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Disease grading and staging is accomplished through the
assignment of an ordinal rating. Bridge ratings occur when
a rater assigns two adjacent categories. Most statistical
methodology necessitates the use of a single ordinal cat-
egory. Consequently, bridge ratings often go unreported in
clinical research studies. We propose three methodologies

(Expanded, Mixture, and Collapsed) Bridge Category Models,

to account for bridge ratings. We perform simulations to ex-
amine the impact of our approaches on detecting treatment
effects, and comment on a real-world scenario of staging
liver biopsies. Results indicate that if bridge ratings are not
accounted for, disease staging models may exhibit signifi-
cant bias and precision loss. All models worked well when

they corresponded to the data generating mechanism.
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1 | INTRODUCTION

Ordinal rating data are commonly used for routine clinical staging and grading of tissue biopsies[1, 2, 3]. However,
raters may occasionally assign two adjacent categories, or bridge ratings. For instance, fibrosis in Non-Alcoholic Steato-
hepatitis (NASH), are staged by raters on a 5-point scale (from O to 4) [4, 5, 6] (Figure 1). While a stage O rating is
likely to represent a healthy individual and stage 4 rating represent an individual with cirrhosis who may require liver
transplantation, pathologists will sometimes assign bridge ratings (e.g. 2-3). Explanations for why such bridge ratings
were assigned include the following motivating scenarios:

1. Expanded Scale (Figure 1B-C): Pathologist feels that an intermediate stage placed between the two adjacent
stages would better encapsulate the disease pathology. However, since the intermediate category does not exist,
they assign both categories.

2. Hedging by Blurring Stage (Figure 1D-E): Pathologist interprets scale incorrectly and rounds down or up erro-
neously on occasion. For instance, the pathologist may be told to report a stage 2 if they think the biopsy is
a stage 2 with a probability of 0.7 and a stage 3 with a probability of 0.3, but may want to hedge against the
potential of the more advanced stage being correct.

3. Collapsed Scale (Figure 1F): The pathologist believes the scale has one fewer category than available in the guide-

line scale, leading them to assign an interval that can compensate for information loss.

These explanations often arise in clinical research studies and practice. As common examples, sometimes the pathol-
ogist feels the tissue sample is sub-optimal in some way (e.g. too small, too fragmented, crushed, etc.), or the biopsy
exhibits features of both stages. Alternatively, the pathologist may feels the clinical scenario does not match the
histological findings (e.g. patient with sequalae of cirrhosis but liver biopsy showing only moderate fibrosis). In sum,
bridge ratings may be employed to better describe the features of the biopsy.

In response to most statistical methodologies being unable to account for bridge ratings, domain experts often
employ ad hoc approaches such as rounding the ratings to the higher or lower level, or randomly select either of the
two ratings. Raters are often discouraged from reporting bridging categories and may resort to a combination of the
aforementioned approaches [7, 8, 9, 10, 11, 12, 13]. In the practice of medicine, in addition to binary, categorical and
continuous outcomes, the assessment of ordinal ratings is important for the conduct of clinical trials (e.g. screening,
baseline and endpoint) [14, 15, 3], evaluation of the psychometric properties or other forms of validation of the
underlying measurement scales (e.g. estimation of the intraclass correlation coefficient) [16, 5, 17], identification of
important exposures/covariates [18, 19, 6, 20, 21], and validation of machine learning technologies which may predict
an ordinal response [12, 22, 23, 24].

Some statistical methods exist for analyzing imprecise rating data under various assumptions about what the
imprecise ratings mean[25, 26, 27, 28], but these methods are seldom employed in practice. We consider a situation
in which the imprecise ordinal ratings could be interpreted in three different ways and we develop three statistical
models appropriate for accounting for bridged ratings under each of these interpretations: 1) the expanded category
model, 2) mixture adjacent model, and 3) collapsed category model.

We evaluate the performance of each of these statistical models under the different assumptions on the meaning
of the bridge rating. This allows the evaluation of potential harm (e.g. bias, imprecision, high variance, erroneous
coverage of interval estimators) from using the incumbent approach of rounding up, down, or randomly. We also assess
which statistical model yields the most robust results in general. Finally, we present a real-world dataset (comparing

serological markers and potential confounders to NASH fibrosis stage [12]) which contains bridge ratings and comment
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on the applicability of, and future directions for, our modeling approaches.

2 | METHODS

In the appendix, we have included an introduction to ordinal regression models (e.g. ordered logit and ordered probit
specifications) which are used to formulate our strategy for dealing with the bridged ratings of an ordinal response
variable (section "Ordinal Response Variables and Cumulative Link Models (CLM)"). Let Y represent the ordinal re-
sponse variable, j € {1,2,...,K — 1} (i.e,, disease stage). Let X be a design matrix of observations by predictors. The
latent variable, Y*, represents the true, unobserved continuous process (i.e., disease progression) underlying the or-
dinal observations. The predictors serve to explain this progression/latent variable. With respect to disease staging,
subjects with lower values in the latent scale are assumed to be healthier than those with higher values, who may
exhibit significant progression. A pathologist who stages the disease may cut this continuous scale to form discrete
stage measurements (Figure 1A). As per the derivation in the appendix, we implemented a fully Bayesian multinomial
model using the Stan probabilistic programming language (See Appendix, section "Bayesian Computation and Hamil-
tonian Monte Carlo") [29, 30, 31, 32] for disease staging. The cumulative link model (CLM) for K ordinal response
categories is specified below for predictors indexed by m € {1, 2, ..., M} and cutpoints fromj € {1, 2, 3,...,K -1},

under the stong assumption that effects (8) are invariant to j (not category-specific):

L; (Y16) ~ Multinomial (—p’)
—
P = [F61) FOr=p)~F(&1-p) ~ F(8-1;)~F(8j-1-ki) = F(Ok-1-Hi)~F Ok 2-Hi) 1-F(6k-1) ]
T
Hi = X; Bi.m

6~ N(0.6?), Bn~nN(0.0?)

The following three subsections feature three separate data generating mechanisms (DGM) and corresponding
statistical models, each of which builds upon the aforementioned model. In each of these subsections, we develop
the likelihood function for each DGM and associated estimation procedure.

2.1 | Description of Data Generating Mechanisms and Bridge Category Modeling Approaches

In response to the three motivating scenarios, we propose three adaptations of the cumulative link model to account
for ratings of j and j + 1, which we denote as {j,j + 1}, in an ordinal rating scale with K categories. We denote the
models developed herein for handling adjacent category data as ‘Bridge Category Models’, referring to the scenario
where information pertaining to the assigned adjacent rating interval is censored (Figure 1). In all cases, we imagine
an underlying latent distribution, y* ~ N (0, 1) (under probit specification), is classified into K categories about K — 1

cutpoints.

2.2 | The Expanded DGM: The Expanded Category Model

The expanded category model posits that the rater genuinely believes that the rating lies between j and j+1 on the

underlying continuous scale. This scenario may arise when the rater feels that the scale is too sparse and as such
does not adequately distinguish between cases that the rater feels are genuinely different. As such, the rater reports

a bridge rating as a way of conveying that the case is nestled between those typically represented by the bridged
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FIGURE 1 Visualization of data generating mechanisms and modeling approaches: A) Visualization of latent
distribution/likelihood in cumulative link model, where top right arrow indicates latent scale of disease progression,
while cutpoints/thresholds in latent distribution are denoted by vertical dashed lines. Areas between cutpoints
correspond to rating/stage probabilities. Different predictors of the underlying latent rating may covary with latent
disease progression, indicated by second right arrow. B) Data generating mechanism for expanded DGM, where
biopsy may present features exactly between two adjacent ratings. The expanded DGM is accounted for using: C)
the expanded category model, where additional categories indicated in red are estimated. D) Visual description of
the blurred DGM, where here, true rating (Y = 3) is blurred into lower category (Y = 2 — 3). In the mixture adjacent
model E) a mixture parameter p indicates the potential that the true rating is Y = 3. F) Visual description of the
collapsed DGM, where the rater imagines scale is smaller than it really is and assigns a larger interval (Y = 3 - 4; red
limits) based on the lack of information instead of Y = 3.

