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19 Abstract

20 A number of neurologic diseases, including a form of amyotrophic lateral sclerosis and others 

21 associated with expanded nucleotide repeats have an unconventional form of translation called 

22 repeat-associated non-AUG (RAN) translation. Repeat protein products accumulate and are 

23 hypothesized to contribute to disease pathogenesis. It has been speculated that the repeat regions 

24 in the RNA fold into secondary structures in a length-dependent manner, promoting RAN 

25 translation. Additionally, nucleotides that flank the repeat region, especially ones closest to the 

26 initiation site, are believed to enhance translation initiation. Recently, a machine learning model 

27 based on a large number of flanking nucleotides has been proposed for identifying translation 

28 initiation sites. However, most likely due to its extensive feature selection and limited training 

29 data, the model has diminished predictive power. Here, we overcome this limitation and increase 

30 prediction accuracy by a) capturing the effect of nucleotides most critical for translation 

31 initiation via feature reduction, b) implementing an alternative machine learning algorithm better 

32 suited for limited data, c) building comprehensive and balanced training data (via sampling 

33 without replacement) that includes previously unavailable sequences, and, d) splitting ATG and 

34 near-cognate translation initiation codon data to train two separate models. We also design a 

35 supplementary scoring system to provide an additional prognostic assessment of model 

36 predictions. The resultant models have high performance, with 85.00-87.79% accuracy 

37 exceeding that of the previously published model by >18%. The models presented here are then 

38 used to identify translation initiation sites in genes associated with a number of neurologic repeat 

39 expansion disorders. The results confirm a number of experimentally discovered sites of 
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40 translation initiation upstream of the expanded repeats and predict many sites that are not yet 

41 established. 

42 Abbreviations

RAN Repeat-associated non-AUG

RLI Repeat length-independent

KCS Kozak consensus sequence

KSS Kozak similarity score

AUROC Area under receiver operating characteristic

ROC Receiver operating characteristic

RFC Random forest classifier
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43 Introduction

44 More than 40 neurologic diseases are caused by expansions of repeat nucleotide sequences in 

45 causative genes. The repeats range from three nucleotides, such as ‘CTG’ associated with 

46 myotonic dystrophy Types I and II, to up to 12 nucleotides, such as ‘CCCCGCCCCGCG’, 

47 associated with progressive myoclonus epilepsy. Protein products translated from expanded 

48 repeat sequences tend to accumulate and aggregate, and have been proposed to contribute to 

49 disease [1-9]. Interestingly, in some cases, the repeats have been shown to be translated in all 

50 three reading frames from both the plus and minus strands of the RNA [10] by a process termed 

51 repeat-associated non-AUG (RAN) translation. It is believed that an affinity of translational 

52 machinery to folded regions of the RNA may underlie translation of the repeat sequences. 

53 Translation may occur from sequences in a repeat length-independent (RLI) mechanism. 

54 Regardless of repeat length, sequences may be ordered in such a way that they naturally increase 

55 the affinity of translational machinery to initiate at a particular codon. In such a process, 

56 translation may initiate not only within the repeat region, but also from sites upstream of the 

57 repeat sequences. In this case, repeat peptides will be produced if a stop codon is not encountered 

58 by the translational machinery before encountering the repeats. The large number of nucleotides 

59 that comprise and precede repeat sequences make the identification of RLI translation initiation 

60 sites challenging without proper laboratory evidence or computational methods.

61 A machine learning model called TITER has been proposed to predict all translation initiation 

62 sites in a given sequence. It addresses multiple limitations of the only other such model (to our 

63 best knowledge) [11, 12] and remains an important predictive tool. It appears, however, that the 

64 large feature selection of TITER and limited training data impair its predictive accuracy. The 
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65 predictive models described in our investigations have 85.00-87.79%  accuracy that exceeds that 

66 of TITER. Our models reduce the feature selection to capture the effect of ten critical nucleotides 

67 that flank both sides of a putative translation initiation codon since a number of studies have 

68 demonstrated a strong impact of nucleotides within this range on translation initiation [13-20]. 

69 We also introduce two models tailored for ATG or near-cognate codons because of their 

70 differences in initiating translation [21, 22]. The models described here use an alternative 

71 machine learning algorithm better suited for limited data [23]. We also present unbiased training 

72 data through sampling techniques without replacement, using gene sequences that have been 

73 unavailable to TITER. Finally, we generate a scoring metric to supplement model predictions. 

74 The models confirm nearly all experimentally established translation initiation sites upstream of 

75 repeats and, importantly, predict multiple sites that have not yet been investigated.

76

77

78 Results

79 Kozak similarity score algorithm

80 Before applying machine learning, we evaluated the performance of a more straightforward 

81 algorithm that uses a limited number of nucleotides as predictors of translation initiation. This 

82 algorithm was designed to predict the ability of a codon to initiate translation based on the 

83 similarity of its surrounding sequence profile to the Kozak consensus sequence (KCS). The KCS 

84 is a nucleotide motif, identified to most frequently border the canonical translation initiation 

85 codon (ATG) and optimize translation initiation at the site. Although there exist slight variations, 
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86 this motif is typically accepted as the conserved pattern of the following underlined nucleotides 

87 bordering the AUG codon: CCRCCAUGG. The nucleotide designated by R is a purine, most 

88 typically adenine [13].

89 The sequence logo of the KCS (Fig 1) has been used to produce weighted scorings of identified 

90 translation initiation codons and observe notable trends. The sequence logo illustrates conserved 

91 nucleotides that tend to border ATG codons that initiate translation. The vertical length of each 

92 letter in the sequence logo is related to the observed probability for a particular nucleotide to be 

93 at a certain position, as well as the impact of the position on the efficiency of translation 

94 initiation. It is formulated by the Shannon method [24]. 

95

96 Fig 1. Schematic of the Kozak Similarity Score Algorithm. Based on the sequences flanking an input 

97 codon, the algorithm references the KCS Sequence Logo to assign the codon a score.

