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Disease grading and staging is accomplished through the
assignment of an ordinal rating. Bridge ratings occur when
a rater assigns two adjacent categories. Most statistical
methodology necessitates the use of a single ordinal cat-
egory. Consequently, bridge ratings often go unreported in
clinical research studies. We propose three methodologies
(Expanded, Mixture, and Collapsed) Bridge Category Models,
to account for bridge ratings. We perform simulations to ex-
amine the impact of our approaches on detecting treatment
e�ects, and comment on a real-world scenario of staging
liver biopsies. Results indicate that if bridge ratings are not
accounted for, disease staging models may exhibit signi�-
cant bias and precision loss. All models worked well when
they corresponded to the data generating mechanism.
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1 | INTRODUCTION

Ordinal rating data are commonly used for routine clinical staging and grading of tissue biopsies[1, 2, 3]. However,
ratersmay occasionally assign two adjacent categories, or bridge ratings. For instance, �brosis inNon-Alcoholic Steato-
hepatitis (NASH), are staged by raters on a 5-point scale (from 0 to 4) [4, 5, 6] (Figure 1). While a stage 0 rating is
likely to represent a healthy individual and stage 4 rating represent an individual with cirrhosis who may require liver
transplantation, pathologists will sometimes assign bridge ratings (e.g. 2-3). Explanations for why such bridge ratings
were assigned include the following motivating scenarios:

1. Expanded Scale (Figure 1B-C): Pathologist feels that an intermediate stage placed between the two adjacent
stages would better encapsulate the disease pathology. However, since the intermediate category does not exist,
they assign both categories.

2. Hedging by Blurring Stage (Figure 1D-E): Pathologist interprets scale incorrectly and rounds down or up erro-
neously on occasion. For instance, the pathologist may be told to report a stage 2 if they think the biopsy is
a stage 2 with a probability of 0.7 and a stage 3 with a probability of 0.3, but may want to hedge against the
potential of the more advanced stage being correct.

3. Collapsed Scale (Figure 1F): The pathologist believes the scale has one fewer category than available in the guide-
line scale, leading them to assign an interval that can compensate for information loss.

These explanations often arise in clinical research studies and practice. As common examples, sometimes the pathol-
ogist feels the tissue sample is sub-optimal in some way (e.g. too small, too fragmented, crushed, etc.), or the biopsy
exhibits features of both stages. Alternatively, the pathologist may feels the clinical scenario does not match the
histological �ndings (e.g. patient with sequalae of cirrhosis but liver biopsy showing only moderate �brosis). In sum,
bridge ratings may be employed to better describe the features of the biopsy.

In response to most statistical methodologies being unable to account for bridge ratings, domain experts often
employ ad hoc approaches such as rounding the ratings to the higher or lower level, or randomly select either of the
two ratings. Raters are often discouraged from reporting bridging categories and may resort to a combination of the
aforementioned approaches [7, 8, 9, 10, 11, 12, 13]. In the practice of medicine, in addition to binary, categorical and
continuous outcomes, the assessment of ordinal ratings is important for the conduct of clinical trials (e.g. screening,
baseline and endpoint) [14, 15, 3], evaluation of the psychometric properties or other forms of validation of the
underlying measurement scales (e.g. estimation of the intraclass correlation coe�cient) [16, 5, 17], identi�cation of
important exposures/covariates [18, 19, 6, 20, 21], and validation of machine learning technologies which may predict
an ordinal response [12, 22, 23, 24].

Some statistical methods exist for analyzing imprecise rating data under various assumptions about what the
imprecise ratings mean[25, 26, 27, 28], but these methods are seldom employed in practice. We consider a situation
in which the imprecise ordinal ratings could be interpreted in three di�erent ways and we develop three statistical
models appropriate for accounting for bridged ratings under each of these interpretations: 1) the expanded category
model, 2) mixture adjacent model, and 3) collapsed category model.

