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Abstract 
Recent works have shown that SNP-heritability—which is dominated by low-effect common variants—may not 

be the most relevant quantity for localizing high-effect/critical disease genes. Here, we introduce methods to 

estimate the proportion of phenotypic variance explained by a given assignment of SNPs to a single gene (gene-

level heritability). We partition gene-level heritability across minor allele frequency (MAF) classes to find genes 

whose gene-level heritability is explained exclusively by “low-frequency/rare” variants (0.5% ≤ MAF < 1%). 

Applying our method to ~17K protein-coding genes and 25 quantitative traits in the UK Biobank (N=290K), we 

find that, on average across traits, ~2.5% of nonzero-heritability genes have a rare-variant component, and only 

~0.8% (370 gene-trait pairs) have heritability exclusively from rare variants. Of these 370 gene-trait pairs, 37% 

were not detected by existing gene-level association testing methods, likely because existing methods combine 

signal from all variants in a region irrespective of MAF class. Many of the additional genes we identify are 

implicated in phenotypically related Mendelian disorders or congenital developmental disorders, providing further 

evidence of their trait-relevance. Notably, the rare-variant component of gene-level heritability exhibits trends 

different from those of common-variant gene-level heritability. For example, while total gene-level heritability 

increases with gene length, the rare-variant component is significantly larger among shorter genes; the cumulative 

distributions of gene-level heritability also vary across traits and reveal differences in the relative contributions of 

rare/common variants to overall gene-level polygenicity. We conclude that the proportion of gene-level 

heritability attributable to low-frequency/rare variation can yield novel insights into complex-trait genetic 

architecture. 
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Introduction 

Since the vast majority of risk variants identified through genome-wide association studies (GWAS) are located 

in noncoding regions, the genes and pathways driving complex traits are largely unknown1–3. For most complex 

traits, fundamental characteristics of genetic architecture—for example, the number of variants/genes with 

nonzero effects (polygenicity), the number of genes regulated by local versus distal variants, and the relative 

contributions of rare versus common variants to gene expression and phenotype—remain actively debated4–14.  

That complex-trait SNP-heritability is enriched in regulatory regions is well established1,15–17. However, since 

SNP-heritability is overwhelmingly driven by common variants of low effect—individual rare variants with large 

per-allele effects contribute very little to population-level phenotypic variance18,19—whether the largest 

heritability enrichments localize the most clinically relevant regions and/or genes for a trait is unclear. For example, 

a recent study estimates that the majority of complex-trait SNP-heritability mediated via the cis-genetic 

component of expression is explained by genes that individually have low cis-heritability of expression20. In 

addition, despite the inherent complexity of the biological processes driving complex traits, there is growing 

evidence that extreme complex-trait polygenicity may be explained in large part by negative/stabilizing selection, 

which purges high-effect alleles from the population, producing the remarkably even distribution of SNP-

heritability among common variants genome-wide (the so-called “flattening” hypothesis)21,22. If the most critical 

genes for a trait are not necessarily localized by enrichments of total heritability20,21,23,24, the open question of how 

to identify target genes using heritability enrichments or overlaps between GWAS and expression quantitative 

trait loci25,26 becomes even murkier. Gene-based association tests that aggregate signal from multiple rare 

variants—for example, burden tests and sequence-based association tests (SKAT)—can increase power under 

different genetic-architecture scenarios27–36. However, such methods are generally designed to test for only rare-

variant association or the combined effects of common and rare variants, and thus are not ideal for parsing the 

relative contributions of rare/common variants to the heritability of a single gene. 

Here, we propose an approach to estimate the relative heritability contributions of common, low-frequency, and 

rare variants to a quantity we call gene-level heritability (ℎ!"#"$ ), defined as the proportion of phenotypic variance 

explained by the additive effects of a given set of variants assigned to a gene of interest. While the method itself 

is general and can be applied to any small annotation of interest (see Discussion), our goal in this work is to use 

MAF-partitioned gene-level heritability estimates to identify disease-relevant genes, which may have different 

relative contributions to heritability across MAF classes. The key challenge in estimating gene-level heritability 

lies in the uncertainty about which variants are causal and what their causal effect sizes are; such uncertainty in 

fine-mapping increases as the strength of LD in the region increases and as GWAS sample size decreases37. 

Consider a toy example in which a variant in the gene of interest is in perfect LD (LD=1) with a second variant 

adjacent to the gene, the observed data are GWAS marginal association statistics and LD for the region (Figure 

1a). Without additional information, it is impossible to definitively elucidate the underlying causal configuration. 
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Even if the LD between the variants is 0.9 instead of 1, if this GWAS has 90% power to identify the associated 

region, to correctly reject the null hypothesis for the non-causal variant would require a sample size ≥ 4x larger 

than that of the original GWAS37. Since each causal configuration can yield a different gene-level heritability 

(with or without MAF-partitioning), randomly selecting one possible configuration (e.g., using variable selection 

methods such as the Lasso38) can yield inaccurate/misleading estimates. As an alternative approach, methods for 

partitioning genome-wide SNP-heritability across MAF bins can be employed. However, such methods are also 

ill-suited to our goals as they make distributional assumptions on the causal effects which (i) limit power to detect 

enrichment in small categories of variants (< 1% of the genome) and/or (ii) may not apply equally to rare and 

common variants15,17,39–43. Estimators for the SNP-heritability of a single region (“regional SNP-heritability”) 

yield inflated estimates if any variants in the region of interest are in LD with the adjacent regions23,44–46. To 

address the fine-mapping uncertainty, we seek to propagate the uncertainty about which variants are causal to 

infer the posterior distribution over the entire gene of interest. Given GWAS summary statistics and estimates of 

LD, we sample from the posterior distribution of the causal effect sizes within a probabilistic fine-mapping 

framework47 and use the posterior samples to approximate the posterior distribution of gene-level heritability, thus 

capturing uncertainty in the causal effects (Figure 1b). From the full posterior distribution of gene-level heritability, 

one can compute various summary statistics of interest for each gene. We report the posterior mean, which we 

denote ℎ"!"#"$ , and 𝜌-level credible intervals, or 𝜌-CI, defined as the central interval containing the true gene-level 

heritability with probability 𝜌 (Material and Methods). 

We confirm in simulations that accounting for uncertainty in the estimated causal effects significantly reduces the 

bias of ℎ"!"#"$ . Although the corresponding 𝜌-CIs are not perfectly calibrated—for example, at 𝜌 = 0.9, about 70% 

of credible intervals overlap ℎ!"#"$ —among the true causal genes, any mis-calibrated CIs overwhelmingly tend to 

underestimate rather than overestimate ℎ!"#"$ . Both ℎ"!"#"$  and 𝜌-CIs are robust to parameters such as causal effect 

sizes, gene length, allele frequencies of causal variants, and the strength of local LD. Assuming that total gene-

level heritability can be expressed as ℎ!"#",&$ = ℎ!"#",'$ + ℎ!"#",()
$ + ℎ!"#",*$ , where each term refers to the 

component of ℎ!"#",&$  explained by rare (0.5% ≤ MAF < 1%), low-frequency (1% ≤ MAF < 	5%), and common 

(MAF ≥ 5%) variants, respectively, we apply the same approach to estimate the posterior distributions of ℎ!"#",'$ , 

ℎ!"#",()
$ , and ℎ!"#",*$  and observe similar trends and levels of accuracy (we note that there are many definitions of 

“rare” in the literature, and that we use 0.5% ≤ MAF < 1% because we analyze imputed genotypes). 