ratings. In the data generating model, ordinal data is generated through introduction of 2K — 2 cutpoints, where
the area of the even integer categories in the latent space reflects the frequency at which uncertain assignments
occur. We handle this by estimating a model with additional categories (Figure 1B-C). If such a scenario were to occur
between all adjacent cutpoints when there are K possible ratings, the new scale would have 2K — 1 ratings, where the
new categories bring added precision [33, 34, 35, 36, 37]. We assume here that all raters are thinking in terms of the
2K — 1 categories, which may differ from reality. Even numbered categories on this scale represent intervals on the
original scale for which naming a single category is difficult. The expanded category model increases the resemblance
to continuous data through introduction of additional categories which have smaller average distance between them
than the original categories. It is common for ordinal response data with more than ten categories to be treated as
continuous outcomes [33, 34, 35, 36, 37]. The specification of the Bayesian model is modified from the CLM model
for K ordered categories for predictors indexed by m € {1,2, ..., M} and cutpoints from j € {1,2,3,...,2K - 2}

P=|F61) FOr—p)—FOr~p) - F(6—p)=F@1—p) - F(Bk)~F(Ok-3) 1-F (6ak2)
3

The priors and likelihood are of the same functional form as the original CLM. The distance between these inter-
mediate cutpoints and the immediately adjacent cutpoints indicates the relative frequency with which bridge-ratings

were made by raters.
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2.3 | The Blurred DGM: The Mixture Adjacent Model

Here, we consider the case when two adjacent ratings are blurred. Data generated from the latent distribution is
organized into K categories via K — 1 cutpoints. A proportion of the ratings, g, are blurred, where for each rating j,
the rating reported is {j, / + 1} with probability p and {j — 1, /} with probability 1 — p. This corresponds to the true rating
being the smaller rating of the pair p proportion of times and the bigger rating 1 — p proportion of times.

The mixture adjacent model posits that the rating was mis-coded, or there were defining features in either the

higher or lower rating that made a combined rating more appealing (e.g. most of the histological features resemble a
stage two, but some are indicative of a stage three; “mostly stage two"). In this scenario, the true solution could be
either j or j+1, but we are unsure of which. We denote the probability that the true rating is the lower rating as p. The
marginal contribution to the likelihood is then:

Li(Y18) = (p* g + (1= p) = qjun) =0+ 1) 4 g /017 (@)
The modifications to the complete Bayesian Multinomial CLM are summarized here:

Li(Y=j18) =P (Y =))=gqj

Li (Y ={.j+1}18) = pxq; + (1 =p) * qjs1

where,
—q>=[F(91) oo F(G—pi) = F (61 —pi) o T=F(6k-1)
p ~ Beta (a, B) 5

a=Ax¢, B=Ax(1-¢)
A ~ Pareto (¥min,Aa)>» ¢ ~ Beta(a,b)

A prior in the beta family is set on the mixture parameter, p, and accommodates prior knowledge on whether the
population behavior favors leaning towards down or up-rating. Hyperpriors A and ¢ are mean and count parameters
that may be reparameterized as the parameters of the beta prior (a, 8). Alternatively, if the mixture parameter is
assumed apriori, we set p to be some constant between 0 and 1, which we refer to as the Set Mixture Model. This DGM
could arise in practice if the measurement system had a known property that led to an adjacent rating erroneously
appearing to be the correct rating a certain proportion of the time (e.g., system fault). However, it is not as flexible
as one which does not impose constraints on the mixing probability: it requires perfect knowledge of the mixing

probability. The mixture parameter, proportion p, should be recoverable by the Mixture Adjacent Model.

24 | Collapsed DGM: The Collapsed Category Model

While the Mixture Adjacent Model handles blurred measurement, we expect the Collapsed Category Model to have

some flexibility to the blurred categories. The collapsed category model refers to a data generating mechanism where

the scale contains levels that the rater is unable to distinguish. As an example, the rater may report Y = {j,j + 1}
as a single category as they are unable to distinguish between the categories. Analogous to interval censoring, we

handle this scenario by combining the adjacent categories in the contribution from this particular rater to the likelihood
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function:
Li(Y=0.j+118) =P (Y =)+ P (Y =j+1)=F (8 —pi) = F (61 — i) (6)
The likelihood of the Bayesian multinomial model (eq. (2)) may by modified to encapsulate this observation:

Li(Y=j16)=P(Y =)
Li (Y ={.j+1318) = F (81 — i) = F (6j—1 — i)
where,

P=|F®1) - F (6 —pi) = F (61 —pi) -+ 1_F(9’<‘1)l

2.5 | Description of Simulation Studies

We designed simulation studies to evaluate the benefit of correctly accounting for bridge-ratings and the robustness
of the above three models to erroneously assuming the meaning of bridge ratings. We focus on the recovery of
parameters of interest given a causal model. In all simulations, we evaluate the performance of the point and interval
estimators of the effect of three covariates X [38], as they pertain to generation of latent information Y*, which is
turned into five-to-nine ratings categories (depending on the model generating the data) by thresholding the generated
latent distribution (Figure 2).

2.6 | Data Generation: True model Known and Referred to as Data Generating Model
(DGM)

The first covariate was simulated from a uniform distribution and thresholded to form a binary covariate with a
prevalence of 0.2 while the remaining covariates were simulated from a standard normal distribution such that Z ~
U(0,1), X1 ~Tz<02, X2 ~N(0,1), X3 ~ N (0,1). These covariates correspond to scenarios where one may be esti-
mating a treatment effect (binary covariate) of a marker of interest or wanting to adjust for a continuous confounder
(continuous covariate). Covariate effects are given by:

E’:[s 2 -1] @)

Where s is a sensitivity parameter (true effect size of binary covariate) under various simulations while the other
parameters remain fixed. Given a probit link function, data is simulated as:

yi=B T+e 9)

where e¢; ~ N (0, 1).

Here, cutpoints _9> are established to cut this distribution into n ordinal ratings, Y. Then, observations are aug-
mented to conform to a specific DGM. To generate bridge ratings under the expanded DGM, 2K - 2 thresholds are
utilized for the binning procedure. The probability mass of each of the even integer categories (uncertain categories;
e.g. 2-3) is denoted by e, which can be tweaked from O (no uncertainty) to 0.25 (100% uncertainty). To generate

bridge ratings under the blurred DGM, ratings are blurred into adjacent categories. We denote the amount of blurri-
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FIGURE 2 Demonstration of data simulation for the expanded DGM under various statistical / ad-hoc modeling
procedures: vertical lines represent cuts in the latent distribution and points are colored by assigned ordinal rating:
A) latent distribution y* versus Xj; B) latent distribution y* versus Xs; C) latent distribution y* versus conditional
mean y; D) example of down-rating uncertainty categories (even numbered); E) example of random-rating
uncertainty categories; rating Y=1 indicates early/healthy staging for individual, while categories closer to Y=5
indicate later/severe staging

ness (proportion of times original assignment is blurred into uncertain adjacent categories), of the Blurred DGM as g.
Conditional on having blurred observations, the proportion of times in which the blur is of the higher adjacent cate-
gories is denoted as p. Cutpoints are chosen such that equal probability is assigned to each rating prior to application
of the blur mechanism.

We did not generate data under the collapsed DGM. Based on interviews with domain experts, the scenarios by
which data may be generated in a measurement scale with a lower number of ratings and inferred to be in a scale with

a greater number of categories may be less applicable and intuitive across biomedical research domains.

2.7 | Model Estimation: True Model (or DGM) Unknown

For each simulation, after binning observations into ordinal and bridge ratings, we estimate the main effects and

cutpoints for each DGM (expanded, blur) under the following data augmentation and modeling procedures:

1. Up-Rating: All “blurred” or “adjacent” assignments produced from the expanded or blurred DGM are assigned to
the higher of the two ratings. An ordinal regression model with K ordinal ratings is fit.

2. Down-Rating: All “blurred” or “adjacent” assignments produced from the expanded or blurred DGM are assigned
to the lower of the two ratings. An ordinal regression model with K ordinal ratings is fit.