98

99 We designed a weighted scoring algorithm based on the KCS sequence logo and the ten bases 

100 preceding and following a codon. Each nucleotide of the 23-base sequence has a value assigned 

101 equal to the height of the nucleotide at its respective position, as illustrated in Fig 1. If a 

102 nucleotide is not present in a position, it is assigned a value of zero. These values are then 

103 summated, and the total divided by the maximal possible summated score (had each nucleotide 

104 in the sequence been assigned the largest possible value for its position). This division serves to 

105 make final values more feasible for interpretation. As opposed to the pre-normalized score range 

106 of about 0 to 0.5990, scores derived from the normalization procedure more conveniently range 
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107 from 0 to 1. Overall, the final output score, referenced as Kozak similarity score (KSS), of a 

108 codon is deduced by expression:

𝐾𝑆𝑆(𝑐𝑜𝑑𝑜𝑛) =  
1

𝐾𝑆𝑆𝑚𝑎𝑥

20

𝑝=1
𝑏𝑖𝑡𝑠(𝑛𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒𝑝)

109 In this expression, p denotes the position of a nucleotide bordering the codon. Values p=1, 2, 3, 

110 …, 10 designate the positions of the ten nucleotides (from left to right) on the left side of the 

111 codon, whereas values p=11, 12, 13, …, 20 designate the positions of ten nucleotides (from left 

112 to right) on the right side of the codon. Furthermore, bits(nucleotide) is the assigned height of a 

113 particular nucleotide with reference to the KCS sequence logo (Fig 1). KSSmax is the maximum 

114 possible KSS that can be calculated for a codon.

115 We then used this algorithm on the sequences flanking known instances of ATG translation 

116 initiation and produced a histogram distribution of the resulting scores (Fig 2). We created two 

117 baselines to compare the scoring of ATG translation initiation codons against ATG codons that 

118 do not initiate translation. For the first baseline, we ran the algorithm on one hundred thousand 

119 ‘dummy’ ATG codons that had completely randomized sequences without missing nucleotides 

120 (a randomized adenine, cytosine, thymine, or guanine in every position flanking the codons) and 

121 graphed the resulting score distribution. For the second, we ran the algorithm on a series of ATG 

122 codons derived from the human genome that are believed not to initiate translation.

123

124 Fig 2. Kozak Similarity Scores of ATG Translation Initiation Codons Against Baseline.

125
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126 As these histograms were generated from large datasets, they could more accurately serve as 

127 representations of algorithm scoring for respective codon classifications: codons that initiate 

128 translation, mixture of codons that initiate translation and do not initiate translation, and codons 

129 that do not initiate translation, respectively.

130 Of note, the histogram in Fig 2 representing a randomized combination of codons that initiate 

131 and do not initiate translation, is centered at about 0.59 for both the mean and median. In 

132 contrast, in the histogram representing ATG codons that initiate translation, we observed a left-

133 skewed distribution, with mean and median scores of about 0.73 and 0.74, respectively. In the 

134 histogram representing ATG codons expected not to initiate translation, we observed a slightly 

135 right-skewed distribution, with mean and median scores of about 0.52 and 0.53, respectively.

136 Although exact sequences bordering near-cognate initiation codons have not been identified, as 

137 has been carried out for the canonical ATG initiation codon (the KCS), current literature points 

138 out similarities between the two sequences. For instance, in a bioinformatics study that analyzed 

139 sequences bordering forty-five mammalian near-cognate initiation codons (including CUG, 

140 GUG, UUG, AUA, and ACG),  a guanine or cytosine has been shown to frequent the -6 position 

141 (6 bases upstream of the codon) [25]. As shown in Fig 1, a guanine or cytosine is also most 

142 prevalent in the KCS at this position. The same study also noted the presence of a purine 

143 (adenine or guanine) in the -3 position from the codon, which are the two most likely nucleotides 

144 to occur in the same position of the KCS [25]. In a study of CUG near-cognate codons, those that 

145 most frequently initiated translation had an adenine in the -3 position [26]. Although the 

146 frequencies of adenine and guanine in the -3 position of the KCS are similar, analysis suggests 

147 that adenine is more conserved. For example, if the nucleotide weightings in the KCS are 

148 analyzed, adenine is conserved in about 47% of cases at the position versus that of guanine, with 
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149 about 37% conservation. Both the bioinformatics study as well as a publication analyzing peptide 

150 translation from CUG-initiating mRNA constructs show enhanced translation when guanine is at 

151 the +4 position (1 base downstream of the initiation codon) [18, 25]. In the KCS, guanine is most 

152 conserved at the +4 position as well.

153 Because of these similarities, we decided to apply the algorithm to score known near-cognate 

154 codons that have been shown to initiate translation (Fig 3). Interestingly, distributions of all 

155 results are left-skewed, visibly differing from results derived from scoring of ‘dummy’ codons 

156 with randomized flanking sequences, as well as codons expected not to initiate translation. In 

157 particular, the distribution of scores for known CTG codons has mean and median of about 0.69. 

158 The distribution of scores for known GTG codons has mean and median of about 0.69 and 0.70, 

159 respectively. And the distribution of scores for known TTG codons has mean and median of 

160 about 0.65. These results are an indication that the KSS of near-cognate codons can be used to 

161 predict their ability to initiate translation.

162

163 Fig 3. Kozak Similarity Scores of Near-Cognate Translation Initiation Codons Against Baseline.

164

165 To use the KSS as a predictor of translation initiation ability, a threshold score has to first be 

166 determined. In this way, an algorithm could classify codons with a score above the threshold as 

167 initiating translation, and below it, not initiating translation. To find the best threshold, virtual 

168 simulations were run using different score cutoffs to classify already known ATG initiation 

169 codons and ATG codons expected not to initiate translation. Since there are at least 12,603 cases 

170 of known ATG initiation codons in contrast to at least 34,097 ATG codons believed not to 

171 initiate translation, the data were first balanced. In this way, the cut-off derived would not bias 
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172 classifications of codons in favor of not initiating translation. Next, all possible cutoff values 

173 were set, ranging from 0.580 to 0.700 by increments of 0.001. This range was determined by 

174 contrasting distributions in Fig 2. For each of these cutoff values, one thousand simulations were 

175 run classifying the data of 12,603 known ATG translation initiation  codons on a randomized 

176 subset containing 12,603 of the total 34,097 non-initiating ATGs. Errors were averaged for the 

177 one thousand runs at each cutoff value. A cutoff of about 0.64 had the most minimized error. 