Applying our approach to estimate gene-level heritability for 17,436 genes and 25 quantitative traits in the UK 

Biobank48 (N=290K self-reported “white British”, MAF > 0.5%), we find that ℎ!"#",&$  is indeed dominated by 

ℎ!"#",*$ . Among genes with ℎ!"#",&$  90%-CI > 0 (“nonzero-heritability genes”) for a given trait, 92% (s.d. 1%) have 

nonzero common-variant heritability, and 76% (s.d. 1%) have nonzero heritability exclusively from common 

variants (i.e. ℎ!"#",&$ ≈ ℎ!"#",*$ ). In contrast, only 2.5% (s.d. 0.6%) of nonzero-heritability genes, averaged across 
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traits, have nonzero rare-variant heritability, and 0.8% (s.d. 0.4%) have nonzero heritability exclusively from rare 

variants (ℎ!"#",&$ ≈ ℎ!"#",'$ ). As a sanity check, we confirm that Mendelian-disorder genes from OMIM49, genes 

intolerant to loss of function (LoF) variants50, and a set of FDA-approved drug targets for 30 immune-related 

traits51 have elevated estimates of all four heritability quantities (total, common, low-frequency, and rare). Among 

the 0.8% with ℎ!"#",&$ ≈ ℎ!"#",'$  (370 gene-trait pairs in total), we identify many examples of disease genes with 

known roles in phenotypically similar Mendelian disorders and other congenital growth and developmental 

disorders. 37% of the 370 gene-trait pairs were not identified by existing methods for gene-level association testing, 

likely because existing methods have low power to detect genes containing only rare variants of moderate or low 

effect. We observe an overrepresentation of LoF-intolerant genes, but not Mendelian-disorder genes, among the 

ℎ!"#",&$ ≈ ℎ!"#",'$  genes. Using gene-level heritability estimates to further explore genetic architecture reveals 

notable differences between total/rare-variant gene-level heritability; for example, while total/common-variant 

gene-level heritability increases with gene length, we observe a clear inverse relationship between the rare-variant 

component and gene length. 

Taken together, our results show that the low-frequency/rare-variant component of total gene-level heritability is 

useful for identifying narrow sets of high-impact genes that are not necessarily located in regions enriched with 

common-variant heritability. Our results are also consistent with the hypothesis that a sizable amount of complex-

trait variation is driven by dysregulation of genes that—if completely disrupted—cause phenotypically similar 

monogenic disorders and/or systemic congenital and developmental disorders52. Since some high-impact genes 

are disrupted/dysregulated by a combination of common and rare variants, we conclude that ℎ!"#",'$  should be 

considered alongside common-variant heritability enrichments if one is interested in identifying high-impact 

disease genes under different degrees of selection. While we restrict our analyses to genes (±10-kb window), our 

method is general and can thus be applied to any small annotation of interest (e.g., enhancers, a set of genes 

involved in a pathway, a set of putative causal variants).  

Results 

Overview of the Methods 

We propose a general approach for estimating the heritability explained by a given set of variants and assess its 

utility in estimating gene-level heritability. Given an assignment of 𝑚 variants to a gene 𝑔 of interest, total gene-

level heritability is defined as ℎ!"#",&$ ≡ Var<𝐱!+𝛃!|𝛃@ = 𝛃!+𝐑!𝛃! , where 𝛃!  is the 𝑚 × 1 vector of unknown 

causal effect sizes and 𝐑! is the 𝑚 ×𝑚 LD for SNPs in the gene (Material and Methods). Our goal in this work 

is to estimate a distribution over ℎ!"#",&$  that captures uncertainty in the causal effects that arises from LD (Figure 

1a). To this end, we adopt a probabilistic fine-mapping framework46,47 which assumes a sparse prior on the causal 

effect sizes in the LD block containing gene 𝑔 and infers the posterior distribution of the causal effect sizes, 
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𝑝(𝛃|𝛃E, 𝐑E), where 𝛃E is the vector of estimated marginal effects from GWAS and 𝐑E is an estimate of LD. We sample 

from the posterior of 𝛃 to approximate to the posterior of ℎ!"#",&$  (Figure 1b, Material and Methods). For each 

gene, we report the estimated posterior mean, denoted ℎ"!"#",&$ , and 𝜌-level credible intervals (𝜌-CI), defined as 

the central interval that contains the true gene-level heritability with probability 𝜌 ∈ [0,1]. Whereas previous 

works applied similar approaches to generate credible sets of causal variants47 or to estimate regional SNP-

heritability of LD blocks46, our goal in this work is to estimate the heritability explained by any arbitrary (not 

necessarily contiguous) set of variants much smaller than an LD block. This allows us to partition by minor allele 

frequency (MAF) bins under the assumption that ℎ!"#",&$ = ℎ!"#",'$ + ℎ!"#",()
$ + ℎ!"#",*$ , where the subscripts 

represent the rare (0.5% ≤ 	MAF < 1% ), low-frequency (1% ≤ 	MAF < 5% ), and common (MAF ≥ 5% ) 

variants assigned to the gene. (We note that, while there are many definitions of “rare” in the literature, we 

threshold at MAF ≥ 0.5% because we want to reduce potential noise from imputation; see Discussion for details.) 

Accuracy of gene-level heritability estimates in simulations 

We perform simulations starting from real imputed genotypes of N=290,273 “unrelated white British” individuals 

in the UK Biobank (chromosome 1, MAF > 0.5%, M=200,235 variants, 1,083 genes; Material and Methods). In 

all simulations, the estimand of interest (gene-level heritability, ℎ!"#"$ ) is the proportion of phenotypic variance 

explained by the variants in the gene body, as well as the MAF-partitioned counterpart. We note that our choice 

of variant assignment is arbitrary; there are many ways to assign variants to a gene, but our goal in this section is 

to provide a proof of concept. In brief, our simulation framework consists of three steps. First, for a given total 

heritability (variance explained by all M variants) and cumulative gene-level heritability (variance explained by 

all genes), we randomly select 3%, 8%, or 16% of the genes to be causal, where “causal” in this context refers to 

genes with ℎ!"#",&$ > 0. Second, for each causal gene, we draw causal variants in the gene body and within 10-kb 

upstream/downstream of the gene start/end positions; the purpose of the latter is to create situations where the 

estimated effects of variants in the region of interest are inflated in part because they tag causal effects located 

adjacent to the region. Third, we sample noncoding “background” causal variants from the whole chromosome 

with frequency 𝑝*,-.,( = {0.001, 0.01}. Under this model, the majority of simulated gene-level heritabilities are 

on the order of 10/0 to 10/1 (Supplementary Figure 1), similar to what we observe in real data in subsequent 

sections. 