3. Random-Rating: All “blurred” or “adjacent” assignments produced from the expanded or blurred DGM are ran-
domly assigned to either the higher or lower of the two ratings. An ordinal regression model with K ordinal ratings
is fit.

4. Expanded: Fitting the Expanded model under the assumption of 2 x K — 1 categories.
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5. Mixture Adjacent: Fitting the Mixture Adjacent Model.
6. Collapsed: Fitting the Collapsed Model.

We term the first three approaches as the traditional approaches, since they represent how bridged ordinal ratings

had previously been handled. The Up-, Down-, and Random-rating scenarios (analysis methods 1-3) correspond to
the true DGM under extreme special cases of the blurred DGM (p = 0, p = 1, and p = 0.5, respectively). These provide
comparative performance criteria for the models in 4-6 and especially to the mixture adjacent model in 5, which
encompasses them. To demonstrate differences between the traditional and bridge category modeling approaches,
we consider the following simulation-based evaluation of the performance of each modeling approach under each
specified DGM, fixing the number of categories to K = 5:

e € {0, 0.05, 0.1, 0.15, 0.2} (Expanded DGM; s = 1)
e € {0, 0.05, 0.1, 0.15, 0.2} (Expanded DGM; s = 6)
n € {100, 200, 500, 1000, 2000} (Expanded DGM)
s €{1, 3, 5, 6} (Expanded DGM)

g € {0, 0.3, 0.5, 0.8} (Blurred DGM)

p €1{0, 0.3, 0.5, 0.8, 1} (Blurred DGM)

n € {100, 200, 500, 1000, 2000} (Blurred DGM)

s €{1, 3, 5, 6} (Blurred DGM)

©® N o h DR

The default parameters (the values assumed unless stated otherwise) are e = 0.11, g = 0.6, p = 0.5, n = 1000,
s = 1 (for blurred DGM), and s = 6 (for expanded DGM, where proportions of binary covariate in adjacent categories
may vary greatly). When e = 0 or g = 0, this is equivalent to the scenario from which no uncertainty or measurement
error is introduced into the DGM.

For each sensitivity analysis, we generated 100 different datasets and estimated the posterior distribution of the

covariate and mixture parameters (when using the Mixture Adjacent Model). We recorded posterior means and 95%

high density credible intervals for these four parameters.

From these estimates, we provide frequentist estimates of the performance of these modeling approaches through
reports of the bias and mean squared error (MSE) of the posterior mean compared to the true parameter values, cov-
erage (percentage of times where credible interval covers the true population parameter, which should be close to
the nominal 95% probability) and averaged posterior width (the utility of the interval estimator). Simulation analyses

were performed on the Discovery Research Computing cluster at Dartmouth College.

2.8 | Selection of Prior Distributions for Simulation Studies

We set the default values for the aforementioned priors and hyperpriors for all simulations to be o2 = 1000, a =
1€8, b =168, ymin =0.1, Ay = 1.5.

Given the constraints on the priors and hyperpriors, the priors over the cutpoints and covariate parameters were
uninformative (o2 is high). Meanwhile, the prior over the mixture parameter was centered around 0.5, given heavy
centering of the hyperprior over the mean hyperparameter, The spread of the hyperprior was commensurate with the
specified pareto distribution [39]. Decreasing a, b, and A, favors mixture parameter sampling towards the tails of the
beta distribution. Increasing yin may do the same but truncates the Pareto hyperprior and can introduce divergent

geometry into the posterior.
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2.9 | Description of Real-World Dataset and Final Experimental Design

To test the external applicability of such models, we acquired a dataset of 286 steatohepatitis liver biopsies staged
for fibrosis (featured in a previous validation study [12]) with fibrosis staging from four independent raters with a re-
test and staging of an alternative modality for presenting liver biopsy images (a total of three fibrosis measurements
per rater, 24 measurements per biopsy). Some subjects had multiple biopsies. We excluded the ratings from the
alternative modality (16 measurements per biopsy), and simplified the scenario by considering information from one
randomly selected biopsy from each subject. We selected three out of the four raters that had the lowest test-retest
reliability and for each rater, selected the test which had the highest degree of adjacent assignments and fit all models
(1-6) for each rater and compared the fits within rater. We assessed the pathologists separately to both match the
low complexity offered by the simulation studies and understand how the six different modeling approaches produce
different effect estimates within each rater.

Serological markers known to correlate with fibrosis staging also were measured in subjects with liver biopsy

[40, 12, 41, 42]. We modelled fibrosis stage as the ordinal response, regressing on the Fib4 score (an estimate of

AgexAST )
Platelet-CountsVALT
dysfunction through two markers of hepatocellular injury), adjusting for BMI as a potential confounder. Predictors

the amount of scarring in the liver; Fib4 = and the AST:ALT ratio (a proxy for the degree of liver
were centered and divided by their standard deviation prior to fitting each model in order to compare each predic-
tor’s relative importance and assist with sampler convergence. We fit each model given the six data augmentation
and modeling strategies featured above for the three covariates. We expected mean effect estimates for the three
covariates to vary between raters due to interrater variability, though we leave exploration of the impact of bridge

category modeling on rater intercepts to follow-up work.

210 | Software Availability and Alternative Modeling Approaches

Simulation code (available in R 3.6 [43]), data preparation, Stan models, and additional scripts to assist with fitting real
world data are available on GitHub at: https://github. com/jlevy44/BridgeCategoryStagingModels. Regression
models are of the multinomial family, under the ordered probit (featured in this work) and logit specifications. Two
alternative Stan fitting procedures correspondent to the Mixture Adjacent Model are provided in the simulation code

which may be helpful for debugging as they are special cases of the general model. The former sets p, the mixture
parameter, and does not seek its estimation. The latter estimates p by first drawing from a Bernoulli distribution
parameterized by probability p, then using the draw to indicate whether to evaluate the likelihood of the lower or

higher category. Averaging across all posterior draws should yield similar estimates to the Mixture Adjacent Model.

3 | RESULTS

3.1 | Simulation Studies

To evaluate where each approach may be of greatest benefit, we conducted approximately 30,000 simulations (100
simulations per configuration; approximately 900 configurations of sensitivity parameters, data generating mecha-
nisms, modeling approaches). Estimates of the binary covariates are of particular interest and are shown in the upper
left panel of the figure boxplots, which display the distributions of mean posterior estimates across the simulations
for each modeling approach. We have included a tabular breakdown of the effect estimates in the appendix and an
additional file (Appendix/Additional File 1; "Summary").
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FIGURE 3 Faceted grouped boxplots indicating distribution of mean posterior covariate and mixture parameter
effect estimates across simulated datasets; each facet presents different covariate/mixture effect; x-axis labeled by
which data augmentation/modeling approach was fit to the data; y-axis is effect estimate; horizontal line added to
indicate true population parameter for each covariate; boxplots are colored by the degree of uncertainty in the
expanded DGM, where the effect size of the binary covariate is 6

3.2 | Simulations for which the Expanded DGM is the True Model

Summarized reports of effect estimates and their agreement with the ground truth for each modeling approach fit
after varying the degree of uncertainty for small (Table “Expanded-Degree-Uncertain(S=1)") and large effect sizes
(Table “Expanded-Degree-Uncertain(S=6)"), the sample size (Table “Expanded-Number-Samples(S=6)") and size of the
true effect estimate (Table “Expanded-Effect-Size”) of the binary covariate can be found in Appendix/Additional File

1 ("Summary").