We evaluate the performance of each of these statistical models under the di�erent assumptions on the meaning
of the bridge rating. This allows the evaluation of potential harm (e.g. bias, imprecision, high variance, erroneous
coverage of interval estimators) fromusing the incumbent approach of rounding up, down, or randomly. We also assess
which statistical model yields the most robust results in general. Finally, we present a real-world dataset (comparing
serologicalmarkers and potential confounders toNASH �brosis stage [12]) which contains bridge ratings and comment
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on the applicability of, and future directions for, our modeling approaches.

2 | METHODS

In the appendix, we have included an introduction to ordinal regression models (e.g. ordered logit and ordered probit
speci�cations) which are used to formulate our strategy for dealing with the bridged ratings of an ordinal response
variable (section "Ordinal Response Variables and Cumulative Link Models (CLM)"). Let Y represent the ordinal re-
sponse variable, j 2 {1, 2, . . . ,K � 1} (i.e., disease stage). Let X be a design matrix of observations by predictors. The
latent variable, Y ⇤, represents the true, unobserved continuous process (i.e., disease progression) underlying the or-
dinal observations. The predictors serve to explain this progression/latent variable. With respect to disease staging,
subjects with lower values in the latent scale are assumed to be healthier than those with higher values, who may
exhibit signi�cant progression. A pathologist who stages the disease may cut this continuous scale to form discrete
stage measurements (Figure 1A). As per the derivation in the appendix, we implemented a fully Bayesian multinomial
model using the Stan probabilistic programming language (See Appendix, section "Bayesian Computation and Hamil-
tonian Monte Carlo") [29, 30, 31, 32] for disease staging. The cumulative link model (CLM) for K ordinal response
categories is speci�ed below for predictors indexed by m 2 {1, 2, . . . ,M } and cutpoints from j 2 {1, 2, 3, . . . ,K � 1},
under the stong assumption that e�ects (� ) are invariant to j (not category-speci�c):

Li (Y |✓) ⇠ Multinomial
⇣�!p ⌘

�!p = [ F (✓1 ) F (✓2�µi )�F (✓1�µi ) ··· F
⇣
✓j �µi

⌘
�F

⇣
✓j�1�µi

⌘
··· F (✓K�1�µi )�F (✓K�2�µi ) 1�F (✓K�1 ) ]

µi = xTi
����!
�1..M

✓j ⇠ N
⇣
0,�2

⌘
, �m ⇠ N

⇣
0,�2

⌘
(2)

The following three subsections feature three separate data generating mechanisms (DGM) and corresponding
statistical models, each of which builds upon the aforementioned model. In each of these subsections, we develop
the likelihood function for each DGM and associated estimation procedure.

2.1 | DescriptionofDataGeneratingMechanisms andBridgeCategoryModelingApproaches

In response to the three motivating scenarios, we propose three adaptations of the cumulative link model to account
for ratings of j and j + 1, which we denote as {j , j + 1}, in an ordinal rating scale with K categories. We denote the
models developed herein for handling adjacent category data as ‘Bridge Category Models’, referring to the scenario
where information pertaining to the assigned adjacent rating interval is censored (Figure 1). In all cases, we imagine
an underlying latent distribution, y ⇤ ⇠ N (0, 1) (under probit speci�cation), is classi�ed into K categories about K � 1

cutpoints.