178 When tested on data containing the 12,603 known ATG-initiating codons and randomized 

179 12,603 instances of non-initiating ATGs, the average accuracy of the model was about 79.85%.

180 The area under receiver operating characteristic (AUROC) score from one of the thousand model 

181 simulations (selected at random) was calculated to be 0.876. This score is a useful metric as it 

182 indicates the model’s discriminatory ability. In the model context, it would correctly assign a 

183 greater prediction value for a codon to initiate translation if it indeed were a translation initiation 

184 codon 87.6% of the time [27]. A random classifier has a score of 0.5, whereas a perfect classifier 

185 has a score of 1.0 [28]. This score is calculated as the area under the ROC curve. This is a 

186 graphical illustration of the model’s ability to correctly categorize positives (true positive rate) 

187 against decreased discrimination (increased false positive rate). 

188 As carried out in the case of ATG, the cumulative data of the CTG, GTG, and TTG codons was 

189 used to deduce a cutoff value for the algorithm’s scoring of all near-cognate codons. To identify 

190 the best cutoff for near-cognate codons, the same simulation process was used as was carried out 

191 for ATG codons.  Using this simulation method, with balanced near-cognate codon data 

192 consisting of equal numbers of positives (near-cognate initiation codons) and negatives (near-

193 cognate codons that do not initiate translation), the best cutoff of the algorithm classification was 

194 about 0.61 for near-cognate codons. After a thousand simulations, the algorithm revealed an 
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195 average accuracy of about 75.60% for classifying near-cognate codons as initiating translation or 

196 not initiating translation. The AUROC score calculated from one randomly selected simulation 

197 was 0.835.

198

199 Fig 4. Error Classifying ATG and Near-Cognate Codon Ability to Initiate Translation Using Kozak 

200 Similarity Score.

201

202 Fig 5. ROC Curves of the ATG and Near-Cognate Kozak Similarity Score Classifiers. The AUROC 

203 score (area under the curve) of the ATG classifier is equal to 0.876. The AUROC score of the near-

204 cognate RFC is equal to 0.835.

205

206

207 KSS as a reference for likelihood of translation initiation 

208 In the previous section, the weighted scoring algorithm based on the KCS was used as a model to 

209 classify whether codons could initiate translation. However, one could question whether the 

210 scores of the weighting system could also be used as a metric. To investigate this issue, 12,603 

211 instances of ATGs that initiate translation and 34,097 ATGs believed not to initiate translation 

212 were compiled. One thousand balanced test datasets, containing the 12,603 positive ATG 

213 instances along with randomly sampled negative ATG instances of the same number, were 

214 gathered. The average proportion of codons that initiate translation with a KSS exceeding 

215 particular values, across all test datasets was determined. These KSS thresholds ranged from zero 

216 to one by increments of 0.02. The proportion of ATGs that initiate translation had a positive 

217 correlation with the KSS. In other words, a greater proportion of ATGs would initiate translation 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 17, 2021. ; https://doi.org/10.1101/2021.08.17.456657doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.17.456657
http://creativecommons.org/licenses/by/4.0/


12

218 with an increased score. This score appeared useful since one could approximate the proportion 

219 of ATG codons that initiate translation with equal KSSs to a particular codon encountered. 

220 The same evaluation was conducted for near-cognate codons to deduce if there was a similar 

221 trend. The procedures previously applied to the ATG data were used for the cumulative total of 

222 2,413 instances of near-cognate codons that initiate translation, and 141,071 instances of near-

223 cognate codons believed not to initiate translation. There was a positive correlation between the 

224 proportion of near-cognate codons that initiate translation and the KSS. In fact, the trend was 

225 quite similar to that obtained for ATG data. The KSS was not limited as a metric for ATG 

226 codons, but could be used to estimate the likelihood of a near-cognate codon to initiate 

227 translation as well.

228 The results of the analysis for ATG and near-cognate codons is shown in the graph and table of 

229 Fig 6.

230

231 Fig 6. Proportion of ATG and Near-Cognate Codons that Initiate Translation with KSSs Above 

232 Certain Values. The graph and table were both generated to depict the same results, evaluated from 

233 balanced data, i.e., an equal background proportion of positives and negatives.

234

235

236 Random forest classifiers

237 A strong and practical approach for identifying translation initiation codons also includes the 

238 application of a machine learning model. Machine learning models are powerful, as they can 

239 analyze large amounts of complex data, determine patterns and codependences that are difficult 

240 to process by a human, and learn from mistakes to improve over time [29]. Although biological 
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241 pathways are often sophisticated and produce remarkably diverse data, machine learning models 

242 can provide direction for such processes that are not completely understood. 

243 We decided to implement a random forest classifier (RFC). This machine learning algorithm 

244 typically produces good results with partly missing data, bears little impact from outliers, and 

245 mitigates overfitting. Furthermore, the RFC is a highly preferred model in contemporary 

246 genomics [30]. The RFC is based on many decision trees, typically generated from large subsets 

247 of data. As each decision tree may split data differently in the classification process, the 

248 averaging of many such trees reduces variance and helps avoid overfitting. With an overfit 

249 model, data inputs that vary slightly from trained data could have volatile classifications that are 

250 not reliable. The RFC, which implements the averaging process, may produce greater accuracy 

251 than any one decision tree alone [31]. 

252 Accordingly, an RFC was implemented as a separate algorithm to elucidate whether codons 

253 initiate translation. To create such an algorithm, the feature variables of codons for the RFC to be 

254 trained on were first assigned. For an ATG classifier, these variables designated the ten 

255 nucleotides that preceded the codon, and ten that followed it. This range was chosen as studies 

256 suggest that alterations of bases in some of these positions are highly impactful, and may define 

257 whether a flanked codon is an “optimal, strong, [or] moderate” translation initiation site [13-20]. 