Overall, the estimated posterior means of total gene-level heritability, ℎ"!"#",&$ , are highly concordant with the true 

gene-level heritabilities (Figure 2, Supplementary Figure 2). For each gene, we compute two metrics of accuracy 

from 𝑠 = 30  simulation replicates: bias<ℎ"!"#",&$ @ ≈ 1/30∑ (ℎ"!"#",&(.)$ − ℎ!"#",&$
4 ) , and MSE<ℎ"!"#",&$ @ =

Wbias<ℎ"!"#",&$ @X
$
+ Var<ℎ"!"#",&$ @ (mean squared error) (Material and Methods). As expected, MSE increases as the 

background polygenicity (𝑝*,-.,() and proportion of causal genes increase, i.e. as causal effect sizes of noncoding 
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variants and gene-level heritabilities decrease (Supplementary Figure 3). Among the causal genes (ℎ!"#",&$ > 0), 

ℎ"!"#",&$  tends to underestimate ℎ!"#",&$ , with the median bias across genes ranging from approximately 

−4%× ℎ!"#",&$  for lower polygenicities to −30%× ℎ!"#",&$  for higher polygenicities (Figure 2, Supplementary 

Figure 4). There is a small positive correlation between bias and gene length (average Pearson R = 0.05 (s.d. 0.02) 

across simulation setups), i.e. the estimates tend to be more downward-biased for shorter genes; average LD score 

and average MAF of variants in the gene have no discernible impact on accuracy (Supplementary Figures 5-8). 

To visualize the impact of causal-effect uncertainty on gene-level heritability estimation, we compare ℎ"!"#",&$  to a 

naive estimator that ignores LD between the gene and its adjacent regions, thus ignoring causal-effect uncertainty 

(Material and Methods). As expected, the naive estimator is significantly inflated; in particular, many noncausal 

genes have dramatically upward-biased estimates (Figure 2, Supplementary Figures 2 and 9) due to LD between 

variants in the gene and nearby causal variants. We benchmark the estimators for the contributions of rare, low-

frequency, and common variants to total gene-level heritability and find that they perform similarly to ℎ"!"#",&$  

(Figure 3, Supplementary Figures 3, 4, 6-8, 10-12). 

Calibration of credible intervals 

Calibration of 𝜌-level credible intervals (𝜌-CIs) was assessed using “empirical coverage,” defined here as the 

proportion of simulation replicates in which 𝜌-CI contains the true gene-level heritability (Material and Methods). 

Perfect calibration of 𝜌-CI would manifest as empirical coverage equal to 𝜌 for all 𝜌 ∈ [0,1]. In reality, we 

observe a downward bias in empirical coverage across all simulations that increases in magnitude as the proportion 

of causal genes increases (i.e. as per-variant causal effect sizes decrease). For example, at 𝜌 = 0.9, empirical 

coverage ranges from approximately 0.75 when 3% of genes are causal to 0.65 when 16% are causal 

(Supplementary Figure 13). While downward bias in empirical coverage can be the result of 𝜌 -CIs 

underestimating or overestimating ℎ!"#",&$ , the credible intervals at 𝜌 = {0.90, 0.95} tend to underestimate the true 

gene-level heritability (Supplementary Table 1), consistent with the downward-bias we observe in ℎ"!"#",&$  (Figure 

2). For example, at 𝜌 = 0.95, the proportion of true causal genes that are underestimated vs. overestimated is 

approximately 14% vs. 6% (when 3% of genes are causal) and 30% vs. 3.5% (when 16% of genes are causal) 

(Supplementary Table 1). The 𝜌-CIs for ℎ!"#",'$  are more conservative; for the same parameters, among the genes 

with true ℎ!"#",'$ > 0, the proportions of underestimated vs overestimated genes are 38% vs. 1.5% (when 3% of 

genes are causal) and 45% vs. <1% (when 16% of genes are causal) (Supplementary Table 2, Supplementary 

Figure 14). 

Robustness to noise in estimates of LD 

Finally, we assess whether ℎ"!"#",&$  is robust to the number of individuals used to estimate LD, i.e. the sample size 

of the “LD panel” (Material and Methods). Compared to in-sample LD computed from the full set of individuals 
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in the GWAS (N = 290,273), using a random subset of N={500, 1000, 2500, 5000} individuals from the original 

GWAS does not significantly impact the MSE of ℎ"!"#",&$  or ℎ"!"#",'$  (Supplementary Figure 15). Using 90%-CIs to 

identify potential causal genes (i.e. 90%-CI lower bound > 0), we observe a slight increase in the false positive 

rate for both ℎ"!"#",&$  and ℎ"!"#",'$  as N decreases (Supplementary Figure 16); this is accompanied by a slight 

increase in power for ℎ"!"#",&$  but not for ℎ"!"#",'$  (Supplementary Figure 17). Since the N=5,000 LD panel and the 

full in-sample LD yield similar false positive rates for both estimators, we recommend using an in-sample LD 

panel of no less than 5,000 individuals (see Discussion for additional comments on LD panels). 

𝒉𝐠𝐞𝐧𝐞,𝐫𝟐  identifies genes that link complex traits to phenotypically related monogenic disorders 

We estimate, and partition by MAF, the gene-level heritabilities of 17,437 genes for 25 quantitative traits in the 

UK Biobank (N=290,273 “unrelated white British” individuals48, M=5,650,812 with MAF > 0.5%, imputed data; 

Material and Methods). Unless otherwise stated, the quantity of interest, ℎ!"#",&$ , is a function of the variants 

located in the gene body and the variants located within 10-kb upstream/downstream from the gene start/end 

positions. A gene is classified as having “nonzero heritability” if it meets two criteria: (i) the 90%-CI for ℎ!"#",&$  

does not overlap zero and (ii) the 90%-CI for at least one MAF component (ℎ!"#",'$ , ℎ!"#",()
$ , or ℎ!"#",*$ ) does not 

overlap zero. Using this definition, the number of nonzero-heritability genes ranges from 1,212 (7%) for corneal 

hysteresis to 2,469 (14%) for height (Table 1). Most of the estimated posterior means for these genes lie between 

10/0 and 10/5 (Figure 4).  

As expected, ℎ"!"#",*$  behaves similarly to ℎ"!"#",&$ . The average Pearson R2 of ℎ"!"#",*$  and ℎ"!"#",&$  across the 25 

traits is 94% (s.d. 1%) (Figure 4, Supplementary Figure 18). 92% (s.d. 1%) of nonzero-heritability genes have 

significant common-variant heritability; 76% (s.d. 1%) have significant causal effects exclusively from common 

variants (Table 1). On the other hand, ℎ"!"#",'$  is significantly less correlated with ℎ"!"#",&$  (average R2 = 30% (s.d. 

21%) across traits) (Figure 4, Supplementary Figure 18). Approximately 2.5% (s.d. 0.6%) of genes have 

significant rare-variant heritability, and only 0.8% (s.d. 0.4%)—370 gene-trait pairs in total—have significant 

heritability exclusively from rare variants (Table 1, Supplementary Table 3). Of these 370 gene-trait pairs with 

only rare-variant heritability (ranging from 4 genes for heel T-score and corneal hysteresis to 32 genes for height 

(Table 1, Supplementary Table 3)), 232 gene-trait pairs are also identified by MAGMA53 (FDR < 0.05, Material 

and Methods). These 232 gene-trait pairs have a median ℎ"!"#",&$ ≈ ℎ"!"#",'$  on the order of 10/5  whereas the 

median for the remaining gene-trait pairs not found by MAGMA is ~10/0. This suggests that MAGMA likely 

has limited power to detect signal from rare causal variants of moderate effect, which is expected as MAGMA 

tests for association between the total causal-variant signal at a gene and phenotype; it is not designed for 

partitioning the signal into components from different allele-frequency classes. 
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The 138 additional gene-trait pairs identified with our approach (Supplementary Table 4) include several genes 

implicated in phenotypically related Mendelian disorders. For example, AKT2 is identified for serum gamma-

glutamyl transferase (90%-CI of ℎ!"#",&$ = [3 × 10/6, 1 × 10/5], MAGMA z-score: 1.1), which is used to test for 

the presence of liver disease; AKT2 is implicated in monogenic forms of type 2 diabetes54 and hypoinsulinemic 

hypoglycemia with hemihypertrophy55. The AKT2 annotation used for this analysis contains a total of 104 variants; 