2.2 | The Expanded DGM: The Expanded Category Model

The expanded category model posits that the rater genuinely believes that the rating lies between j and j+1 on the
underlying continuous scale. This scenario may arise when the rater feels that the scale is too sparse and as such
does not adequately distinguish between cases that the rater feels are genuinely di�erent. As such, the rater reports
a bridge rating as a way of conveying that the case is nestled between those typically represented by the bridged
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F IGURE 1 Visualization of data generating mechanisms and modeling approaches: A) Visualization of latent
distribution/likelihood in cumulative link model, where top right arrow indicates latent scale of disease progression,
while cutpoints/thresholds in latent distribution are denoted by vertical dashed lines. Areas between cutpoints
correspond to rating/stage probabilities. Di�erent predictors of the underlying latent rating may covary with latent
disease progression, indicated by second right arrow. B) Data generating mechanism for expanded DGM, where
biopsy may present features exactly between two adjacent ratings. The expanded DGM is accounted for using: C)
the expanded category model, where additional categories indicated in red are estimated. D) Visual description of
the blurred DGM, where here, true rating (Y = 3) is blurred into lower category (Y = 2 � 3). In the mixture adjacent
model E) a mixture parameter p indicates the potential that the true rating isY = 3. F) Visual description of the
collapsed DGM, where the rater imagines scale is smaller than it really is and assigns a larger interval (Y = 3 � 4; red
limits) based on the lack of information instead ofY = 3.

ratings. In the data generating model, ordinal data is generated through introduction of 2K � 2 cutpoints, where
the area of the even integer categories in the latent space re�ects the frequency at which uncertain assignments
occur. We handle this by estimating a model with additional categories (Figure 1B-C). If such a scenario were to occur
between all adjacent cutpoints when there are K possible ratings, the new scale would have 2K �1 ratings, where the
new categories bring added precision [33, 34, 35, 36, 37]. We assume here that all raters are thinking in terms of the
2K � 1 categories, which may di�er from reality. Even numbered categories on this scale represent intervals on the
original scale for which naming a single category is di�cult. The expanded category model increases the resemblance
to continuous data through introduction of additional categories which have smaller average distance between them
than the original categories. It is common for ordinal response data with more than ten categories to be treated as
continuous outcomes [33, 34, 35, 36, 37]. The speci�cation of the Bayesian model is modi�ed from the CLM model
for K ordered categories for predictors indexed by m 2 {1, 2, . . . ,M } and cutpoints from j 2 {1, 2, 3, . . . , 2K � 2}:

�!p =
h
F (✓1) F (✓2 � µi ) � F (✓1 � µi ) · · · F

�
✓j � µi

�
� F

�
✓j�1 � µi

�
· · · F (✓2K�2) � F (✓2K�3) 1 � F (✓2K�2)

i
(3)

The priors and likelihood are of the same functional form as the original CLM. The distance between these inter-
mediate cutpoints and the immediately adjacent cutpoints indicates the relative frequency with which bridge-ratings
were made by raters.
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2.3 | The Blurred DGM: The Mixture Adjacent Model

Here, we consider the case when two adjacent ratings are blurred. Data generated from the latent distribution is
organized into K categories via K � 1 cutpoints. A proportion of the ratings, q , are blurred, where for each rating j ,
the rating reported is {j , j +1} with probability p and {j �1, j } with probability 1�p . This corresponds to the true rating
being the smaller rating of the pair p proportion of times and the bigger rating 1 � p proportion of times.

The mixture adjacent model posits that the rating was mis-coded, or there were de�ning features in either the
higher or lower rating that made a combined rating more appealing (e.g. most of the histological features resemble a
stage two, but some are indicative of a stage three; “mostly stage two”). In this scenario, the true solution could be
either j or j+1, but we are unsure of which. We denote the probability that the true rating is the lower rating as p. The
marginal contribution to the likelihood is then:

Li (Y |✓) = (p ⇤ qj + (1 � p) ⇤ qj+1)I (Yi ={j ,j+1}) + q
I (Yi =j )
j (4)

The modi�cations to the complete Bayesian Multinomial CLM are summarized here:

Li (Y = j |✓) = P (Y = j ) = qj

Li
�
Y = {j , j + 1} |✓

�
= p ⇤ qj + (1 � p) ⇤ qj+1

where,
�!q =

h
F (✓1) · · · F

�
✓j � µi

�
� F

�
✓j�1 � µi

�
· · · 1 � F (✓K�1)

i

p ⇠ Beta (↵ , � ) (5)

↵ = � ⇤ �, � = � ⇤ (1 � �)