3.2.1 | Effect of Degree of Uncertainty on Model Performance when Expanded DGM is
the True Model

When none of the assignments were denoted as uncertain, the expanded, up, down, and random staging approaches
all yielded similar performance with low bias, low MSE and high coverage of the true effects (Figure 3, Appendix Figure
1). As we increase the amount of uncertainty to where the number of ordinal assignments were similarly distributed
between certain and uncertain categories, the expanded, up, down, and random staging approaches yielded similar
bias estimates (Figure 3, Appendix Figure 1). However, as expected from the theory of efficient estimation the interval
width of the credible interval and the MSE are substantially lower for the expanded approach, the correct model,
versus the traditional approaches. The difference between the expanded and traditional approaches are substantially
greater for larger effect sizes of the binary covariate (Figure 4, Additional File 1). At higher effect sizes and uncertainty
of e = 0.1, coverage for the binary covariate is greater for the expanded versus the traditional approaches. The MSE

for the traditional approaches continues to climb given more uncertainty in ordinal assignments (Figure 4). While bias
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FIGURE 4 Degree of uncertainty (e) versus posterior interval width and MSE for the up, down and expanded
category models for a true effect size of one for the left two plots and a true effect size of six for the right two plots;
results reported for first covariate and smoothed using loess regression to better portray relationships

for the up, down, and expanded approach is negligible across uncertain assignments, bias for the random, mixture
and collapsed approaches increases in magnitude substantially and coverage decreases. The mixture model was able
to recover the true effect estimates at the greatest degree of uncertainty (e = 0.2).

3.2.2 | Effect of Sample Size on Model Performance when Expanded DGM is the True
Model

At low sample sizes, the expanded category model provides more precise estimates than the traditional approaches
in terms of the average posterior interval width and lower MSE (Appendix Figure 2-3). The downstaging approach
experiences high separation of the binary covariate between adjacent categories for some of the simulations at a
low sample size, resulting in a high effect estimate that is highly biased. At higher sample sizes, the differences in
precision and MSE between the expanded approach and its up/down counterparts are less apparent (Appendix Figure
3). Meanwhile, the bias of the random, mixture and collapsed approaches appears to approach different fixed values
at these higher sample sizes (Appendix Figure 2).

3.2.3 | Increasing the True Effect of Binary Covariate on Model Performance when Ex-
panded DGM is the True Model

Across all effect sizes of the binary covariate for the expanded DGM, the expanded model demonstrates lower pos-
terior interval width and MSE versus down and up staging. As the effect size increases, so does the difference in
interval width and MSE. Increases in interval width across effect sizes can be attributed to the larger magnitude of

effects being measured, of which absolute deviation from the true value may increase, and potentially more sensitive
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FIGURE 5 Faceted grouped boxplots indicating distribution of mean posterior covariate and mixture parameter
effect estimates across simulated datasets; each facet presents different covariate/mixture effect; x-axis labeled by
which data augmentation/modeling approach was fit to the data; y-axis is effect estimate; horizontal line added to
indicate true population parameter for each covariate; boxplots are colored by the true effect size (s) of the binary
parameter (B;) the expanded DGM, where the color of the horizontal line in the first panel indicates the true effect
size

imbalance of the binary covariate across the ordered categories. At the largest effect size, there is around a 20-30%
reduction in interval width and MSE by the expanded as compared to up/down rating (Figure 5, Appendix Figure 4).

3.3 | Simulations for which the Blurred DGM is the True Model

We now consider the case when the mixture model corresponds to the true DGM and assess its performance across
various settings of the data and model parameters as well as the robustness of the other models, which are incongruent
with the DGM. Summarized reports of effect estimates and their agreement with the ground truth for each model-
ing approach fit after varying the degree of blurring (Table “Blur-Degree-Up(S=1)"), degree of up-rating for blurred
categories (Table “Blur-Degree-Up(S=1)"), the sample size (Table “Blur-Sample-Size(S=1)") and size of the true effect
estimate (Table “Blur-Effect-Size”) of the binary covariate can be found in the Appendix / Additional File 1.

3.3.1 | Effectof Degree of Blurring on Model Performance when Blurred DGM is the True
Model

With increases in the degree of blurring introduced to the ordinal outcomes, we obtain higher bias (degradation of
the effect magnitude) and MSE estimates for the expanded, up, down and random staging models, with substantial
reductions in coverage. The magnitude of the effect for these approaches begins to decrease towards zero given

this blurring. In contrast, the collapsed category and mixture models are able to recover the true effect with optimal
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FIGURE 6 Faceted grouped boxplots indicating distribution of mean posterior covariate and mixture parameter
effect estimates across simulated datasets; each facet presents different covariate/mixture effect; x-axis labeled by
which data augmentation/modeling approach was fit to the data; y-axis is effect estimate; horizontal line added to
indicate true population parameter for each covariate; boxplots are colored by the degree of blurring (q) in the
blurred DGM

coverage (around 0.95, the nominal probability) for all degrees of nonzero blurriness (Figure 6, Additional File 1). We
found negligible bias and MSE for these models versus the other approaches. However, the average width of the 95%
credible interval is higher for these two models versus the other modeling approaches, which may be an artifact of
providing larger magnitude effect estimates and how the covariate is distributed across the categories as the effect
becomes larger. The mixture model is also able to recover the true mixture population parameter with high coverage
(~0.91 coverage).

3.3.2 | Effect of Proportion of Higher Assignments on Model Performance when Blurred
DGM is the True Model

When varying the proportion of assignments that were blurred to the upper two adjacent categories (p), the expanded
and random rating models demonstrate high bias, high MSE, low coverage estimates, which drifts towards a zero-
magnitude effect estimate. For the up-staging models, performance is optimal when p = 0 (high coverage, low bias
and MSE, slightly higher precision than the mixture approach). As p increases, the bias (away from the true parameter)
and MSE increase and coverage quickly drops. For the down-staging, the opposite holds true: optimal performance /
recovery of the true effect when p = 1; increases in bias (away from the true parameter) and MSE occur while there

is a decrease in coverage as p decreased.
The mixture model recovers the true covariate effect at all values of p, with high coverage, low bias and MSE
(Figure 7, Additional File 1). In all cases, the mixture model is also able to recover the true mixture population parameter

with high coverage close to the nominal 95% probability, low bias and MSE. This holds true except for the cases
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FIGURE 7 Faceted grouped boxplots indicating distribution of mean posterior covariate and mixture parameter
effect estimates across simulated datasets; each facet presents different covariate/mixture effect; x-axis labeled by
which data augmentation/modeling approach was fit to the data; y-axis is effect estimate; horizontal line added to
indicate true population parameter for each covariate; boxplots are colored by the proportion of times when the
true rating was blurred into the upper two ratings (p) via the blurred DGM

where p = 0 or p = 1, where coverage is 0. However, this is an artifact of the impossibility of the posterior mean of
the parameter to be equal to precisely O or 1, under a prior distribution that is a continuous density which places O
support on both p = 0 and p = 1. The reductions in posterior interval, bias and MSE near the tails suggest that the true
parameter has effectively been recovered. The collapsed model exhibits performance similar to that of the mixture
model. However, performance is greatest when p = 0.5, where there is no predisposition towards up/down-staging.
Coverage remains high for the binary covariate but is slightly reduced when p approached 0 or 1. The magnitude of

the bias and MSE also increases slightly as p approached 0 or 1 (Figure 7, Additional File 1).

3.3.3 | Effect of Sample Size on Model Performance when Blurred DGM is the True Model

Increasing sample size is associated with decreases in posterior width for the covariate and mixture parameters across
all models. For the expanded, down, up and random models, the reductions in posterior width is correspondent to
reductions in coverage given the already biased estimates of the approaches. Meanwhile, coverage for the mixture
and collapsed models remain largely unaffected. Finally, the mixture parameter is recovered with high coverage and

decreasing posterior credible interval width for higher sample sizes (Appendix Figure 5, Additional File 1).

3.3.4 | Increasing the True Effect of Binary Covariate under the Blurred DGM

The mixture and collapsed category models recover the true effect across the full range of effect sizes (Figure 8,

Additional File 1). The magnitude of the effect estimates under the remaining approaches are significantly below their
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FIGURE 8 Faceted grouped boxplots indicating distribution of mean posterior covariate and mixture parameter
effect estimates across simulated datasets; each facet presents different covariate/mixture effect; x-axis labeled by
which data augmentation/modeling approach was fit to the data; y-axis is effect estimate; horizontal line added to
indicate true population parameter for each covariate; boxplots are colored by the true effect size (s) of the binary
parameter (B;) under the expanded DGM, where the color of the horizontal line in the first panel indicates the true
effect size

target value across all effect sizes of the binary covariate. Coverage of the expanded, random, up and down stage
models is close to O while there is nearly nominal coverage (close to 95%) of the covariate and mixture effects using

the mixture and collapsed model approaches.

