and had high modeled 

448 uncertainty. The sample size was small, particularly at higher ∆ cut-in speeds. Within the context of the 

449 meta-analysis power analysis, we only had the statistical power to consistently detect reductions of ~50% 

450 per 1 m/s ∆ cut-in speed. Combined with our meta-analysis results, it appears unlikely that larger 

451 increases in ∆ cut-in speeds beyond Category 1 result in >50% additional fatality reduction (e.g., the 50% 

452 exponential decrease scenario). Given that we lacked statistical power to detect changes in fatality ratio 
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453 less than 50%, it is possible the true effect could still be large enough to be ecologically relevant to bat 

454 conservation and management. Other concurrent efforts to address a blanket curtailment found that 

455 increased curtailment speeds did significantly affect bat mortality [37]. While the methods and data set 

456 differ from the present study, Whitby et al. [37] corroborates our estimate of effect size and also show 

457 how volatile these results can be when sample sizes are low.

458 Uncertainty in fatality reduction was variable across studies. While this imprecision was 

459 accounted for in the meta-analysis framework and propagated into parameter estimates, uncertainty 

460 should be minimized through careful study design to maximize the value of each study. Through our 

461 fatality estimation power analysis, we found that with high fatality rates (≥0.3 fatalities per turbine-night) 

462 and carcass persistence (≥6-9 days), experimental studies were consistently successful in detecting 25-

463 50% fatality reductions. However, studies with low fatality rates (0.1 fatalities per turbine-night) and 

464 carcass persistence (3 days) were not adequate to detect 25% differences in fatality rates between 

465 treatment and controls groups even with high numbers (>2500) of turbine-nights. These results suggest 

466 that effective monitoring studies can be conducted when assumptions are met (e.g., detection probability 

467 is at least 50%), some number of studies could have low statistical power when using the GenEst 

468 modeling framework. As the additive effect of further increases in cut-in speed is uncertain, continuing to 

469 conduct high quality curtailment experiments with a high number of experimental turbine-nights, 

470 particularly if fatality rates are expected to be low, would provide data to better estimate the effect of 

471 blanket curtailment and inform conservation and management activities for bats [38].

472 Assessing the likelihood of curtailment effects on bat fatalities

473 While the overall effect of blanket curtailment on bat fatality was clear, the relative effect of 

474 incrementally larger increases in curtailment cut-in speed was not. This result was likely due to both small 

475 effect size and sample size. The results of the current knowledge scenario in the meta-analysis power 

476 analysis suggested a low likelihood of detecting an effect of higher cut-in speeds with either the non-

477 linear categorical or linear continuous models, likely requiring around 25 additional studies at higher cut-
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478 in speeds to precisely measure the effect. While a posteriori power analyses, such as this scenario, are 

479 redundant with the statistical test on which they are based, these tests can still be useful for evaluating 

480 study success and determining how much additional sampling effort is required [32].

481 However, as the current knowledge scenario parameter estimates are not precisely measured, the 

482 a priori scenarios provide additional guidance on what effects are observable consistently within the 

483 current analytical framework. At the current sample size, we have the power to detect differences in the 

484 categorical framework at Δ 2 m/s for the scenarios with the highest magnitude decrease (25% linear and 

485 50% exponential) and detect linear trends for these same scenarios as well as the 50% initial decline/10% 

486 long-term decline scenario. Given the lack of effects detected in the meta-analysis using the categorical 

487 model (at higher Δ cut-in speeds), and the marginal effects detected in the linear model, it is unlikely that 

488 the 25% linear or 50% exponential decrease scenarios represent the true effect. Thus, a smaller decrease is 

489 more likely, though more data are needed to measure the effect precisely.

490 It is unlikely that fatality reduction and absolute cut-in speed are linearly related, as there is a high 

491 potential for varying effects across sites [5,39], but control cut-in speed was not an important predictor in 

492 our models, suggesting that the RR approach was effective in standardizing effect sizes across studies. 

493 Neither rotor diameter nor geographic region explained much variation in RR, which may relate to the 

494 scale of the variable; in ecoregion, just three broad geographic areas were used due to sample size 

495 limitations. Previous research has also indicated that bat fatalities increased exponentially with tower 

496 height [8,40], suggesting that more research is needed on the importance of turbine dimensions. Bat 

497 mortality risk has also previously been related to habitat characteristics such as forested areas, slope, 

498 temperature, and humidity [41,42], and mountain ridges have been recognized as important during 

499 migration [43]. If more studies are completed across a wider range of study conditions, then detecting 

500 sources of fatality reduction variation would be more effective. Testing curtailment efficacy at locations 

501 with lower overall fatality rates could also be instructive and curtailment studies are suggested for sites 

502 that typically have high enough fatality rates to elicit conservation concern.
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503 Differentiation of fatality rates by species or species group could also help reduce our uncertainty. 

504 Species-level traits such as migratory strategy, dispersal distance, and habitat association likely play an 

505 important role in fatality risk [44]. For instance, long-distance migrants such as hoary bats, silver-haired 

506 bats, and eastern red bats comprise a majority of fatalities at terrestrial wind energy facilities in North 

507 America [3,8]. The project-specific risk is then correlated to species distributions, migratory routes, and 

508 flight heights, among other characteristics [45]. Incorporating species-level information could improve 

509 our understanding of bat fatality reduction, but this would require that species-level fatality estimates, or 

510 at least species-group fatality estimates (i.e., migratory tree bats vs. Myotis spp.), be reported from 

511 curtailment studies to allow for comparisons. Such estimates were not consistently reported by the studies 

512 included in our analysis, often due to insufficient sample size.

513 The precision of meta-analysis parameters is likely to be overestimated in this study. While the 

514 random effects meta-analysis framework adds uncertainty to model estimates based on among-study 

515 variance [24], we did not account for site dependence as modeling approaches yielded unstable results. 