� ⇠ P areto (ymin, �↵ ) , � ⇠ Beta (a, b)

A prior in the beta family is set on the mixture parameter, p , and accommodates prior knowledge on whether the
population behavior favors leaning towards down or up-rating. Hyperpriors � and � are mean and count parameters
that may be reparameterized as the parameters of the beta prior (↵ , � ). Alternatively, if the mixture parameter is
assumed apriori, we set p to be some constant between 0 and 1, whichwe refer to as the SetMixtureModel. ThisDGM
could arise in practice if the measurement system had a known property that led to an adjacent rating erroneously
appearing to be the correct rating a certain proportion of the time (e.g., system fault). However, it is not as �exible
as one which does not impose constraints on the mixing probability: it requires perfect knowledge of the mixing
probability. The mixture parameter, proportion p, should be recoverable by the Mixture Adjacent Model.

2.4 | Collapsed DGM: The Collapsed Category Model

While the Mixture Adjacent Model handles blurred measurement, we expect the Collapsed Category Model to have
some �exibility to the blurred categories. The collapsed category model refers to a data generating mechanism where
the scale contains levels that the rater is unable to distinguish. As an example, the rater may report Y = {j , j + 1}
as a single category as they are unable to distinguish between the categories. Analogous to interval censoring, we
handle this scenario by combining the adjacent categories in the contribution from this particular rater to the likelihood
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function:

Li
�
Y = {j , j + 1} |✓

�
= P (Y = j ) + P (Y = j + 1) = F

�
✓j+1 � µi

�
� F

�
✓j�1 � µi

�
(6)

The likelihood of the Bayesian multinomial model (eq. (2)) may by modi�ed to encapsulate this observation:

Li (Y = j |✓) = P (Y = j )

Li
�
Y = {j , j + 1} |✓

�
= F

�
✓j+1 � µi

�
� F

�
✓j�1 � µi

�
where,

�!p =
h
F (✓1) · · · F

�
✓j � µi

�
� F

�
✓j�1 � µi

�
· · · 1 � F (✓K�1)

i
(7)

2.5 | Description of Simulation Studies

We designed simulation studies to evaluate the bene�t of correctly accounting for bridge-ratings and the robustness
of the above three models to erroneously assuming the meaning of bridge ratings. We focus on the recovery of
parameters of interest given a causal model. In all simulations, we evaluate the performance of the point and interval
estimators of the e�ect of three covariates X [38], as they pertain to generation of latent information Y ⇤, which is
turned into �ve-to-nine ratings categories (depending on themodel generating the data) by thresholding the generated
latent distribution (Figure 2).

2.6 | Data Generation: True model Known and Referred to as Data Generating Model
(DGM)

The �rst covariate was simulated from a uniform distribution and thresholded to form a binary covariate with a
prevalence of 0.2 while the remaining covariates were simulated from a standard normal distribution such that Z ⇠
U (0, 1) , X1 ⇠ ±Z ∞≤, X2 ⇠ N (0, 1) , X3 ⇠ N (0, 1) . These covariates correspond to scenarios where one may be esti-
mating a treatment e�ect (binary covariate) of a marker of interest or wanting to adjust for a continuous confounder
(continuous covariate). Covariate e�ects are given by:

�!
� =

h
s 2 �1

i
(8)

Where s is a sensitivity parameter (true e�ect size of binary covariate) under various simulations while the other
parameters remain �xed. Given a probit link function, data is simulated as:

y ⇤
i =

�!
� · �!xi + ✏i (9)

where ✏i ⇠ N (0, 1) .
Here, cutpoints �!✓ are established to cut this distribution into n ordinal ratings, Y . Then, observations are aug-