258 Although secondary structures can influence translation, which are dependent on a number of 

259 nucleotides that may far exceed our incorporated range, successful identification of feature 

260 patterns may require exceptionally large amounts of training data that are currently unavailable. 

261 This is because the number of training samples required to differentiate data increases 

262 exponentially as the number of attributes in a model increases [32]. Since five features are 

263 needed to designate whether a nucleotide at each position, n, is either adenine, guanine, cytosine, 
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264 thymine, or missing, 5n distinct data (enough to cover all possible data variations) may be 

265 required for a model to best approximate the impact of each nucleotide, for every position that is 

266 considered. By having our models trained on a narrowed scope of nucleotides known to 

267 influence translation initiation, we sought to optimize predictive power with limited data. For a 

268 near-cognate codon classifier, we included additional features to designate the nucleotide in the 

269 first base position of the codons (i.e., the underlined: CTG, GTG, TTG). This is because the 

270 nucleotide at this position may significantly impact translation initiation from these codons [21, 

271 22].

272 Using the package, imbalanced-learn, in Python, we created the RFC models [33]. The ATG 

273 RFC was trained using an imbalanced set of 12,603 ATG codons known to initiate translation 

274 (positives), and 3,433 of 34,097 generated distinct ATG codons that are believed not to initiate 

275 translation (negatives). The set of 3,433 negatives consisted of the total of 1,805 sequences that 

276 were not missing nucleotides, and 1,628 (i.e., ten percent fewer) randomly sampled negatives of 

277 the remaining 31,697 that were missing nucleotides. We left out five percent of the total 3,433 

278 negatives used (172 ATGs that do not initiate translation), as well as the same number of 

279 positives (172 ATG translation initiation codons) from the training data to constitute our test 

280 dataset. In this way, accuracy would be based on unbiased data that was balanced with 344 

281 combined cases of equally occurring positives and negatives. 

282 The accuracy of the RFC model on the balanced 344 cases was 87.79%. In other words, the 

283 algorithm correctly categorized 302 of the 344 ATGs, based on the sequences flanking each 

284 codon. This accuracy is high in comparison to the 79.85% accuracy achieved using the KSS-

285 based classifier. We also calculated the area under receiver operating characteristic (AUROC) 

286 score of the model to be 0.948, which is high as well. Increasing the parameter value designating 
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287 the total number of decision trees included in the RFC had no visible effect on model 

288 performance. Other parameters were also best left unchanged for optimal predictions.

289 The same procedure was used to create an RFC for near-cognate codons as carried out for ATG 

290 codons, using data available for all near-cognate codons. To prevent imbalanced data bias in the 

291 accuracy measurement for the near-cognate RFC, data that was equally representative of all near-

292 cognate codons was set aside to form the test dataset. As the model was trained on CTG, GTG, 

293 and TTG initiation codons, twenty positives and negatives were randomly isolated for each of 

294 these codons prior to training. When run on this separated, balanced set of 120 data points, the 

295 trained near-cognate RFC performed with 85.00% accuracy. The AUROC score of the near-

296 cognate classifier was calculated to be 0.938.

297

298 Fig 7. ROC Curves of the ATG and Near-Cognate Random Forest Classifiers. The AUROC score 

299 (area under the curve) of the ATG RFC is equal to 0.948. The AUROC score of the near-cognate RFC is 

300 equal to 0.938.

301

302

303 Analysis of the TITER neural network as a benchmark

304 To our knowledge, there exist only two other models for predicting both ATG and near-cognate 

305 translation initiation codons. The latest is the TITER machine learning algorithm [11], which 

306 addresses limitations of the first model. We analyzed TITER as a benchmark to compare it with 

307 the performance of our presented models.
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308 TITER is a deep learning-based framework that predicts whether a codon initiates translation 

309 based on the product of two calculations, which is termed TISScore. One constituent is based on 

310 the frequency of the codon of interest (e.g., ATG, CTG, GTG, etc.) in the dataset to initiate 

311 translation. The second involves the averaging of calculated scores for a codon with flanking 

312 sequences across thirty-two neural networks. A large number of neural networks was used as 

313 part of a bootstrapping technique to account for training data imbalance. 

314 Although TITER has a high AUROC score of 0.891 [11], ROC curves can present an “overly 

315 optimistic” evaluation of a model’s performance “if there is a large skew in the class 

316 distribution” [27, 28]. This evaluation is based on the true positive and false positive rates of the 

317 model – and an imbalance of positives and negatives may distort its calculation [34]. One 

318 questions whether the test sample of the model is skewed as it consists of 767 positive and 9,914 

319 negative samples in total [11]. Although the authors noted special procedures to account for the 

320 data imbalance of the training dataset, it is not clear if such procedures were used for the test 

321 dataset. 

322 Since TITER was open-source, TITER’s accuracy was averaged across a hundred balanced 

323 subsets from its test dataset. Using all 767 positive samples, 767 negatives were randomly 

324 sampled from the 9,914 total negatives, across the hundred runs to account for the data 

325 imbalance. Through this technique, the unbiased average of the model accuracy was calculated 

326 to be 66.94%. This was the accuracy achieved by the best cutoff, 0.5, of the TISScore for 

327 classification. When run on the same sequences comprising the RFC test datasets (with 

328 sequences extended to include the additional features TITER was trained with), TITER 

329 demonstrated 62.21% and 58.33% accuracy for ATG and near-cognate codons, respectively. 

330 These values were lower than the 75.60% and 79.85% accuracy achieved using the KSS scoring 
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331 system for ATG or near-cognate codons, or the 85.00% and 87.79% accuracy achieved using 

332 RFC models. The fact that TITER was trained with less data than the RFC models presented here 

333 could account for reduced predictive power. Specifically, it was generated using 9,776 positive 

334 samples and 94,899 negatives compared to the total 15,016 positives and 175,168 negatives used 

335 for the RFCs.