3.4 | Real World Application

We now report the effect estimates and 90% highest posterior density credible intervals for various standardized
measurements versus the assigned fibrosis stage (Table 1, Appendix Figure 6, Appendix Tables 1-2). Between the
two pathologists, the proportion of two-rating adjacent stage assignments over all assignments are 0.30 and 0.25 for
pathologists 1 and 2 respectively. Between the raters, the AST:ALT ratio is given the highest association with Fibrosis
progression, followed by the Fib4 score (based on pathologist 2; Appendix Figure 6B), then BMI. These effects vary
significantly depending on which rater was assigning stages and which model is estimated. Between raters and models,
the mean posterior estimate of BMI varies from 0.107 to 0.164. For Fib4, mean estimates range from 0.0702 to 0.195.
For the AST:ALT Ratio, mean effect estimates range from 0.2 to 0.414.

Under the assumption of the blurred DGM as the true DGM, pathologist 1 (mixture parameter p = 0.91) demon-
strates preference for assigning the higher adjacent stages while the lower stage was true. In comparison, pathologist
2 (p = 0.148) prefers assigning the lower adjacent stages while assuming the upper stage was true. If the Blurred DGM
was the truth, covariate effects determined by the mixture model are similar to the down-staged model for pathologist

1 and similar to the up-staged model for pathologist 2. For these raters, these effect estimates appear to differ from
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BMI Fib4 AST:ALT Ratio
Pathologist Model B b[1]: 90% CI  b[1]: b[1]: Poste- j, b[2: 90%  b[2]: b[2]: Poste- p; b[3]: b[3]: b[3]: Poste-
Low 90% Cl rior Interval Cl Low 90% Cl rior Interval 90% ClI 90% Cl rior Interval
High Width High Width Low High Width
Pathologist1 ~ Up 0.143 0.0372 0.263 0.226 0.0702 -0.0554 0.188 0.243 0.305 0.178 0.442 0.263
Down 0.164 0.0492 0.271 0.222 0.0865 -0.036 0.21 0.246 0.414 0.269 0.55 0.281
Random 0.135 0.0242 0.247 0.223 0.0881 -0.0276 0.219 0.247 0.336 0.198 0473 0.274
Expanded  0.149 0.0433 0.264 0.221 0.09 -0.0295 0.203 0.232 0.367 0.237 0.501 0.264
Mixture 0.164 0.049 0.282 0.233 0.0908 -0.0379 0.205 0.243 0.405 0.27 0.553 0.283
Collapsed  0.161 0.0518 0.286 0.234 0.0891 -0.0406 0.21 0.25 0.372 0.23 0.51 0.28
Pathologist2 ~ Up 0.114 -0.0047 0.221 0.226 0.163 0.0346 0.286 0.251 0.255 0.115 0.384 0.27
Down 0.107 -0.00264 0.226 0.228 0.167 0.0451 0.295 0.25 0.243 0.113 0.368 0.255
Random 0.114 0.00318 0.228 0.225 0.195 0.0783 0.327 0.249 0.2 0.0636 0.326 0.263
Expanded  0.11 -0.00468 0217 0.222 0.163 0.0352 0.285 0.25 0.243 0.127 0.372 0.246
Mixture 0.119 0.00889 0.231 0.222 0.167 0.0351 0.293 0.258 0.264 0.113 0.403 0.29
Collapsed  0.12 -0.00501 0.241 0.246 0.174 0.0483 0.309 0.261 0.287 0.134 0.42 0.286

TABLE 1 Posterior estimates for covariates for fibrosis staging model (BMI [1], Fib4 [2], AST:ALT Ratio [3])

upstaging. For pathologist 2, the effect of BMI on Fibrosis becomes positively significant according to a 90% credible
interval for the mixture model.

4 | DISCUSSION

Clinical grading and staging scales, largely ordinal in nature, are incredibly important for the assessment of disease, not
only for real-time clinical decision making, but also for establishing screening and assessment of baseline predictors
and endpoint outcomes for the conduct of FDA regulated drug trials. The existence of measurement error, uncertainty
and reliability issues between raters may reduce the study power, thereby causing a drug to fail clinical trials [44, 45].
While many rating scales, such as the NASH CRN scale for the grading and staging of liver fibrosis for progression
into cirrhosis, have been validated through testing of interrater reliability [17], it is not uncommon to see follow-up
studies dispute the reported reliability [15, 5]. Consequently, the effectiveness of the scale itself may be called into

question as it pertains to these aforementioned matters (clinical triage and trials).

The assignment of two adjacent ordinal ratings is no different. Although under-reported, the potential impact
of such ratings on interrater reliability and measurement of a treatment effect across the appropriate biomedical dis-
cipline should be explored within other biomedical specializations. For instance, the AJCC Cancer Staging Manual
recommends for TNM (tumor histology, lymph node, metastasis) staging that in the presence of uncertain assignment
of stage, the lower of two possible adjacent categories should be assigned [7, 10], while other interpretations of the
guide have pointed out that the highest stage descriptor should be selected [46]. For staging criteria with subcat-
egorization (e.g. Stage 1a, 1b, 1c), the AJCC guide also recommends assigning the general category (e.g. Stage 1)
and reporting that the tissue cannot be assessed[7]. In this scenario, the rater would cast uncertainty over the three
ordinal measurements contained within the staging group (e.g. Stage 1). These guidelines have informed staging prac-
tices internationally, yet some critics have pointed out that these recommendations regarding stage uncertainty are
not substantiated and leave room for mis-classification [13]. Furthermore, we suspect that active discouragement for
reporting ambiguity in staging can lead to the application of these ad hoc procedures or potentially the omission of

the observations and may explain why such reports are virtually ignored in the research setting.

In this paper, we discussed the treatment of simultaneous assignment of two adjacent ordinal ratings, bridge
ratings, and potential implications when evaluating the effect of binary (eg. treatment) and continuous (eg. some
serological marker or confounder) covariates. Clinicians indicate in interviews that simultaneous adjacent stage as-
signments are a common occurrence, yet they are often obscured from the view of the reader/regulator because
methods to account for these uncertain adjacent assignments do not currently exist. We developed three likelihood

functions (the expanded, mixture adjacent, and collapsed bridge category models) and evaluated for their potential
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to yield meaningful results when the expanded and blurred DGM are the true models. We ran simulation studies
to illustrate where to expect the greatest advantage when using the expanded, mixture and collapsed approaches
versus the traditional approaches under the expanded and blurred DGM. We followed this analysis with a real-world
use case, identification of clinical and serological factors pertaining to the staging of liver fibrosis for the assessment
of NASH.

From our simulation studies of the expanded and blurred DGM, we found that the bridge category models were
able to outperform the traditional approaches with respect to their applicable data generating mechanism.

The results from the simulation studies highlight that it is critical to select a modeling approach commensurate
with the true data generating mechanism. Misalignment of the approach with the DGM can result in more biased
and/or less precise estimates. For instance, we noticed that the mixture and collapsed models were not well-adjusted
to the expanded DGM and biased effect estimates with reports of higher magnitude effects than intended. Meanwhile,
the expanded DGM suffered the same deficiencies that the up/down/random staging models experienced on the
blurred DGM. We note that up and down rating were relevant for particular use cases (p = 0 and p = 1 respectively).
These may be special cases where the mixture model can essentially learn whether the augmentation applied to the
data should be up or down-staged. The effects of the misalignment are far reaching in the small sample setting, while
coverage can rapidly diminish in the large sample setting with improper treatment of the bridge rating.