mented to conform to a speci�c DGM. To generate bridge ratings under the expanded DGM, 2K � 2 thresholds are
utilized for the binning procedure. The probability mass of each of the even integer categories (uncertain categories;
e.g. 2-3) is denoted by e , which can be tweaked from 0 (no uncertainty) to 0.25 (100% uncertainty). To generate
bridge ratings under the blurred DGM, ratings are blurred into adjacent categories. We denote the amount of blurri-
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F IGURE 2 Demonstration of data simulation for the expanded DGM under various statistical / ad-hoc modeling
procedures: vertical lines represent cuts in the latent distribution and points are colored by assigned ordinal rating:
A) latent distribution y ⇤ versus X2; B) latent distribution y ⇤ versus X3; C) latent distribution y ⇤ versus conditional
mean µ; D) example of down-rating uncertainty categories (even numbered); E) example of random-rating
uncertainty categories; rating Y=1 indicates early/healthy staging for individual, while categories closer to Y=5
indicate later/severe staging

ness (proportion of times original assignment is blurred into uncertain adjacent categories), of the Blurred DGM as q .
Conditional on having blurred observations, the proportion of times in which the blur is of the higher adjacent cate-
gories is denoted as p . Cutpoints are chosen such that equal probability is assigned to each rating prior to application
of the blur mechanism.

We did not generate data under the collapsed DGM. Based on interviews with domain experts, the scenarios by
which data may be generated in a measurement scale with a lower number of ratings and inferred to be in a scale with
a greater number of categories may be less applicable and intuitive across biomedical research domains.

2.7 | Model Estimation: True Model (or DGM) Unknown

For each simulation, after binning observations into ordinal and bridge ratings, we estimate the main e�ects and
cutpoints for each DGM (expanded, blur) under the following data augmentation and modeling procedures:

1. Up-Rating: All “blurred” or “adjacent” assignments produced from the expanded or blurred DGM are assigned to
the higher of the two ratings. An ordinal regression model with K ordinal ratings is �t.

2. Down-Rating: All “blurred” or “adjacent” assignments produced from the expanded or blurred DGM are assigned
to the lower of the two ratings. An ordinal regression model with K ordinal ratings is �t.

3. Random-Rating: All “blurred” or “adjacent” assignments produced from the expanded or blurred DGM are ran-
domly assigned to either the higher or lower of the two ratings. An ordinal regressionmodel with K ordinal ratings
is �t.

4. Expanded: Fitting the Expanded model under the assumption of 2 ⇥ K � 1 categories.
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5. Mixture Adjacent: Fitting the Mixture Adjacent Model.
6. Collapsed: Fitting the Collapsed Model.

We term the �rst three approaches as the traditional approaches, since they represent how bridged ordinal ratings
had previously been handled. The Up-, Down-, and Random-rating scenarios (analysis methods 1-3) correspond to
the true DGM under extreme special cases of the blurred DGM (p = 0, p = 1, and p = 0.5, respectively). These provide
comparative performance criteria for the models in 4-6 and especially to the mixture adjacent model in 5, which
encompasses them. To demonstrate di�erences between the traditional and bridge category modeling approaches,
we consider the following simulation-based evaluation of the performance of each modeling approach under each
speci�ed DGM, �xing the number of categories to K = 5:

1. e 2 {0, 0.05, 0.1, 0.15, 0.2} (Expanded DGM; s = 1)
2. e 2 {0, 0.05, 0.1, 0.15, 0.2} (Expanded DGM; s = 6)
3. n 2 {100, 200, 500, 1000, 2000} (Expanded DGM)
4. s 2 {1, 3, 5, 6} (Expanded DGM)
5. q 2 {0, 0.3, 0.5, 0.8} (Blurred DGM)
6. p 2 {0, 0.3, 0.5, 0.8, 1} (Blurred DGM)
7. n 2 {100, 200, 500, 1000, 2000} (Blurred DGM)
8. s 2 {1, 3, 5, 6} (Blurred DGM)

The default parameters (the values assumed unless stated otherwise) are e = 0.11, q = 0.6, p = 0.5, n = 1000,
s = 1 (for blurred DGM), and s = 6 (for expanded DGM, where proportions of binary covariate in adjacent categories
may vary greatly). When e = 0 or q = 0, this is equivalent to the scenario from which no uncertainty or measurement
error is introduced into the DGM.