336 The performance of TITER may also be a result of the large number of features that this machine 

337 learning model incorporated. Although contemporary research suggests a few bases that flank a 

338 codon greatly influence translation initiation from the site [13-20], TITER analyzes a total of two 

339 hundred bases that flank each codon. Compared to our approach of analyzing ten preceding and 

340 proceeding nucleotides, TITER may implement up to 180*5 = 900 additional features. The 

341 expression ‘180*5’ is used because any one base at the 180 extra positions is represented by five 

342 features to designate whether the base is adenine, guanine, cytosine, tyrosine, or is missing. 

343 Although the TITER publication mentions feature reduction in the hidden layer of the neural 

344 networks, it is not clear how much feature reduction occurred and whether features with 

345 significant correlations were inadvertently reduced. An excess of features may decrease 

346 effectiveness in machine learning because the number of training samples required to 

347 differentiate the data increases exponentially as the number of attributes in a model increases. 

348 Thus, predictive power is lost. In fact, this phenomenon is termed the “curse of dimensionality” 

349 in Data Science [32]. 

350 In addition to feature reduction, our implementation of the random forest classifier, which is 

351 more robust to outliers and erroneous instances (especially when data is limited), creation of two 

352 models to account for properties of different data types (i.e., ATG codons versus near-cognate 
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353 codons), and use of sampling without replacement which preserves natural variations found in 

354 data (in place of bootstrapping) could explain our improved model performance.

355

356 Fig 8. ROC Curves of All ATG and Near-Cognate Classifiers Derived from Same Test Data. All 

357 classifiers were run on the ATG and Near-cognate RFC test datasets, and their ROC curves were 

358 superimposed. The AUROC scores of the ATG and near-cognate RFCs are 0.948 and 0.938, respectively. 

359 The AUROC scores of the ATG and near-cognate KSS classifiers are 0.857 and 0.787 on these test 

360 datasets. TITER’s AUROC scores are 0.622 and 0.603 for ATG and near-cognate codons, respectively.

361

362

363 Model selection and integration into software

364 Of the two types of models created, the RFCs appeared the best model to use for predicting 

365 translation initiation sites. With accuracy determined from the balanced test dataset for ATGs at 

366 87.79% and for near-cognate codons at 85.00%, their performance exceeds that of the 

367 straightforward KSS-based classifiers. To our best knowledge, the RFCs also outperform all 

368 other models designed for the same function, including TITER, which they exceed by more than 

369 18% in accuracy. As a next step, we decided to use the RFCs to identify repeat-length-

370 independent (RLI) translation initiation associated with neurologic diseases.

371 To do this, the RFC models were implemented into software. Developed in Python, the program 

372 could be used to evaluate a total sequence consisting of the upstream region, followed by ten 

373 nucleotide sequence repeats to represent the repeat expansion. Ten sequence repeats may be 

374 adequate to capture the repeat expansion effect on translation initiation from upstream codons as 
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375 well as codons within the repeat expansion itself because ten nucleotide sequence repeats are at 

376 minimum thirty bases long, and the integrated model only uses the ten bases that flank each side 

377 of a codon for analysis. Nucleotides within this range have been shown to strongly impact 

378 translation initiation [13-20]. 

379 The model can scan through each codon in the sequence and return a prediction from the 

380 implemented RFCs. If a codon encountered is ‘ATG,’ then the ATG RFC with 87.79% accuracy 

381 predicts whether it initiates translation based on the ten sequences flanking each side of the 

382 codon. Otherwise, if the codon encountered is a near-cognate codon, then the near-cognate RFC 

383 with 85.00% accuracy predicts whether it initiates translation via the same procedure. Next, the 

384 program virtually simulates translation from each predicted codon and filters out those instances 

385 in which a stop codon (TAG, TGA, or TAA) is encountered upstream of the repeat expansion. 

386 This feature was implemented to remove codons from consideration if their initiated translation 

387 would not reach the repeat expansion and produce the pathogenic repeat proteins that are 

388 associated with neurologic disease. Then, the program would determine the repeated nucleotide 

389 sequence that would be translated from each predicted initiation codon, as well as the associated 

390 translation product. Finally, the program outputs a visualization of the input sequence, with 

391 predicted codons color-coded to distinguish the associated product translated. 

392 In the figures that follow, nucleotides have a bold font to distinguish initiation codons that the 

393 software models were trained on. These codons include canonical start codon ATG, and near-

394 cognate codons CTG, GTG, and TTG. Because the features of the three near-cognate codons 

395 were used to extrapolate classifications of the other, less researched near-cognate codons (AAG, 

396 AGG, ACG, ATC, ATT, and ATA), it is possible to incur false predictions for these less studied 

397 instances. Thus, these six near-cognate codons are designated only with color-coding without 
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398 bolding to denote that they should be acknowledged with less confidence. If there is an overlap 

399 between predicted initiation codons (i.e., one or two nucleotides overlap between predicted 

400 codons), the color of the overlapped region is the same as that of the next predicted codon to 

401 prevent confusion. The overlapped region may or may not be bolded depending on whether the 

402 software was trained on this next codon. We also output the KSSs of each predicted codon to two 

403 decimal points, as the score could be a useful metric to evaluate translation initiation likelihood. 

404 This may be approximated through comparison of KSSs of a codon to the reference table and 

405 graph (Fig 6).

406

407 Fig 9. An Example  of the Formatting Scheme in Software Output. This example shows predicted 

408 codons that are color-coded based on their reading frame: ‘ATT,’ ‘TTG,’ ‘CTG,’ ‘AGG,’ ‘GTG,’ and 

409 ‘CTG.’ Codons that the models were trained on show up with bold formatting. If there is an overlap 

410 between predicted initiation codons (i.e., one or two nucleotides overlap between predicted codons), the 

411 color of the overlapped region is the same as the color of the next predicted codon. 