From our real-world models fit to estimate fibrosis stage under the probit specification, it was difficult to charac-
terize the true DGM. However, we noticed a tendency of effect estimates to track that expected of lower and higher
staging, as suggested by the effects from the mixture modeling approach. This information is concordant with inter-
views conducted with pathologists at the Department of Pathology at Dartmouth Hitchcock Medical Center, where
pathologists were asked for reasons that could explain the bridged assignments. One pathologist indicated the biopsy
had features which were mostly indicative of the lower of two stages, while some features suggestive of the higher of
the two adjacent stages were also present: “When | use [bridge ratings], i.e. stage 2-3, the specimen shows features
that are mostly indicative of a stage 2, though focal area with possible bridging fibrosis are suggestive of a stage 3.
The specimen is not a definitive stage 3. The same is true for a stage 3-4, where the specimen shows features that are
predominantly stage 3 (bridging fibrosis), though focal areas will show nodule formation that are suggestive of stage
4. The specimen is not a definite stage 4". We received feedback from another pathologist, who had noted that the
NASH CRN scale had been developed with an abundance of tissue material with multiple portal regions from which
to make stage assignments [47, 5, 48]. For clinical trials, biopsies which may contain ample portal tract (at least 10
tracts), needle biopsies, and large tissue cores (2-3 cm) are recommended[48]. The pathologist suggested that in prac-
tice, liver biopsies often contain scant information. As such, an incomplete set of diagnostic features may diminish
the confidence in stage assessment. Finally, outside of the host institution, another pathologist had indicated to our
group that grading and staging assessment is non-uniform across the tissue biopsy [49, 50, 51]. In summary, a lack of
diagnostic/prognostic information and a distribution of features across the tissue biopsy that may lean towards one
particular category may lead to the assignment of bridge ratings, which is consistent with some of the motivations for

bridge category models.

4.1 | Recommendations

From the simulation studies and real-world examples, we have a few guiding principles when selecting a DGM and

appropriate corresponding model in the presence of bridge ratings:

1. In general, random stage assignments may likely contribute to biased effect estimates.
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2. When the estimates acquired from up/down-staging differ, the mixture model may identify a mixture parameter
estimate which can help explain the differences in effect. Relying on up or down-staging alone may be problematic
when the true propensity for up/down-rating may be opposite to the ad-hoc approach.

3. If the effects from up/down staging are similar, the expanded model may provide a more precise estimate, but
this is best accomplished in a situation where blurring effects are not suspected.

4. Reporting bridge ratings and interfacing with domain experts can contribute to an understanding of why they
occur and inform approaches for proper adjustment. Should the domain experts communicate back that there
was complete ambiguity in assignment, evaluating models under the expanded DGM may prove useful. The lack
of mixing of the mixture parameter sampling may confirm this hypothesis. If the raters reply that instead, which
was in our case for the real-world fibrosis data, that “stages assigned were mostly indicative of a 2, but had

features of a 3”, then models may perform well under the assumption of the blurred DGM.

4.2 | Limitations

These results, while promising, have limitations. We acknowledge that exhaustive tests over the simulations were
not performed (asymmetric distributions of ordinal outcomes, different mass assigned to different uncertainty cate-
gories under the expanded DGM, interaction effects). However, the chosen simulations highlighted the advantages
of the expanded and mixture approaches. Tests on the real-world data were conducted on two specific subsets of
the data (two pathologists at particular testing intervals). While selection of the raters and tests were arbitrary, we
did not model the nested (biopsies per patient) and cross-classified (repeat measures of biopsies versus pathologist)
structure of the data in the real-world example in order to match the simplicity of the simulation analyses, which are
focused more on methods development rather than application. In a true, real-world scenario, hierarchical Bayesian
methods are employed to simultaneously adjust for multiple raters and repeated measurements [52]. We plan to ex-
tend the modeling approach into this context to account for rater specific effects and clustering by case and biopsy.
In a similar vein, the mixture parameter utilized in the mixture model is a population parameter. While the effect
explained by the parameter holds true across the cohort, the parameter in its current configuration is independent of
any fixed or random effect and cannot currently use these factors to explain how they impact blurriness. For instance,
blurriness patterns may be rater-specific, dependent on the assigned rating/conditional mean or be case-dependent
(random intercept). Nor did we consider heteroskedastic variance [16], from which the variance in the response may
be dependent on the covariates that estimate the conditional mean.

4.3 | Opportunities

Opportunities exist to further develop and apply the method for consideration of more real-world scenarios, such
as estimating variance parameters that describe between and within-cluster effects. Where appropriate, hierarchical
modeling renditions of bridge category models may help assess the validity of the clinical grading/staging scale and
the application in clinical trial design after proper validation [53].

While we have developed statistical models and estimation methods that are suitable to use with each data
generating mechanism (DGM), we have not fully explored methods to selecting which model is best to use on a
given data set for which the true DGM is unknown. We envision adapting Bayesian model comparison methods
to this situation and to considering Bayesian model averaging methods; that latter will incorporate the uncertainty
in the underlying DGM into the analysis. Such methods can make the posterior probability of each model being

the true model a part of the output from the analysis. A yet further complication is that case when raters within a
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study may conform to different rating systems. While the observation of a bridge-rating implies what a rater may be
thinking in terms of an expanded scale, the absence of one might imply that they are reporting on the original scale.
However, one cannot identify whether the rating just happened to be a non-bridge rating or if the original scale was
being used. Incorporating this uncertainty would extend the models into the latent class realm with the latent class
being the choice of scale. Ideally this complication would be obviated at the design-stage by specifying to raters that
bridge ratings should be used to represent truly discretionary assessments. However, this still does not offer absolute
guarantee that the raters will exactly follow the stated protocol. Clearly, imposing some consistency across the use of
a scale may be helpful. But as demonstrated by our results, if this resulted in raters arbitrarily determining their final
ratings, this could potentially affect the quality of the data and so would not be a good practice.

Algorithms in artificial intelligence (Al) may resolve issues with interrater variability [54], measurement uncer-
tainty and error by providing quantitative assessments of tissue histology and other tangential tasks which may be of
immediate value [55, 12, 56, 57, 58, 59]. A combination of both rater uncertainty and incomplete information about
the histology may present additional challenges for training and evaluating Al technologies. As such, these methods
may benefit from incorporating such bridge category methods into their specification and evaluation. For instance,
a machine learning model trained to stage a tumor may output an ordinal response. Such ordinal outcomes must
be compared appropriately to a measurement from pathologist(s) which may include bridged stage assignments. As
another example, a recent large scale validation study of virtual tissue staining technologies utilized down/upstaging
as a strategy for overcoming bridged ratings [12]. Here, upstaging, downstaging, random-staging or treating the ordi-
nal variable as continuous may violate the true DGM, leading to biased estimates and potentially over/understating
the efficacy of the Al technology. Such studies may benefit from reassessment using bridge category modeling ap-
proaches. Finally, there exists opportunity to utilize such methods to reassess ordinal outcomes for molecular/omics
data with bridge ratings [60, 61, 62, 24, 63]. As such, we plan to apply these methods towards better understand-
ing their impact on clinical trial design, interrater variability for establishment of accepted grading/staging scales and

development/assessment of Al technologies.

5 | CONCLUSION

Ordinal ratings are commonly used in biomedical applications to assess factors related to disease progression. While
such ratings are regularly employed for clinical decision making, inferring the effectiveness of grading/staging scales,
evaluating clinical trial efficacy, and development and assessment of Al technologies, bridge ratings remain a relatively
unexplored, ubiquitous phenomenon which may contribute to biased and imprecise study results if erroneously ana-
lyzed. While the data generating mechanisms may reflect scenarios where information is added/expanded, blurred,
or collapsed, bridge ratings should be modeled, not dismissed. These ratings often have a specific meaning in terms of
the precision or certainty with which a rater trusts their assessments (either higher or lower than the original scale may
represent) and as such are a form of information. Failure to account for bridge ratings (reflecting greater uncertainty),
implies a coarsening on the categories and a loss of information which will make the model work harder than necessary
to fit that observation. In turn, this will reduce the relative attention the model applies to other observations whose
precision is greater and again will result in a lack of efficiency compared to the optimal analysis. Under both scenarios,
ad hoc methods that truncate, randomly re-assign, or otherwise transform the data to get it into a form amenable
to a standard analysis may impart bias on the results. By building and using statistical models that account for the
believed data generating mechanism(s), we can potentially improve practices surrounding drug approval, validation of

measurement scales and evaluation of diagnostic decision aids. At a minimum, reporting bridged ordinal ratings and
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discussing with domain experts and raters as to how such ratings arise should be actively encouraged in biomedical
research.
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Bridged Category Model Appendix

1 | ORDINAL RESPONSE VARIABLES AND CUMULATIVE LINK MODELS (CLM)

An ordinal response variable may reflect a latent continuous process, the categories of which are represented by
adjacent intervals of differing width within the distribution. While it is erroneous to directly encode ordinal variables
as nominal or continuous [1, 2, 3, 4, 5], several regression techniques have been developed to represent ordinal data[é].
The cumulative link model is a special case of ordinal regression models and is particularly advantageous in that it bears
resemblance to both categorical and continuous processes through indirect modeling of a latent continuous process
(Main Text Figure 1A).