For each sensitivity analysis, we generated 100 di�erent datasets and estimated the posterior distribution of the
covariate and mixture parameters (when using the Mixture Adjacent Model). We recorded posterior means and 95%
high density credible intervals for these four parameters.

From these estimates, we provide frequentist estimates of the performance of thesemodeling approaches through
reports of the bias and mean squared error (MSE) of the posterior mean compared to the true parameter values, cov-
erage (percentage of times where credible interval covers the true population parameter, which should be close to
the nominal 95% probability) and averaged posterior width (the utility of the interval estimator). Simulation analyses
were performed on the Discovery Research Computing cluster at Dartmouth College.

2.8 | Selection of Prior Distributions for Simulation Studies

We set the default values for the aforementioned priors and hyperpriors for all simulations to be �2 = 1000, a =

1e8, b = 1e8, ymin = 0.1, �↵ = 1.5.
Given the constraints on the priors and hyperpriors, the priors over the cutpoints and covariate parameters were

uninformative (�2 is high). Meanwhile, the prior over the mixture parameter was centered around 0.5, given heavy
centering of the hyperprior over the mean hyperparameter, The spread of the hyperprior was commensurate with the
speci�ed pareto distribution [39]. Decreasing a , b , and �↵ favors mixture parameter sampling towards the tails of the
beta distribution. Increasing ymin may do the same but truncates the Pareto hyperprior and can introduce divergent
geometry into the posterior.
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2.9 | Description of Real-World Dataset and Final Experimental Design

To test the external applicability of such models, we acquired a dataset of 286 steatohepatitis liver biopsies staged
for �brosis (featured in a previous validation study [12]) with �brosis staging from four independent raters with a re-
test and staging of an alternative modality for presenting liver biopsy images (a total of three �brosis measurements
per rater, 24 measurements per biopsy). Some subjects had multiple biopsies. We excluded the ratings from the
alternative modality (16 measurements per biopsy), and simpli�ed the scenario by considering information from one
randomly selected biopsy from each subject. We selected three out of the four raters that had the lowest test-retest
reliability and for each rater, selected the test which had the highest degree of adjacent assignments and �t all models
(1-6) for each rater and compared the �ts within rater. We assessed the pathologists separately to both match the
low complexity o�ered by the simulation studies and understand how the six di�erent modeling approaches produce
di�erent e�ect estimates within each rater.

Serological markers known to correlate with �brosis staging also were measured in subjects with liver biopsy
[40, 12, 41, 42]. We modelled �brosis stage as the ordinal response, regressing on the Fib4 score (an estimate of
the amount of scarring in the liver; Fib4 = Age⇤AST

Platelet-Count⇤
p
ALT

) and the AST:ALT ratio (a proxy for the degree of liver
dysfunction through two markers of hepatocellular injury), adjusting for BMI as a potential confounder. Predictors
were centered and divided by their standard deviation prior to �tting each model in order to compare each predic-
tor’s relative importance and assist with sampler convergence. We �t each model given the six data augmentation
and modeling strategies featured above for the three covariates. We expected mean e�ect estimates for the three
covariates to vary between raters due to interrater variability, though we leave exploration of the impact of bridge
category modeling on rater intercepts to follow-up work.

2.10 | Software Availability and Alternative Modeling Approaches

Simulation code (available in R 3.6 [43]), data preparation, Stan models, and additional scripts to assist with �tting real
world data are available on GitHub at: https://github.com/jlevy44/BridgeCategoryStagingModels. Regression
models are of the multinomial family, under the ordered probit (featured in this work) and logit speci�cations. Two
alternative Stan �tting procedures correspondent to the Mixture Adjacent Model are provided in the simulation code
which may be helpful for debugging as they are special cases of the general model. The former sets p , the mixture
parameter, and does not seek its estimation. The latter estimates p by �rst drawing from a Bernoulli distribution
parameterized by probability p , then using the draw to indicate whether to evaluate the likelihood of the lower or
higher category. Averaging across all posterior draws should yield similar estimates to the Mixture Adjacent Model.