24 are rare variants, of which 1 is identified as causal. For serum alkaline phosphatase (used to diagnose diseases 

related to the liver or skeletal system), we identify MDM4 (90%-CI of ℎ!"#",&$ = [4 × 10/7, 5 × 10/0], MAGMA 

z-score: 1.3; annotation contains 273 variants; 144 are rare variants, of which ~5 are identified as causal), which 

encodes a negative regulator of p53-mediated transcription56 that was recently implicated in an autosomal 

dominant bone marrow failure syndrome57. COL4A4, identified for serum apolipoprotein A1 (a test for 

atherosclerotic cardiovascular disease; 90%-CI of ℎ!"#",&$ = [4 × 10/6, 2 × 10/5] ; MAGMA z-score: 1.1; 

annotation contains 390 variants; 33 are rare variants, of which ~1 is identified as causal), is implicated in 

monogenic forms of kidney disease ranging in severity from hematuria to end-stage renal disease58–61. 

We also identify several genes implicated in congenital developmental and metabolic disorders. For example, 

RTTN, identified for mean corpuscular hemoglobin (90%-CI of ℎ!"#",&$ = [9 × 10/0, 2 × 10/5]; MAGMA z-

score: 2.2; annotation contains 369 variants; 83 are rare, of which ~2 are identified as causal), is implicated in 

microcephaly, short stature, and polymicrogyria with seizures62–65. SLC25A24, identified for serum cystatin C 

(90%-CI of ℎ!"#",&$ = [3 × 10/6, 2 × 10/5]; MAGMA z-score: 1.8; annotation contains 243 variants; 21 are rare, 

of which ~1 is causal), is implicated in Fontaine progeroid syndrome66,67. TBCK, identified for red blood cell count 

(90%-CI of ℎ!"#",&$ = [3 × 10/6, 2 × 10/5]; MAGMA z-score: 2.0; annotation contains 617 variants; 59 are rare, 

of which ~1 is causal), is implicated in infantile hypotonia with psychomotor retardation and characteristic 

facies68–70. 

Taken together, these findings indicate that the rare-variant contribution to total gene-level heritability is indeed 

useful for identifying disease-relevant genes, especially those with moderate or relatively low total heritability, 

which existing methods can be underpowered to detect. Our results are consistent with the hypothesis that 

complex-trait variation may be explained in part by dysregulation of genes that—if completely disrupted—cause 

phenotypically similar or related Mendelian disorders52. We emphasize that, since heritability reflects genetic and 

phenotypic variation at the population level, if a common variant and rare variant explain the same heritability 

(i.e. have the same standardized causal effect size), the allelic effect—the expected change in phenotype per 

additional copy of the effect allele—is significantly larger for the rare variant. 
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LoF-intolerant genes are overrepresented among genes with only rare-variant heritability 

We estimate, and partition by MAF, the gene-level heritabilities of three gene sets: (i) known Mendelian-disorder 

genes from OMIM49 (n=3,446), (ii) loss-of-function (LoF)-intolerant genes (probability of LoF-intolerance (pLI) > 

0.9)50 (n=3,230), and (iii) a set of FDA-approved drug targets for 30 immune-related traits51 (n=216) (Material 

and Methods). Compared to a set of “null” genes (sampled from the set of genes not contained in any of the three 

gene sets), all three gene sets have significantly higher median estimates of total and MAF-partitioned gene-level 

heritability (Figure 5). 

We investigate whether certain classes of nonzero-heritability genes are overrepresented in the Mendelian-

disorder and LoF-intolerant gene sets. The Mendelian-disorder gene set comprises ~20% of all genes and is 

enriched for genes with nonzero heritability for at least one trait (Fisher’s exact test, 95%-CI of OR: [1.2, 1.4]); 

the number of genes in both categories ranges from 261 for corneal hysteresis to 557 for height. The LoF-intolerant 

genes comprise ~19% of all genes and are also enriched for nonzero-heritability genes (Fisher’s exact test, 95%-

CI of OR: [1.5, 1.7]); the overlap between the two categories ranges from 314 genes for corneal hysteresis to 650 

for height. In contrast, genes with exclusively rare-variant heritability are significantly enriched in the LoF-

intolerant gene set (95%-CI of OR: [1.1, 2.1]) but not in the Mendelian-disorder gene set (95% CI of OR: [0.9, 

1.7]). On average across traits, ~19% (s.d. 11%) of the previously identified ℎ!"#",&$ = ℎ!"#",'$  genes and ~21% 

(s.d. 1%) of genes with only common-variant heritability are also in the Mendelian-disorder gene set. In contrast, 

~32% (s.d. 16%) of genes with ℎ!"#",&$ = ℎ!"#",'$  are also in the LoF-intolerant gene set, compared with ~23% (s.d. 

1%) of genes with ℎ!"#",&$ = ℎ!"#",*$ . 

MAF-partitioned gene-level heritability reveals unique insights into genetic architecture 

We investigated whether gene-level heritability estimates are correlated with gene length, average LD score of 

variants in the gene (a proxy for the strength of LD in the region), and average MAF of variants in the gene. 

ℎ!"#",*$  (and, to a large extent, ℎ!"#",()
$ ) is distributed very similarly to ℎ!"#",&$  with respect to these variables 

(Figure 6, Supplementary Figure 19). However, the distribution of ℎ!"#",'$  shows marked differences, particularly 

with respect to gene length. Specifically, we observe higher average ℎ!"#",'$  among shorter genes even though the 

number of causal variants per gene (across all allele frequencies) increases with gene length (Figure 6, 

Supplementary Figure 20). The expected per-causal variant effect size per gene is invariant to gene length for 

common and low-frequency variants, but for rare variants, the average across gene-trait pairs is nearly 10-4 in the 

shortest quintile of genes versus 10-6 in the longest (Figure 6). While this result initially seems paradoxical, it is 

not inconsistent with the literature; previous studies have reported strong inverse correlations between gene length 

and expression which could be due to, for example, natural selection favoring fewer/shorter introns in highly 

expressed genes due to the high energy/costs associated with transcription and splicing71,72. 
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Using the empirical distributions of cumulative ℎ!"#",&$ , ℎ!"#",*$ , ℎ!"#",()
$ , and 	ℎ!"#",'$ , we loosely quantify 

differences in polygenicity at the level of genes (with the caveat that, since there is a high degree of gene overlap 

in some regions, cumulative ℎ!"#",&$  may be more informative for some traits over others) (Figure 7). For example, 

if cumulative ℎ!"#",&$  is divided equally among nonzero-heritability genes, the empirical CDF for ℎ!"#",&$  would be 

the line y = x, where the x-axis is the rank ordering of genes from highest to lowest ℎ!"#",&$ ; two traits with the 

same empirical CDF for ℎ!"#",&$  can have different empirical CDFs for each MAF-partitioned component. Once 

again, we find that the cumulative distributions of ℎ!"#",*$  are extremely similar to those of ℎ!"#",&$  (Figure 7, 