412

413

414 Software ability to identify known RLI translation initiation sites

415 After the software was completed, its ability to distinguish RLI translation initiation sites was 

416 analyzed. We first identified translation initiation codons upstream of repeats in the following 

417 genes in which RAN translation is known to occur: C9orf72 (associated with amyotrophic lateral 

418 sclerosis and frontotemporal dementia), FMR1 (associated with fragile X and fragile X-

419 associated tremor/ataxia syndrome), DM1 (associated with myotonic dystrophy type 1), and 
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420 HDL2 (associated with Huntington disease-like 2) genes. These examples were used as 

421 references for software performance. It should be noted that translation initiation codons 

422 identified for DM1 were obtained from an experiment that implemented a slightly modified 

423 version of the conventional DM1 antisense strand. The strand had been experimentally modified 

424 to determine whether changes in its sequence could induce translation initiation from particular 

425 codons [35]. Next, the associated upstream regions and repeat expansion sequences for each 

426 gene, as recorded in the National Center for Biotechnology Information database, were input into 

427 the software. Predictions were generated in order to determine whether they corresponded to 

428 experimentally confirmed translation initiation codons (Table 1). 

429 Comparison between the predictions and experimentally identified translation initiation codons 

430 demonstrated high performance of the software. In fact, all translation initiation sites previously 

Table 1. Previously identified RLI translation initiation sites from publications.
Gene Codon Number of 

Bases 
Upstream of 
Repeat 

Peptide Repeat 
Translated

Kozak Similarity Score

AGG 1 Poly-GR 0.66C9orf72
(Sense) [4] CTG 24 Poly-GA 0.69
C9orf72 
(Antisense) 
[4]

ATG 194 Poly-PG 0.61

GTG 11 Poly-G 0.70
ACG 35 Poly-G 0.80

FMR1
(Sense) 
[36, 37] ACG 60 Poly-G 0.71

ATC 7 Poly-A 0.61

ATG 17 Poly-S 0.66

DM1
(Antisense) 
with 
slightly 
modified 
sequence 
[35]

ATT 23 Poly-S 0.74

HDL2 
(Antisense) 
[35]

ATC 6 Poly-Q 0.74
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431 identified across existing publications were correctly identified by the RFCs with one exception: 

432 ATC, which was found experimentally to initiate translation in the modified DM1 antisense 

433 strand seven bases upstream of the repeat [35]. However, the near-cognate RFC model 

434 successfully predicted all other instances of translation initiation from less researched near-

435 cognate codons. This accuracy is surprising considering that the near-cognate RFC model was 

436 only trained on instances of CTG, GTG and TTG translation. As there was insufficient data to 

437 train the model on less used near-cognate codons (ATA, ATC, ATT, AGG, ACG, and AAG), 

438 predictions for these codons were extrapolated based on recognized patterns from CTG, GTG, 

439 and TTG examples. However, for the same reason that they were not included in model training, 

440 near-cognate codons that are not CTG, GTG, or TTG should be acknowledged with less 

441 confidence in predictions, out of concern they may be false positives.

442

443 Predicted Translation Initiation Sites Associated with Neurologic 

444 Diseases

445 Experimentally identified translation initiation codons for C9orf72, FMR1, DM1, and HDL2 

446 were confirmed by the model presented here (Table 1, Figs 10 and 11). As the software 

447 performed well, it was then used to predict translation initiation codons associated with repeats 

448 in neurologic diseases that have not been experimentally identified. The software was also used 

449 to make predictions for translation initiation codons for other genes with repeats associated with 

450 neurologic repeat diseases, HTT, and DM2 (Fig 12). Predicted translation initiation codons with 

451 relatively high KSSs were noted for all analyzed genes (Table 2). In all cases, predicted 
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452 translation initiation sites are not shown if they have a downstream stop codon located in the 

453 same reading frame before the repeat.

454

455 Fig 10. Predicted Translation Initiation Codons for C9orf72 and FMR1. Predicted codons that the 

456 models were trained on show up with bold formatting. Numbers indicate the number of bases upstream of 

457 the repeat.

458 * A predicted translation initiation codon overlaps with the repeat (AGG, located 1 base upstream).

459 Fig 11. Predicted Translation Initiation Codons for DM1 and HDL2. Predicted codons that the models 

460 were trained on show up with bold formatting. Numbers indicate the number of bases upstream of the 

461 repeat.

462 * Every CTG within the repeat is predicted to possibly initiate translation.

463 † Every CTG within repeat, aside from the first one, is predicted to possibly initiate translation. 

464 Fig 12. Predicted Translation Initiation Codons for HTT and DM2. Predicted codons that the models 

465 were trained on show up with bold formatting. Numbers indicate the number of bases upstream of the 

466 repeat.

467 * Every CTG within the repeat, aside from the first one, is predicted to possibly initiate translation.

468 † Two predicted translation initiation codons are within repeat.

469

470

471

472

473
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Table 2. Translation Initiation Codons with High Kozak Similarity Scores per Translated 
Polypeptide Repeat*

Codon
Number of 
Bases 
Upstream 
of Repeat

Kozak 
Similarity 
Score

Translated 
Polypeptide 
Repeat

C9orf72 (Sense)
CTG 24 0.66 Poly-GA
AGG 1 0.69 Poly-GR

C9orf72 (Antisense)
ATG† 113 0.75 Poly-PG
AAG 350 0.84 Poly-PG
ACG 3 0.79 Poly-PR 
AAG 288 0.73 Poly-PR
AAG 384 0.77 Poly-PR

FMR1 (Sense)
AGG 18 0.83 Poly-R
ACG 60 0.71 Poly-R
ACG 35 0.79 Poly-G
GTG 38 0.76 Poly-G
AAG 332 0.83 Poly-G

FMR1 (Antisense)
AGG 28 0.71 Poly-A
GTG 26 0.73 Poly-R
CTG 56 0.70 Poly-R
ATT 105 0.81 Poly-P
AAG 156 0.78 Poly-P
AAG 177 0.85 Poly-P
CTG 195 0.74 Poly-P
AGG 207 0.84 Poly-P
ATC 252 0.80 Poly-P
AGG 318 0.74 Poly-P

DM1 (Sense)
AAG 23 0.62 Poly-C
AGG 61 0.77 Poly-A
CTG -1 0.67 Poly-L

DM1 (Antisense)
CTG 34 0.87 Poly-A
AGG 169 0.85 Poly-A
ATC 193 0.81 Poly-A
ACG 98 0.86 Poly-S