516 Additionally, turbine operation, mortality estimator selection, and blanket curtailment implementation 

517 varies substantially between sites (including time of year, time of night, species composition affected, 

518 choice of cut-in speed, and turbine feathering), and these differences could affect the results in ways that 

519 are difficult to incorporate into meta-analyses due to incomplete documentation of these protocols. While 

520 we controlled for some of these potential biases by including variables like control cut-in speed and multi-

521 treatment controls, the remaining uncertainties will likely be reduced best with increased sample size or 

522 protocol documentation.

523 Recommendations for future studies

524 If blanket curtailment greater than 1.5 m/s above manufacturer specifications continues to be 

525 implemented at wind facilities, additional experiments should be conducted to understand the relative 

526 benefit of these increased cut-in speeds for reducing bat fatalities. The number of studies that tested ∆ cut-

527 in speeds greater than 1.5 m/s were relatively few, and more studies that target these larger changes are 
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528 needed. Estimates from the meta-analysis power analysis suggest that as many as 25 additional studies at 

529 ∆ 2 m/s cut-in speed would be needed to effectively exclude the possibility of a 20% reduction in fatality 

530 (and even more are needed to detect an additional 10% reduction). Conducting studies that compare 

531 multiple treatment groups against a control during the same time period at the same location would 

532 provide greater inferential power to answer such questions; though the costs of each individual study 

533 would increase compared to single treatment studies, more could be gained in terms of understanding the 

534 benefits of higher ∆ cut-in speeds. At the individual study level, statistical power is dependent on many 

535 factors outside of the control of study designers (e.g., fatality rates and carcass persistence). Prior 

536 knowledge of these parameters is valuable for designing effective studies, particularly if carcass 

537 persistence rates are expected to be lower than average (e.g., due to high scavenging activity at the site).

538 To facilitate inclusion of studies in future meta-analyses, curtailment experiments should report 

539 fatality estimates for both control and treatment groups, carcass persistence rates, searcher efficiency, 

540 search frequency, search area coverage, number of turbine-nights of study, curtailment regime (including 

541 whether feathering occurred), and turbine makes/models, with associated uncertainty values when 

542 relevant. When sample size allows, fatality estimates should be reported by species or species group (e.g., 

543 Myotis) rather than for all bat species combined to facilitate taxon-specific assessments of curtailment 

544 efficacy. 

545 Newer operational minimization strategies have been developed to achieve similar fatality 

546 reductions as blanket curtailment but with lower energy loss at higher cut-in speeds [46,47]. “Smart” 

547 curtailment strategies, for example, which use additional environmental data besides wind speed to 

548 inform the assessment of mortality risk and vary curtailment implementation, show promise to reduce the 

549 economic impact of curtailment on wind energy projects [48–50]. Several deterrent systems that 

550 discourage bats from approaching turbines are also in development and show some promise for reducing 

551 fatalities while minimizing power loss [11,50–52], and could be particularly beneficial if used in 

552 combination with curtailment at lower wind speeds. While such approaches are still being evaluated, they 
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553 may eventually represent a more cost-effective alternative to blanket curtailment, particularly blanket 

554 curtailment at higher wind speeds. 

555 Conclusions

556 The results of our meta-analysis suggest that blanket curtailment is effective at reducing bat 

557 fatalities at terrestrial wind energy facilities, with the meta-analysis describing a mean fatality ratio of 

558 0.44, or a 68% reduction in bat fatalities. Given our small sample size, particularly at higher Δ cut-in 

559 speeds, our statistical power was limited to test the benefit of increasing cut-in speeds more than 1-1.3 

560 m/s above the control cut-in speed. The power analysis suggests that differences in fatality ratio of 50% or 

561 greater were often detectable even with small sample sizes (> 80% chance of significance), so it is likely 

562 that the true value of incremental increases in Δ cut-in speed is below this 50% threshold. Whitby et al. 

563 [37] suggest this is the case and that result combined with our marginally important effect in this study 

564 provides more evidence that higher cut-in speeds can yield fewer mortalities. Though the small sample 

565 sizes, low power in the present study, and variation in our respective results should engender caution 

566 when interpreting these findings. Given the scope of bat fatalities at terrestrial wind farms in North 

567 America [3,53], we must learn more about the management effectiveness of curtailment, particularly at 

568 larger Δ cut-in speeds. Further development of “smart” curtailment strategies may also reduce fatalities 

569 while moderating impacts to project finances [49].

570 The number of available studies in the current analysis limited our analytical options and findings 

571 in several ways. If blanket curtailment continues to be a common strategy at wind speeds at ~5 m/s or 

572 above (i.e., Δ cut-in speed of >1.5 with a standard factory cut-in speed of 3.5 m/s), we would recommend 

573 conducting additional experimental curtailment studies with blanket curtailment treatments at these higher 

574 cut-in speeds to strengthen our understanding of the relationship between increasing cut-in speeds and bat 

575 fatality rates. Such studies must be carefully designed, ideally using an adaptive management framework 

576 [54], to consider such variables as the expected fatality rate and carcass persistence rate when selecting a 

577 search interval and defining the number of turbine-nights to monitor. Studies at sites with expected low 
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578 fatality rates and low carcass persistence, in particular, must be carefully designed, and power analyses 

579 are an important tool to ensure adequate statistical power to detect changes across treatment and control 

580 groups. While such studies would improve our understanding of the relationship between fatality and cut-

581 in speed, given the results of our power analysis, a large number of these studies may be required to 

582 develop reliable estimates across sites for larger Δ cut-in speeds. While this could be costly, the potential 

583 effect of increasing cut-in speed on bat mortality could be ecologically important for species of 

584 conservation concern.
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