Supplementary Figure 21). Although the curves generally have similar shapes across traits (i.e. similar spread of 

heritability across genes), some traits have a notable amount of heritability concentrated in just the top gene, and 

many of these gene-trait pairs have been functionally validated in the literature. For example, for serum urate 

concentration, SLC2A9 — a known urate transporter73–75 — is the single largest contributor to total, common-, 

and LF-variant gene-level heritability ( ℎ"!"#",&$ = 6.2% , ℎ"!"#",*$ = 5.9% , ℎ"!"#",()
$ = 0.3% , ℎ"!"#",'$ = 0 ), 

accounting for 46%, 51%, and 29% of the cumulative heritability for each estimand, respectively (Figure 7); 

certain loss-of-function mutations in SLC2A9 are known to cause a rare form of renal hypouricemia76–78, a disorder 

characterized in part by low serum urate levels. For serum alkaline phosphatase, we find that ALPL — which 

encodes the enzyme alkaline phosphatase — is the single largest contributor to total and LF-variant gene-level 

heritability (ℎ"!"#",&$ = 4.1%, ℎ"!"#",*$ = 1.8%, ℎ"!"#",()
$ = 2.1%, ℎ"!"#",'$ = 0%), explaining 15% and 39% of the 

respective cumulative heritability estimands (Figure 7); certain loss-of-function mutations in ALPL are known to 

cause hypophosphatasia, a monogenic disorder characterized in part by low alkaline phosphatase79,80.  

Discussion 

We propose a general approach for estimating the heritability explained by any set of variants much smaller than 

an LD block and assess its utility in estimating/partitioning gene-level heritability. In simulations, we confirm that 

incorporating uncertainty about which variants are causal and what their effect sizes are dramatically improves 

specificity over naive approaches that ignore uncertainty in the causal effects. For 25 complex traits and >17K 

genes, we estimate gene-level heritability—the heritability explained by variants in the gene body plus a 10-kb 

window upstream/downstream from the gene start/end positions—and partition by allele-frequency class to 

explore differences in genetic architecture across traits. As expected, most gene-level heritability is dominated by 

common variants, but we identify several genes with nonzero heritability exclusively from rare or low-frequency 

variants. Notably, we identify many genes with nonzero gene-level heritability explained exclusively by rare 

variants that existing methods are underpowered to detect. Many of these genes have known roles in Mendelian 

disorders that are phenotypically similar or related to the complex trait; we also identify genes implicated in 

systemic congenital developmental and metabolic disorders. Our results demonstrate that the rare-variant 
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contribution to total gene-level heritability is a useful quantity that can be considered alongside common-variant 

heritability enrichments to obtain a more comprehensive understanding of genetic architecture.  

We conclude by discussing the limitations of our approach. First, multiple lines of evidence suggest that rare and 

“ultra-rare” variants, which are not well-tagged by variants on genotyping arrays, may explain much of the 

“missing heritability” not captured by genotyped or imputed variants81–84. Since imputed genotypes are noisier for 

rarer variants and variants in lower LD regions, we analyze variants with MAF > 0.5%. Additional work is needed 

to assess the error incurred by using genotyped/imputed data in lieu of whole genome sequencing (WGS) as well 

as the signal that is missed by excluding variants with MAF < 0.5%. While our estimator can be applied to whole 

exome sequencing (WES) data, LD between coding and noncoding regions would significantly inflate gene-level 

heritability estimates; LD between exonic and intronic variants could also cloud interpretation, depending on the 

application. With multiple biobanks starting to sequence large numbers of individuals85–88, we believe the 

availability of large-scale WGS data will gradually become less of an issue. 

We correct for population structure using genome-wide principal components (PCs) computed from the same 

imputed genotypes that are used to perform each GWAS. This is a standard approach to correcting for population 

stratification, which typically reflects geographic separation, in estimates of genome-wide SNP-heritability and 

genome-wide functional enrichments, both of which are driven by common SNPs. However, rare variants 

generally have more complex spatial distributions and thus exhibit stratification patterns distinct from those of 

common SNPs84,89. It is unclear whether methods that are effective for controlling stratification of common SNPs 

are applicable to rare variants90. We leave the question of whether uncorrected structure among rare variants 

significantly influences our estimates of gene-level heritability for future work. 

Our approach requires OLS association statistics and LD computed from a subset of individuals in the GWAS. 

While estimates of gene-level heritability and the MAF-partitioned components are robust to sample sizes as low 

as 5,000, the individuals used to estimate LD must be a subset of the individuals in the GWAS. Although summary 

association statistics are publicly available for hundreds of large-scale GWAS, most of these studies are meta-

analyses and therefore do not have in-sample LD available. Moreover, many publicly available summary statistics 

were computed from linear mixed models rather than OLS, which is used throughout our simulations and 

derivations. Additional work is needed to extend our approach to allow external reference panel LD (e.g., 1000 

Genomes91) and/or mixed model association statistics. Biobanks can help to ameliorate potential issues stemming 

from noisy LD by releasing summary LD information in addition to summary association statistics92. 

Finally, gene-level heritabilities of different genes can have nonzero covariance due to physical overlap between 

genes and/or correlated causal effect sizes. Thus, the heritability estimates reported in this work have additional 

sources of noise/uncertainty which were not directly modeled or accounted for. Since modeling correlation of 
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causal effect sizes would make inference considerably more challenging, we leave this for future work. 

Importantly, genes with credible intervals > 0 should not be interpreted as “causal” for the complex trait without 

additional functional validation, as nonzero gene-level heritability indicates association but not causality. 
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Material and Methods 

Model and definitions of estimands 

We model the phenotype of a given individual using a standard linear model, 𝑦 = 𝐱8𝛃 + 𝜖 , where 𝐱8 =

(𝑥9…𝑥:)8 is the vector of standardized genotypes at M variants, i.e. 𝔼[𝑥;] = 0 and 𝑣𝑎𝑟[𝑥;] = 1 for 𝑖 = 1,… ,𝑀. 

𝛃 is the M× 1 vector of standardized causal effect sizes, and 𝜖 ∼ 𝑁(0, 𝜎<$) is environmental noise. We assume 

that the phenotype is standardized in the population, i.e. 𝔼[𝑦] = 0, 𝑣𝑎𝑟[𝑦] = 1. Linkage disequilibrium (LD) 

between variants 𝑖 and 𝑗 is defined as 𝑟;= ≡ 𝑐𝑜𝑣<𝑥; , 𝑥=@ = 𝔼[𝑥;𝑥=] and the full LD matrix for all M variants is 𝐑 ≡

𝑐𝑜𝑣[𝐱8]. 

Letting 𝑝*,-.,( ∈ [0,1] such that 𝑀 × 𝑝*,-.,( is the total number of causal variants, we assume the causal effect 

of the i-th variant is 𝛽; ∼ 𝑁 o0,
>!
"

:×@#$%&$'
p with probability 𝑝*,-.,( or 𝛽; = 0 with probability 1 − 𝑝*,-.,(. Under 

this model, total SNP-heritability ℎA$  is defined as the proportion of phenotypic variance explained by the M 

variants, 

ℎB$ ≡
𝑣𝑎𝑟[𝐱8𝛃]
𝑣𝑎𝑟[𝑦]

	

= 𝔼𝛃 q𝑣𝑎𝑟[𝐱8𝛃|𝛃]r + 𝑣𝑎𝑟𝛃 q𝔼[𝐱8𝛃s𝛃]r	

= 𝔼𝛃[𝛃8𝑣𝑎𝑟[𝐱8]𝛃] + 𝑣𝑎𝑟𝛃[𝔼[𝐱8]𝛃]	

= 𝔼𝛃[𝛃8𝐑𝛃] + 𝑣𝑎𝑟𝛃[0]	

= 𝔼𝛃[𝛃8𝐑𝛃] 

where the second line follows from the Law of Total Variance. 