HDL2 (Sense)
ATC 72 0.71 Poly-L
ATC 68 0.52 Poly-C
AGG 10 0.84 Poly-A

HDL2 (Antisense)
ATC 6 0.74 Poly-Q
AAG 27 0.80 Poly-Q
ATT 261 0.81 Poly-Q
GTG 372 0.83 Poly-Q
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GTG 378 0.71 Poly-Q
CTG 122 0.68 Poly-S
ATC 67 0.69 Poly-A

HTT (Sense)
AAG 27 0.76 Poly-Q
CTG 33 0.72 Poly-Q
CTG 42 0.87 Poly-Q
ATG 51 0.89 Poly-Q
AAG 210 0.72 Poly-Q
CTG 348 0.74 Poly-Q
ACG 187 0.75 Poly-A
GTG 202 0.85 Poly-A

HTT (Antisense)
ATC 213 0.76 Poly-L
AGG 225 0.70 Poly-L
AAG 330 0.73 Poly-L
CTG 342 0.70 Poly-L
AGG 369 0.76 Poly-L
GTG 13 0.84 Poly-A
GTG 118 0.72 Poly-A
CTG 199 0.81 Poly-A
CTG 229 0.71 Poly-A
GTG 337 0.73 Poly-A

DM2 (Sense)
CTG 7 0.50 Poly-CLPA
CTG -5 0.61 Poly-LPAC
ATT 87 0.66 Poly-PACL

DM2 (Antisense)
AGG 7 0.72 Poly-GRQA
GTG 58 0.70 Poly-GRQA
ATA 88 0.75 Poly-GRQA
AGG 47 0.71 Poly-RQAG
AGG 113 0.74 Poly-RQAG
AGG 15 0.72 Poly-QAGR

*Predicted codons are displayed that have KSSs above 0.70. If no KSSs within a reading frame are above 0.70, 
then the codon with the highest KSS is presented –  as in the case of the C9orf72 sense strand.
† Bolded codons represent codons that the RFCs were trained on.

474

475 Results displayed in the figures and table indicate translation initiation sites for proteins 

476 translated from the repeat. Of note, the average KSS of all upstream predicted codons is about 

477 0.66. With reference to the table in Fig 6, approximately 80% of ATG and near-cognate codons 

478 with a score above 0.65 are estimated to initiate translation from a background population of 
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479 equally occurring translation initiation codons (positives) and codons believed not to initiate 

480 translation (negatives). 

481 With respect to the C9orf72 sense strand upstream from the repeat, the software predicts a codon 

482 to initiate translation of poly-GA, and another to translate poly-GR. Both of these codons have 

483 been confirmed through experimentation [4]. In the antisense strand, there are ten codons that 

484 could initiate translation of poly-PR, and six predicted with respect to poly-PG. The ATG located 

485 194 bases upstream of the repeat expansion has been confirmed [4].  

486 Predictions for translation initiation codons from the FMR1 sense strand upstream from the 

487 repeat identify nine codons that could be used to initiate translation of poly-G, and two for poly-

488 R. The predicted GTG located 11 bases upstream, the ACG located 35 bases upstream, and ACG 

489 located 60 bases upstream, have been confirmed experimentally [36]. The antisense upstream 

490 region has a total of sixteen codons predicted to initiate translation of poly-P, three for poly-R, 

491 and one for poly-A. 

492 For the DM1 sense strand upstream from the repeat, the software predicts three codons that 

493 initiate translation of poly-C, and two that initiate translation of poly-A. Interestingly, every CTG 

494 within the CTG repeat expansion is predicted to initiate translation of poly-L; however, only the 

495 first has a relatively high KSS (0.67). Predictions for the DM1 antisense strand are different from 

496 those produced for the experimentally modified DM1 antisense strand (Table 1). Namely, there 

497 is no predicted ATG located 17 bases upstream of the repeat expansion, nor a predicted ATT 

498 located 23 bases upstream of the repeat expansion, since sequences that border the predicted 

499 codons in the modified strand differ from those bordering the same codons in the unmodified 

500 version. In the unmodified antisense strand, there are seven codons predicted to initiate poly-A 

501 translation, and one to initiate translation of poly-S. Also, there are no predicted translation 
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502 initiation codons in the reading frame of poly-Q which suggests that this polypeptide might be 

503 initiated from the repeat expansion, possibly by repeat length-dependent folding. 

504 With respect to the HDL2 sense strand upstream from the repeat, the software predicts seven 

505 codons to initiate translation of poly-L, one to initiate translation of poly-C, and two to initiate 

506 translation of poly-A. Furthermore, the software suggests that every CTG of the CTG repeat 

507 expansion, aside from the first one in the sense strand, can initiate translation of poly-L. In the 

508 antisense strand, there are seventeen codons predicted to initiate translation of poly-Q, three for 

509 poly-S, and two for poly-A. The predicted ATC located 6 bases upstream of the repeat expansion 

510 in the antisense strand has been confirmed [35].  

511 Predictions for translation initiation codons from the HTT sense strand upstream from the repeat 

512 identify seventeen codons that initiate translation of poly-Q, and four for poly-A. From the 

513 antisense upstream region, sixteen codons are predicted to initiate translation of poly-L, and nine 

514 for poly-A. The software also suggests that every CTG of the CTG repeat expansion, aside from 

515 the first one in the antisense strand can initiate translation of poly-L. 

516 Predictions for the DM2 sense strand upstream from the repeat identify five codons used for 

517 translation initiation of poly-PACL, two for poly-CLPA, and three for poly-LPAC. Moreover, 

518 the software predicts the first two CTGs of the CCTG repeat expansion to initiate translation of 

519 poly-LPAC. In the antisense strand, there are three codons predicted to initiate poly-RQAG 

520 translation, five to initiate translation of poly-GRQA, and one to initiate translation of poly-

521 QAGR.

522

523
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524 Discussion 

525 As shown here, RFCs were able to successfully predict most translation initiation codons 

526 associated with neurologic repeat expansion diseases that were experimentally  identified. The 

527 same models also predicted other codons to initiate translation of repeat expansions for 

528 neurologic diseases, that have not been identified. Of note, this software predicted translation 

529 initiation sites with more than 18% accuracy than the TITER neural network. 