Let Y represent the ordinal response variable, j € {1,2,...,K — 1} (i.e,, disease stage). Let X be a design matrix of
observations by predictors. The latent variable, Y*, represents the true, unobserved continuous process (i.e., disease
progression) underlying the ordinal observations. The predictors serve to explain this latent variable. Thus, a linear

combination of these predictors may be employed to generate:
Y =X B+e; (1)

where ¢; ~ N (0,1) is the parametric distribution assumption consistent with the ordered probit regression model.
Alternatively, the logistic link function is obtained by exchanging the assumption of normality of the error terms for
the logistic distribution, yielding the proportional odds model. Generally, the error term may have any cumulative

distribution F, which impacts model fitting and interpretation of the results. The conditional mean is given by:

wi = E[v71x] = X7 B @
Cumulative link models (CLM) include a set of threshold parameters, {6;};c(1 2. x-1}, Which correspond to cutpoints
of a continuous latent distribution from which partially observed or limited outcomes are obtained. These also define
endpoints from which interval and continuous probasbilities are defined, from which the effect of covariates can be
measured against. Intervals between the cutpoints represent the observed classes {Y;};c(1 5, . «}- Here, we include the

motivation and derivation of the link function and likelihood. The thresholds, represented by vector_e) are used to
partition the latent distribution as:

Y=je=0_ <Y <6 @)

In this latent distribution, distances are meaningfully encoded, which permits the use of linear regression on the latent

outcome:
Y'=p+e (4)

where yu represents the conditional mean, and e the error term as above. In order to map the latent distribution to a

set of probabilities, we specify the distribution F of € (which can be any cumulative distribution):

P(e <z)=F (2) (5)
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Combining the previous three equations:
P(Y<jlp)=P(Y <Ou)=Pu+e<8)=P(c <8 —p)=F (8 —p (6)
The probability of Y being less than or equal to j given the conditional mean y is equal to the cumulative distribution
F evaluated at 6; — u. Because the probability of an event occuring and the probability of it not occurring sum to 1, it
follows that:
PY <jlp)=1=P(Y >/l (7)

Therefore, the probability Y = given p is as follows:

P(Y=jlp)=P (Y <jlu)-PY <j-1]p)
= F (6 ) ~ F (611 - 1)

Finally, the likelihood of an observation Y = j assuming it is generated from a multinomial distribution with a cumula-
tive link function defining category probabilities as above is given by:

L(Y6,8) =p (Y|6,B) = [P(Y I L p(y= /<|y)I(Y=’<)] @)

We summarize the likelihood and link function below:

Yi=P (Y <j)=P(Y] <6)=P(ei <0 —pi) = F (6 — i) )
gri)=F"(ry) =6/ — i (10)
P(Yi=j16)=P(Y; <)) =P (% <j-1)=F (%" =6 —p) ~ F (¥ =61 - pu) (1)

In this model, the probability of drawing a particular class is the area of the cumulative distribution between two
estimated cutpoints after centering by y;. At the tails of the distribution, where Y ¢ {1, K}, the predicted probabilities
of the classes are P(Y = 1) = F(Y;* =01 —p;) and P (Y =K) = 1= F (Y;* = k1 — u;) respectively. The threshold
and conditional mean parameters of these models are not identifiable, as the conditional mean y; can be re-scaled
without changing the fitted probabilities, given the constraint of the cumulative distribution F (i.e. multiplying 6 — u by
a constant leads to an equivalent fit) [7]. However, by imposing the restriction that the observations have a variance
of 1 (or any other constant), we can make the model parameters identifiable by the data. We implemented estimation
of a multinomial model with the above cumulative link function using the Stan probabilistic programming language
[8, 9]. Stan uses Hamiltonian Monte Carlo methods to perform Bayesian model estimation (See Appendix, section
“Bayesian Computation and Hamiltonian Monte Carlo”) [10, 11]. The Bayesian model for a cumulative link model

for K ordinal response categories is specified below for predictors indexed by m € {1, 2, ..., M} and cutpoints from
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jef1,2,3,...,K-1}

L; (Y|6) ~ Multinomial (—;f)
?:[F(eﬂ oo F(8j—pi)—F (8o —pi) oo 1=F(6k-1)
r—
Hi =X; Pr.m

9 ~N (0,0'2), B ~N (0,02)

(12)

2 | BAYESIAN COMPUTATION AND HAMILTONIAN MONTE CARLO

While frequentist statistics focus on optimization of the likelihood, Bayesian statistics focus on estimation of the
posterior distribution, p (8]|X), where 8 are parameters treated as random variables and X are the data that the
posterior is conditioned on and thereby are treated as fixed [12, 5]. The posterior can be related to the likelihood of

the cumulative link model via Bayes Theorem:

p(X16) p (6)

p(01X) = o (V)

(13)

In eq.(13) p (8) is the prior distribution of the parameters and p (Y) is the marginal distribution of the data, a
normalizing factor. The Bayesian approaches were essential for estimation of our models because of their flexibility
to handle different DGM, specification of priors, and better estimates of uncertainty through sampling the posterior
rather than some approximation through maximum likelihood methods. Bayesian priors centered around zero may
potentially also make estimates more conservative, which can in turn reduce the need for correction for multiple

comparisons.

The cumulative link model, as implemented in packages, such as clm [13], typically involves optimization of the
likelihood, given some starting parameters. Here, we utilize Bayesian model fitting procedures versus the frequentist
approaches because estimates avoid approximations to aid computation, are typically more precise, numerical com-
putations may be easily implemented and there is no strict constraint on the shape of the posterior distribution of the
unknown parameters. While frequentist approaches optimize the likelihood for a set of parameters using maximum
likelihood estimation and approximate the variance of the estimator using the Hessian, Bayesian approaches derive a
posterior distribution for a set of parameters by updating the prior hypothesis with appropriate weight given to the
likelihood over the prior. Amongst a few different approaches towards posterior estimation (eg. variational inference),
Markov Chain Monte Carlo (MCMC) methods sample the posterior distribution of parameters until convergence of
the joint posterior to a stationary solution. Hamiltonian Monte Carlo, while not conditionally sampling posterior pa-
rameters via a Markov Chain, is similar in spirit as the MCMC algorithms, drawing from the joint density of the model
parameters and some auxiliary momentum variables, sampling through simulation of moving particles for a number of
time steps under the joint state (6) and momentum (¢) density: p (¢, 6) = p (¢0) p (8), where the goal is to ultimately
sample the joint posterior p (8). In our motivating example (e.g., CLM), 8 = (,61:,/\,,,5) and ¢ = (g1 m. 1), Where r
corresponds to parameter-specific momentum parameters, initially drawn from a uniform distribution then updated

over time by the Hamiltonian dynamics of the system. The Hamiltonian is represented by:
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H (¢.6) = —log (p (¢.6)) = —log (p (¢16)) —log (p (8)) =T (¢16) +V (6) (14)

Where T and V represent the kinetic and potential energy respectively. Hamilton's equations govern how particles

move across the density landscape, which can be summarized as:

dé oT

Fa s (15)
dp oV
dt ~ og 16)

Automatic numerical differentiation solves the above differential equations, allowing the particles to move for L
steps given a random sampling of momentum to initialize the trajectory, where they are then sampled (collection of
parameters 8) and either accepted or rejected based on Metropolis Hastings criteria. No U-Turn Sampling (NUTS) is an
extension on this sampler that attempts to increase the efficiency of the sampling process through adaptive measures
that promote landscape exploration. We have implemented such samplers using the Stan programming language,
integrated into R via RStan [9, 10], with some elements of the code inspired by design choices featured in the brms

package [8].