Let 𝑔 index a gene of interest. Given an assignment of 𝑚D variants to gene 𝑔, let 𝐱D8 be the 𝑚D × 1 vector of 

genotypes at this set of variants and let 𝐱DE8  be the genotypes of the remaining 𝑀 −𝑚D variants. We can rewrite 

the total SNP-heritability of the trait in terms of gene 𝑔 as 

ℎB$ = Var q𝐱D8𝛃D + 𝐱D(
8 𝛃D(r	

= Var<𝐱D8𝛃D@ + Var q𝐱D(
8 𝛃D(r + 2Cov q𝐱D8𝛃D, 𝐱D(

8 𝛃D(r	

= E𝛃<𝛃D8𝐑D𝛃D@ + E𝛃 q𝛃D(
8 𝐑D(𝛃D(r + 2 wE qW𝐱D8𝛃DX o𝐱D(

8 𝛃D(pr − E<𝐱D8𝛃D@E q𝐱D(
8 𝛃D(rx	

= E𝛃<𝛃D8𝐑D𝛃D@ + E𝛃 q𝛃D(
8 𝐑D(𝛃D(r + 2E𝛃 wE qW𝐱D8𝛃DX(𝛃D(

8 𝐱DE)y𝛃rx − 2E𝛃<EW𝐱D8𝛃D|𝛃X@E𝛃 qE o𝐱D(
8 𝛃D(|𝛃pr	

= E𝛃<𝛃D8𝐑D𝛃D@ + E𝛃 q𝛃D(
8 𝐑D(𝛃D(r + 2E𝛃 w𝛃D𝛃D(

8 E<𝐱D(𝐱D8@x − 0	

= E𝛃<𝛃D8𝐑D𝛃D@ + E𝛃 q𝛃D(
8 𝐑D(𝛃D(r + 2E𝛃 q𝛃D𝛃D(

8 r E𝐱<𝐱D(𝐱D8@ 
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where the fourth line follows from the Law of Total Expectation. If we additionally assume that 𝑐𝑜𝑣<𝛽; , 𝛽=@ = 0 

for all 𝑖 ≠ 𝑗, then 𝔼<𝛃(D)𝛃(DE)8 @ = 𝑐𝑜𝑣<𝛃(D), 𝛃(DE)@ = 0, which simplifies the above equation to 

ℎB$ = 𝔼𝛃<𝛃D8𝐑D𝛃D@ + 𝔼𝛃 q𝛃D(
8 𝐑D(𝛃D(r 

We refer to the first term, the component of heritability attributable to the causal effects in gene 𝑔, as total gene-

level heritability, i.e. 

ℎ!"#",&$ = 𝛃D8𝐑D𝛃D 

Using the same assumptions as above, we can partition the variants in gene 𝑔 by minor allele frequency such that  

ℎ!"#",&$ = ℎ!"#",'$ + ℎ!"#",()
$ + ℎ!"#",*$  

where ℎ!"#",'$ , ℎ!"#",()
$ , and ℎ!"#",*$  are the components of ℎ!"#",&$  attributable to the causal effects of rare (MAF < 

0.01), low-frequency (0.01 ≤ MAF < 0.05), and common (MAF ≥ 0.05) variants, respectively. The estimands of 

interest in this work are the four terms in ℎ!"#",&$ = ℎ!"#",'$ + ℎ!"#",()
$ + ℎ!"#",*$ . 

 

Estimating the posterior distribution of gene-level heritability 

Since we have neither the “true” causal effect sizes, 𝛃, nor the population LD, 𝐑, we must estimate both from data. 

We consider one approximately independent LD block at a time. Given a GWAS of N individuals, let 𝐗 =

<𝐱98, … , 𝐱G8 @
8 be the 𝑁 ×𝑀 matrix of standardized genotypes measured at M variants, let 𝐲 = (𝑦9, … , 𝑦G)8 be an 

𝑁 × 1 vector of phenotypes, and let 𝛜 ∼ MVN(𝟎, 𝜎<$𝐈G) be environmental noise. 

It is often the case that individual-level genotype data are inaccessible for privacy or logistical reasons. However, 

GWAS summary statistics—estimates of the causal effects and their standard errors—are publicly available for 

thousands of traits. Ordinary least squares (OLS) estimates of the causal effects are often provided, defined as 

𝛃EBHIJ =
1
𝑁
𝐗8𝐲 =

1
𝑁
𝐗8(𝐗𝛃 + 𝛜) =

1
𝑁
𝐗8𝐗𝛃 +

1
𝑁
𝐗8𝛜	

It follows that 

𝑝W𝛃EBHIJs𝛃, 𝐑E, 𝜎<$) ∼ 𝑀𝑉𝑁�𝐑E𝛃,
𝜎<$

𝑁
𝐑E� 

In this scenario, the observed data D are not the individual-level genotypes and phenotypes (𝐗, 𝐲), but rather D =

W𝛃EBHIJ, 𝐑EX, where 𝐑E is an estimate of LD computed from either the genotypes of a set of individuals in the 

GWAS (“in-sample” LD) or from an external reference panel (e.g., 1000 Genomes91). By combining the prior on 
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𝛃 , 𝑝(𝛃|𝝀)  (𝝀  represents hyperparameters in the prior over 𝛃 , estimated with empirical Bayes procedure as 

implemented in SuSiE), and the likelihood of the observed data, 𝑝W𝛃EBHIJs𝛃, 𝐑E, 𝜎<$) , one can compute the 

posterior distribution of the causal effects, 𝑝(𝛃|𝛃EBHIJ, 𝐑E, 𝝀, 𝜎<$). The hyperparameters 𝝀 and 𝜎<$ can be estimated 

with an empirical Bayes procedure as in SuSiE framework. We note that for computational efficiency, we can 

partition the whole genome into approximately independent LD blocks, and estimate the posterior distribution of 

𝛃 separately for each LD block. Because each LD block is approximately independent of the rest of the genomes 

by definition, the genetic effects from SNPs outside of the LD block of interest are absorbed into the environmental 

noise. And correspondingly, the LD block-specific hyperparameters (𝝀, 𝜎<$) are estimated independently for each 

LD block. 

The posterior of 𝛃, 𝑝(𝛃|D), is in general computationally intractable. Approximate inference, e.g., Markov Chain 

Monte Carlo (MCMC) or variance inference, can be used to approximate the exact posterior 𝑝(𝛃|D) as  𝑝�(𝛃|D). 

In this work, we use SuSiE47, a variational inference-based implementation of linear regression with sparse prior. 

(In principle, it is straightforward to use other implementations of linear regression with sparse prior). We draw 

K samples from the posterior of the causal effects, 𝛃�(9), … , 𝛃�(K) ∼ 𝑝�(𝛃|D). This approximate distribution can in 

turn be used to approximate the full posterior distribution of ℎ!"#"$ , i.e. o𝛃�D
(9)p

8
𝐑ED o𝛃�D

(9)p , … , o𝛃�D
(K)p

8
𝐑ED o𝛃�D

(K)p. 