530 Regardless of the quality of a model, its predictions should not be interpreted as evidence. 

531 Instead, predictions should be recognized as likely possibilities that warrant further investigation. 

532 The significance of the algorithm’s identification of translation initiation codons, however, 

533 should not be understated. For example, these data may be important to use to guide treatment of 

534 these repeat diseases. 

535 Although the machine learning models show promise in understanding of the pathogenesis of 

536 repeat expansion neurologic disorders, their use may be extended to other applications as well. 

537 For example, they may be used to predict the translation initiation that are not involved in repeat 

538 expansion disorders. One benefit of this implementation includes the ability to speculate protein 

539 products from a nucleotide sequence, quickly and easily and without laboratory procedures. In 

540 order to accelerate the use of the RFCs, a version of the machine learning software that can 

541 predict translation initiation codons in any provided sequence is available (at 

542 www.tispredictor.com/tis). 
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543

544 Enhancing Performance

545 Like other machine learning models, RFC performance is determined by the amount of available 

546 training data. Because of this constraint, collecting more examples to train the machine learning 

547 models could prove especially useful. In the case of the near-cognate RFC, obtaining sufficient 

548 data to account for all near-cognate types could lessen uncertainty in predictions involving these 

549 codons. Training the two RFCs discussed here with more of the codon types that have been used 

550 would be beneficial since feeding a model with more data will verify existing trends, and 

551 introduce variations that the algorithm can recognize and link to a particular classification, 

552 thereby improving accuracy.

553

554

555 Materials and Methods

556 Data acquisition

557 Examples of translation initiation were mostly obtained from ribosome profiling, mass 

558 spectroscopy, and CRISPR-based techniques across different human cell types and under 

559 different conditions [38]. These data include sequences of 12,094 examples of translation 

560 initiated from ATG, as well as 2,180 examples of translation initiated from near-cognate codons. 

561 Translation initiation sites were also captured by quantitative translation initiation sequencing of 

562 genes in cultured human kidney cells [39]. Their annotated sequences were collected from the 
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563 Ensembl gene annotation system (version 84) [40]. These methods procured 509 and 203 more 

564 examples of ATG and near-cognate initiation codons, respectively. In all, we collected 12,603 

565 instances of translation initiation from ATG, and 2,413 instances of translation initiation from 

566 near-cognate codons to use in this study.   

567 To obtain examples in which translation does not initiate from ATG (negatives), we used the 

568 same transcripts from which positives were derived and recorded nucleotides that flanked ATG 

569 codons. Then, we eliminated all instances in which flanking sequences matched any of the 

570 12,603 sequences bordering the known ATG translation initiation sites, leaving 34,097 

571 negatives. We repeated the same procedure to identify negatives for near-cognate codons that do 

572 not initiate translation. We found examples of CTG, GTG, and TTG codons in which flanking 

573 sequences did not match any of that of the known near-cognate initiation codons, leaving 

574 141,071 negatives.

575

576 Random Sampling
577 All random sampling was conducted without replacement. This method is preferred for KSS 

578 evaluations of ATG and near-cognate codons, as the precision of population estimates is higher 

579 than that produced by sampling with replacement [41]. Furthermore, sampling without 

580 replacement to generate training datasets introduces greater variation for model training.

581

582 Random forest classifiers

583 Using the open-source package, imbalanced-learn, in Python, we created the RFC models [33]. 

584 The ATG RFC was trained on an imbalanced set of 12,432 ATG codons known to initiate 
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585 translation (positives), and 3,261 ATG codons that are believed not to initiate translation 

586 (negatives). The set of 3,261 negatives consisted of 1,716 sequences that were not missing 

587 nucleotides, and 1,545 (ten percent fewer) randomly sampled negatives of the remaining 31,697 

588 that were missing nucleotides. To clarify, missing nucleotides are registered in the case that a 

589 recorded codon is located exceedingly close to the 5’ or 3’ terminus of an mRNA construct. In 

590 such a circumstance, there may not be a full ten bases both preceding and following the codon. 

591 The sampling technique was performed to slightly offset the proportion of negatives with and 

592 without missing bases in the opposite direction. In this way, more negatives without missing 

593 bases would be used for model training. Using the original imbalanced set of negatives, with the 

594 majority missing bases, would cause the model to inaccurately assess the effect of missing 

595 nucleotides on a codon’s ability to initiate translation. Furthermore, using a slightly larger 

596 proportion of negatives that had a complete sequence profile resulted in improved accuracy for 

597 distinguishing codons that were not missing nucleotides. This is useful, as sequences are less 

598 often encountered with missing nucleotides in real-world applications.

599 To account for the imbalance of positives and negatives, the RFC had decision trees generated 

600 from 3,576 negatives, and the same number of randomly sampled positives. One thousand such 

601 trees were used, since this number is generally recommended as a starting point for the 

602 generation of an RFC [42]. Of the total number of features, n, a total of 𝑛 features were used to 

603 classify the data in order to optimize predictive power. Training with too many or too few 

604 features could have prevented the model from recognizing the best indicators for classification 

605 [42]. Each decision tree also had the requirement of grouping at least two codon instances to a 

606 certain classification. This constraint reduced the risk of overfitting, yet still allowed tree 

607 capacity to differentiate between subtly differing codons. Thus, the trees could better identify 
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608 precise feature patterns to associate with a particular classification, and remain reliable in face of 

609 new, unencountered data. 

610 We evaluated the accuracy of the RFC model with the above configurations. Parameters such as 

611 the minimum number of codons to group for classification could then be adjusted to improve 

612 predictive power, as necessary. However, parameters were best left unchanged for optimal 

613 predictions. To create a separate classifier for near-cognate codons, we repeated the same 

614 procedures to create an RFC for near-cognate codons as we had carried out for ATG codons, this 

615 time using data available for all near-cognate codons.

616

617 Accessibility and implementation

618 The software is publicly accessible as an interactive website at www.tispredictor.com.

619 [Availability Statement for Open Access Models and Data]

620  

621

622

623

624

625

626
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