3 | LOCATION OF EXPANDED SUPPLEMENTARY TABLES

Expanded supplementary tables detailing assessment of model performance may be found in additional file 1. The
first tab provides descriptions of the sensitivity tests for the simulation studies, the data generating mechanisms and
the true covariate effects.

4 | SUPPLEMENTARY RESULTS TABLES AND FIGURES

Pathologist 0 01 1 1-2 2 2-3 3 34 4
Pathologist1 10 12 33 10 52 31 56 24 28

Pathologist2 2 8 18 10 82 26 58 19 33
APPENDIX TABLE 1 Tabulated stage assignments for pathologists at particular tests
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5
Pathologist p 90% ClLow 90% Cl High  Posterior Interval Width
1 0.91 0.665 1 0.335
2 0.148 O 0.472 0.472

APPENDIX TABLE 2 Posterior estimates for mixture parameters for fibrosis staging model (BMI, Fib4,
AST:ALT Ratio) for different pathologists

Degree
Uncertainty (e)
Bo

0.5
Up  Down Random Expanded Mixiure Collapsed Up  Down Random Expanded Mixure Collapsed £ 0.05
01
P J P 8
0.15
02

Effect Estimate

Up  Down Random Expanded Mixture Collapsed Mixture

Statistical Approach

APPENDIX FIGURE 1 Faceted grouped boxplots indicating distribution of mean posterior covariate and
mixture parameter effect estimates across simulated datasets; each facet presents different covariate/mixture effect;
x-axis labeled by which data augmentation/modeling approach was fit to the data; y-axis is effect estimate;
horizontal line added to indicate true population parameter for each covariate; boxplots are colored by the degree of
uncertainty in the expanded DGM, where the effect size of the binary covariate is 1; all covariates were
standardized prior to generation of the ratings
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APPENDIX FIGURE 2 Faceted grouped boxplots indicating distribution of mean posterior covariate and
mixture parameter effect estimates across simulated datasets; each facet presents different covariate/mixture effect;
x-axis labeled by which data augmentation/modeling approach was fit to the data; y-axis is effect estimate;
horizontal line added to indicate true population parameter for each covariate; boxplots are colored by the sample
size in the expanded DGM, where the effect size of the binary covariate is 6
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APPENDIX FIGURE 3 Sample Size (n) versus posterior interval width and MSE for the up, down and
expanded category models for true effect size of six for the binary covariate
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expanded category models; results reported for the binary covariate and smoothed using loess regression
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APPENDIX FIGURE 5 Faceted grouped boxplots indicating distribution of mean posterior covariate and
mixture parameter effect (true mixture effect of 0.5) estimates across simulated datasets; each facet presents
different covariate/mixture effect; x-axis labeled by which data augmentation/modeling approach was fit to the data;
y-axis is effect estimate; horizontal line added to indicate true population parameter for each covariate; boxplots are
colored by the number of samples for the blurred DGM


https://doi.org/10.1101/2021.08.17.456726

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.17.456726; this version posted August 26, 2021. The
copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights
reserved. No reuse allowed without permission.

8
A B
ﬁ BMI =0 ﬂBMI e
Pria) == Priva
; e ———
Pag Pug
P ———— =0 P =0
0.00 025 0.50 0.75 1.00 0.0 0.2 04 0.6

Effect Estimate

APPENDIX FIGURE 6 Plot of posterior intervals of covariates (BMI, Fib4, AST:ALT ratio) and mixture
parameters for Mixture Adjacent Model for: a) Pathologist 1, and b) Pathologist 2

5 | ADDITIONAL DISCUSSION

51 | Expanded DGM Simulation

For the expanded DGM, the expanded approach provided greater precision in estimates versus up and down staging.
This was true across all sample sizes and effect sizes. However, greater precision is conferred when the sample size
is small, effect size is large, and the proportion of ratings assigned to a bridge rating is similar to that of the certain
assignments. We were surprised to find that ordinal models fit on up- and down-staged responses to exhibit similar
degrees of bias as the expanded approach. However, these results are consistent with prior studies which demonstrate
that collapsing adjacent categories has negligible impact on bias but inflates the standard error of the estimate [14, 15,
16, 17, 18]. Likewise, the expanded categories are able to maintain high precision, while down and up rating provides
coarser estimates of the true ratings. Random up/down rating may serve to bias and deflate the effect estimate toward
zero, while the mixture and collapsed approaches may inflate the effect estimate. As such, when confronted with data
that is suspected to be of the expanded DGM, the expanded model offers the truest estimate of the effect.

5.2 | Blurred DGM Simulation

For the blurred DGM, we note vastly superior performance for the mixture and collapsed models as compared to the
traditional approaches, regardless of the degree by which the ordinal ratings were blurred, the propensity for assigning

the upper two categories, sample size and effect size. The mixture model would appear to learn the properties of
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the data that it is fitting, while the collapsed category was highly applicable when the propensity of bridge-ratings is
around 0.5, but slightly biased otherwise. This is likely because the collapsed category model considers two categories
simultaneously, much like the mixture model but does not learn a mixture parameter. The flexibility in learning a
population parameter avoids bias when measurements are blurred. In contrast, the effect estimates provided by the
expanded and traditional approaches were biased towards zero. As such, when confronted with data that is suspected
to be of the blurred DGM, the mixture adjacent model offers the truest and most flexible estimate of the effect.

5.3 | Deciding on the Ideal DGM

In a real-world scenario, it can be difficult to decide which DGM is applicable to the data. Likelihood ratio tests
calculated on the data for model selection may lead to misleading conclusions when the ratings are coarsely treated
[19, 20, 21]. Constructing a likelihood test (e.g. Bayes Factor and Pareto Smoothed Importance Sampling) to compare
the expanded model to the other approaches is challenging due to the fact that one model is not nested in the other
and the two models support non-overlapping categories. In sum, a mixture of interviewing expert raters and data
driven testing of parameters and comparison of model effects to differences in effects registered under simulations
should inform the selection of both the DGM and ideal model.

5.4 | Additional Limitations and Opportunities

While our models took into account bridged categories, they do not explicitly account for instances of greater mea-
surement error (outside of those expected from adjacent categories). However, given the widely varying reports of
stages between the two raters (high inter-rater variability), this is suggestive of additional measurement error which
may have obfuscated some of the effects of the true DGM [22]. Potentially, bridge category models may benefit from
incorporating elements from other models which tackle uncertainty across larger number of categories. For instance,
mixture adjacent models bear resemblance to the proposed GEM (Generalized Mixture Models with Uncertainty)
and CUB (Combination of a discrete Uniform and a shifted Binomial random variable), models and their derivatives
[23, 24, 25]. These models attempt to ascribe two components to providing ordinal ratings. Feeling (attraction and
awareness) components towards a particular rating may make the rating more likely to be chosen, as modeled by a
Binomial random variable. Uncertainty (indecision and blurriness) components, from which a discrete uniform distri-
bution is assumed, places greater weight on the remaining categories. However, neither of these methods take into
account bridge ratings into the decision-making process and are thus inappropriate for the treatment of bridge ratings

yet feeling and uncertainty components may inform future iterations of bridge category models.

In addition, the DGM may be rater-specific, as we had estimated different mixture parameters for different pathol-
ogists, which may be correspondent to the widely varying effect estimates within and between raters depending on
the model being used to fit the data. Given the relatively moderate degree of bridged category assignment, these
were not of high enough magnitude for effects to become heavily distorted. While the effect of inter-rater variability
more likely pertains to measurement error and diminishing of effect estimates, utilizing the mixture approach in one
instance in the real-world setting provided a significant effect estimate, when the other approaches had suggested

otherwise.
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