Finally, given the approximate posterior of ℎ!"#"$ , one can compute the posterior mean, 

ℎ"!"#"$ = EE<𝛃D8𝐑D𝛃DsD@	

≈
1
𝐾
�o𝛃�D

(L)p
8
𝐑ED o𝛃�D

(L)p
K

LM9

 

and measures of uncertainty such as credible intervals (described below). Similar procedures could be applied to 

estimate the gene-level heritabilities stratified by annotations of SNPs (such as MAF-based annotation). 

Quantifying uncertainty in gene-level heritability estimates 

𝛃�(9), … , 𝛃�(K) provide an approximation to the full posterior distribution of 𝛃, thus capturing uncertainty about the 

causal effect sizes arising from two main sources: LD and finite GWAS sample size (Figure 1). Therefore, by 

using the full posterior of 𝛃 to approximate the full posterior of ℎ!"#"$ , we wish to capture uncertainty in the causal 

effects that propagates into our estimate of ℎ!"#"$ . (The noise in 𝐑E is also an important factor but, for simplicity, 

we first investigate uncertainty in ℎ"!"#"$  in simulations where 𝐑E = 𝐑.) 

We summarize the uncertainty in ℎ!"#"$  by computing 𝜌-level credible intervals (𝜌-CIs). For a given 𝜌 ∈ [0,1], 𝜌-

CI is defined as the central interval within which ℎ!"#"$  lies with probability 𝜌, i.e. the upper and lower bounds of 
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𝜌 -CI are set to the empirical 9/N
$

 and 1 − o9/N
$
p  quantiles of the posterior samples o𝛃�D

(L)p
8
𝐑ED o𝛃�D

(L)p , 𝑘 =

1,… , 𝐾. 

Implementation details 

We partition the genome into approximately independent LD blocks93 and, for each gene of interest, we perform 

inference on the LD block containing the gene. For each LD block, we extract the marginal association statistics 

and estimate LD for all the variants in the LD block. We estimate the posterior distribution of effect sizes using 

the function “susie_suff_stat” with default parameters, as implemented in SuSiE47 v0.8. We use the function 

“susie_get_posterior_samples” to obtain 500 posterior samples. 

Simulation framework 

We obtain the real imputed genotypes of N=290,273 “unrelated white British” individuals in the UK Biobank by 

extracting individuals with self-reported British ancestry who are > third-degree relatives (pairs of individuals 

with kinship coefficient < ½(9/2), as defined in ref.48). Filtering on MAF > 0.5% leaves 200,235 variants on 

chromosome 1. A list of 1,083 genes on chromosome 1 and their coordinates were downloaded from 

https://github.com/bogdanlab/gene_sets (Data Availability). For each variant, genotypes are standardized such 

that the mean is 0 and variance is 1 across individuals. Phenotypes were simulated under a variety of genetic 

architectures according to the following steps. First, we randomly select 3%, 8%, or 16% (out of the 1,083 genes) 

to be causal (ℎ!"#"$ > 0 ). Second, we draw causal variants in the causal gene bodies and within 10-kb 

upstream/downstream of the gene start/end positions; the causal variants in the window around the gene are 

intended to represent regulatory causal variants in transcription start sites (TSSs). The causal configuration is set 

to be either (1) 5 causal variants in gene body and 3 causal variants in TSS or (2) 10 causal variants in gene body 

and 6 causal variants in TSS. Third, we draw noncoding “background” causal variants across the whole 

chromosome with frequency 𝑝*,-.,( = {0.001, 0.01}. Finally, conditional on the causal statuses of the variants, 

we draw independent causal effect sizes from a Gaussian distribution where the variance of each causal variant is 

standardized such that the gene bodies collectively have a heritability of 3%, TSSs collectively have 1%, and non-

coding background variants together explain 1%. We note that the causal statuses and effect sizes for each variant 

are only drawn once; the environmental noise term is drawn 30 times independently to generate 30 simulation 

replicates.  

Evaluating and comparing gene-level heritability estimates in simulations 

Recall that for a given gene 𝑔, the causal effect sizes and LD of the variants assigned to the gene are denoted 𝛃D 

and 𝐑D, and ground-truth gene-level heritability is defined as ℎ!"#"$ = 𝛃D8𝐑D𝛃D. The posterior mean estimated for 

a single simulation replicate s is denoted ℎ"!"#",(.)$ . We estimate the bias of the estimator as bias<ℎ"!"#"$ @ ≈
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9
1O
∑ (ℎ"!"#",(.)$ − ℎ!"#"$
4 ); the variance of the estimator as Var<ℎ"!"#"$ @ ≈ 9

1O
∑ Wℎ"!"#",(.)

$ − ℎ!"#"$ X
$

4 ; and the mean 

squared error as MSE<ℎ"!"#"$ @ = Wbias<ℎ"!"#"$ @X
$
+ Var<ℎ"!"#"$ @. 

For each simulation replicate 𝑠 , we also output 𝜌 -level credible intervals, defined as CI(4) = �ℎ"!"#",)*+" ,(.)
$ ,

ℎ"!"#",9/)*+" ,(.)
$ �, where the 9/N

$
 and 1 − o9/N

$
p quantiles are estimated from the posterior samples. To assess the 

accuracy of credible intervals, we calculate empirical coverage across simulation replicates, defined as the 

proportion of simulation replicates in which the 𝜌-level credible interval covers the ground-truth gene-level 

heritability: 9
1O
∑ 𝕀4 <ℎ"!"#",(.)

$ ∈ CI(4)@. 

Comparison to “naïve” gene-level heritability estimator 

We compare our approach to an alternative “naïve” estimator of gene-level heritability that does not model LD 

between the gene and its adjacent regions and thus ignores causal-effect uncertainty. This estimator is similar to 

existing methods that are meant to be applied to approximately independent LD blocks45,94. For each gene 𝑔, we 

extract the marginal association statistics, 𝛃ED, and the estimated LD, 𝐑ED, for the variants assigned to the gene, and 

we compute the alternative estimator as 
G𝛃P,-𝐑P,

.𝛃P,-	
G/S

, where 𝐑ED
T  and 𝑞  are the pseudo-inverse and rank of 𝐑ED , 

respectively45,94.  

Assessing robustness to LD panel sample size 

To assess the robustness of our approach to the sample size of the LD panel used to estimate LD, we randomly 

draw a subset of N={500, 1000, 2500, 5000} individuals from the full 290,273 individuals. After extracting 

variants with MAF > 0.5%, genotypes are standardized to have mean 0 and variance 1, similar to the full-sample 

analysis. Since we are interested in assessing robustness to noisy estimates of LD, all analyses are performed using 

the same set of marginal association statistics used in the full-sample analysis, excluding the variants that were 

filtered from the LD panel based on MAF. The LD and marginal association statistics are fed into the h2gene 

software, similar to the full-sample analysis. 

Analysis of 25 UK Biobank phenotypes 

We analyzed 25 quantitative phenotypes in the UK Biobank. Phenotypes and imputed genotypes were filtered 

according to the same procedures used in the simulation analyses, leaving N=290,273 individuals and 

M=5,650,812 variants with MAF > 0.5%. Quantitative phenotypes were quantile-normalized to a Gaussian 

distribution with mean 0 and variance 1. We then performed a GWAS for each trait using the “assoc” option in 

PLINK (Web Resources) with age, sex, and the top 10 genetic principal components included as covariates. We 

computed in-sample LD for each approximately independent LD block93. We downloaded gene names and 
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coordinates from https://github.com/bogdanlab/gene_sets and, for each gene, we define the estimand of interest 

to be a function of the variants in the gene body and those located within 10-kb upstream/downstream of the gene 

start/end positions. Finally, given the in-sample LD and marginal association statistics, we infer the posterior 

distribution of the causal effect sizes one LD block at a time, and we estimate and partition gene-level heritability 

for all genes in each LD block, where we define the estimand of interest to be a function of the variants in the 

gene body and those located within 10-kb upstream/downstream of the gene start/end positions. MAGMA v1.09 

was used for gene-level association with a 10kb window around each gene. The same list of genes and the same 

set of imputed variants were used for the MAGMA analysis. 
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Figures and Tables 
 

 

 
 
Figure 1. Overview. (A) Toy example with two variants, one of which is assigned to the gene of 

interest. The top row depicts 3 example causal configurations corresponding to 3 different gene-level 

heritabilities (0, 𝛽$, and 𝛽$/4). Since the variants in are in perfect LD, all 3 causal configurations yield 

the same expected marginal association statistics. (B) Given marginal association statistics, an 

estimate of LD, and an assignment of variants to the gene of interest, our approach involves i) 

sampling from the posterior of the causal effect sizes (assuming a sparse prior) to capture our 

uncertainty about which variants are causal, and then ii) estimating gene-level heritability for each 

posterior sample to approximate the posterior distribution of gene-level heritability. 
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Figure 2. Impact of uncertainty in the estimated causal effects on gene-level heritability 
estimation in simulations. Chromosome 1, MAF > 0.5%, pcausal=0.01, N=290K individuals, and 1,038 

genes, of which 16% have nonzero gene-level heritability. Top row: each point is the average ℎ"!"#"$  for 

a given gene across 30 simulation replicates; error bars mark 1.96 × standard error of the mean (SEM). 

Orange and green points are genes for which the estimator is significantly upward-biased and 

downward-biased, respectively. Bottom row: distributions of SEM with respect to gene-level heritability. 
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Figure 3. Estimates of the heritability contributions of common, low-frequency, and rare variants 
in simulations. Chromosome 1, MAF > 0.5%, pcausal=0.01, N=290K individuals, and 1,083 genes, of 

which 16% have nonzero heritability. Each point is the average posterior mean for a given gene from 

30 simulation replicates; error bars mark 1.96 x SEM. Orange and green points are genes for which the 

estimator is significantly upward-biased and downward-biased, respectively, where significance is 

determined by the error bars. 
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Trait ℎ!"#",%& > 0 ≥ '
&
∑ℎ!"#",%&   (%) 

ℎ!"#",%&

= ℎ!"#",(&  
ℎ!"#",%&

= ℎ!"#",)*&  
ℎ!"#",%&

= ℎ!"#",+&  

Corneal Hysteresis 1212 42 3.5% 912 82 4 
Hair Color 1328 6 0.5% 972 92 14 
BMD Heel T-score 1430 48 3.4% 1098 90 4 
Alkaline Phosphatase 1695 9 0.5% 1257 120 20 
SHBG 1699 5 0.3% 1277 118 19 
MCH 1701 41 2.4% 1253 137 18 
C-reactive Protein 1702 5 0.3% 1293 98 7 
apoA-I 1730 14 0.8% 1290 119 14 
Platelet Distribution Width 1736 19 1.1% 1316 117 20 
MSCV 1738 38 2.2% 1339 118 11 
Urate 1744 2 0.1% 1319 119 14 
Monocyte Count 1750 41 2.3% 1332 112 10 
HDL 1766 14 0.8% 1321 126 11 
GGT 1784 37 2.1% 1361 108 13 
HbA1c 1813 26 1.4% 1345 145 17 
High Light Scatter 
Reticulocyte Count 1858 56 3.0% 1399 129 25 

IGF1 1859 62 3.3% 1402 128 12 
Body Mass Index (BMI) 1879 184 9.8% 1430 116 8 
Cystatin C 1900 22 1.2% 1452 121 9 
Platelet Count 1910 64 3.4% 1471 119 25 
Forced Vital Capacity 1910 157 8.2% 1465 123 6 
Mean Platelet Volume 1912 32 1.7% 1408 140 25 
RBC Count 1915 89 4.6% 1461 138 21 
Basal Metabolic Rate 2099 181 8.6% 1608 128 11 
Height 2469 168 6.8% 1860 182 32 

 
Table 1. Summary of nonzero-heritability genes (90%-CI) for 25 quantitative traits. Columns 1-4: 

complex trait; total number of nonzero-heritability genes (out of 17,437), defined as having (i) ℎ!"#",&$  

90%-CI > 0 and (ii) 90%-CI > 0 for at least one MAF bin (rare, low-frequency, or common); number 

(and %) of nonzero-heritability genes that explain at least 50% of cumulative ℎ!"#",&$  for the trait. 

Columns 5-7: numbers of genes with nonzero heritability contributions exclusively from common, low-

frequency, or rare variants. (BMD = bone mineral density; MCH = mean corpuscular hemoglobin; 

MSCV = mean sphered corpuscular volume; RBC = red blood cell.) 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 18, 2021. ; https://doi.org/10.1101/2021.08.17.456722doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.17.456722
http://creativecommons.org/licenses/by-nc-nd/4.0/


 27 

 

 
 
 
Figure 4. Distributions of h2 estimates for 25 traits. Each violin plot is the distribution of posterior 

mean estimates for genes with 90%-CI > 0 for one trait. The shading scales with the number of genes 

in the violin plot. 
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Figure 5. Distributions of h2 estimates for 3 gene sets. Mendelian-disorder genes (n=3,446), LoF-

intolerant genes (n=3,230), and immune-related drug targets (n=216). Each point is the median 

posterior mean across genes for a given trait; each boxplot contains 25 quantitative traits in the UK 

Biobank. 
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Figure 6. Inverse relationship between rare-variant h2 estimates and gene length. Estimates of 

h2 (top), number of causal variants per gene (middle), and expected effect size per causal variant per 

gene (bottom) with respect to gene length (x-axis) for 25 traits. Each violin plot is the distribution of 

posterior mean estimates for nonzero-heritability genes with 90%-CIs > 0 for each h2 quantity. Color 

gradient indicates the number of estimates in each violin plot (number of gene-trait pairs). 
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Figure 7. Gene-level heritability estimates capture differences polygenicity across traits. (a) 

Empirical distributions of cumulative heritability for six example traits (clockwise from top left: total, 

common, low-frequency, and rare). Each curve can be read as, “the top X genes explain Y% of the 

cumulative gene-level heritability for a given trait.” Cumulative gene-level h2 is estimated by summing 

the estimated posterior means for nonzero-h2 genes (90%-CI > 0). (Supplementary Figure 21 shows 

all 25 traits.) (b) Proportion of nonzero-h2 genes per trait with disproportionately large heritability 

estimates, defined as genes with 90%-CI > (cumulative heritability / number of causal genes)). Each 

violin plot represents 25 traits.  
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