3 | RESULTS

3.1 | Simulation Studies

To evaluate where each approach may be of greatest bene�t, we conducted approximately 30,000 simulations (100
simulations per con�guration; approximately 900 con�gurations of sensitivity parameters, data generating mecha-
nisms, modeling approaches). Estimates of the binary covariates are of particular interest and are shown in the upper
left panel of the �gure boxplots, which display the distributions of mean posterior estimates across the simulations
for each modeling approach. We have included a tabular breakdown of the e�ect estimates in the appendix and an
additional �le (Appendix/Additional File 1; "Summary").

reserved. No reuse allowed without permission. 
copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights 

Thethis version posted August 26, 2021. ; https://doi.org/10.1101/2021.08.17.456726doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.17.456726


10 Levy, J et al.

b[3] p

b[1] b[2]

Up Down Random Expanded Mixture Collapsed Mixture

Up Down Random Expanded Mixture Collapsed Up Down Random Expanded Mixture Collapsed

2

3

0.00

0.25

0.50

0.75

1.00

0.5

1.0

1.5

2.0

−1.8

−1.5

−1.2

−0.9

−0.6

prep.fn

va
lu

e

e
0

0.05

0.1

0.15

0.2

Scan over Degree Uncertainty (e) for Binary Covariate, B=1

4

6

8

10

Up Down Random Expanded Mixture Collapsed
prep.fn

va
lu

e

b[1]

1.0

1.5

2.0

2.5

3.0

3.5

Up Down Random Expanded Mixture Collapsed
prep.fn

va
lu

e

b[2]

−2.0

−1.5

−1.0

−0.5

0.0

Up Down Random Expanded Mixture Collapsed
prep.fn

va
lu

e

b[3]

0.00

0.25

0.50

0.75

1.00

Mixture
prep.fn

va
lu

e

e
0

0.05

0.1

0.15

0.2

p

Scan over Uncertainty (e) for Binary Covariate, B=6

!�1 !�2

!�3 !p

Ef
fe

ct
 E

st
im

at
e

Statistical Approach

Degree 
Uncertainty (e)

F IGURE 3 Faceted grouped boxplots indicating distribution of mean posterior covariate and mixture parameter
e�ect estimates across simulated datasets; each facet presents di�erent covariate/mixture e�ect; x-axis labeled by
which data augmentation/modeling approach was �t to the data; y-axis is e�ect estimate; horizontal line added to
indicate true population parameter for each covariate; boxplots are colored by the degree of uncertainty in the
expanded DGM, where the e�ect size of the binary covariate is 6

3.2 | Simulations for which the Expanded DGM is the True Model

Summarized reports of e�ect estimates and their agreement with the ground truth for each modeling approach �t
after varying the degree of uncertainty for small (Table “Expanded-Degree-Uncertain(S=1)”) and large e�ect sizes
(Table “Expanded-Degree-Uncertain(S=6)”), the sample size (Table “Expanded-Number-Samples(S=6)”) and size of the
true e�ect estimate (Table “Expanded-E�ect-Size”) of the binary covariate can be found in Appendix/Additional File
1 ("Summary").

3.2.1 | E�ect of Degree of Uncertainty on Model Performance when Expanded DGM is
the True Model

When none of the assignments were denoted as uncertain, the expanded, up, down, and random staging approaches
all yielded similar performancewith low bias, lowMSE and high coverage of the true e�ects (Figure 3, Appendix Figure
1). As we increase the amount of uncertainty to where the number of ordinal assignments were similarly distributed
between certain and uncertain categories, the expanded, up, down, and random staging approaches yielded similar
bias estimates (Figure 3, Appendix Figure 1). However, as expected from the theory of e�cient estimation the interval
width of the credible interval and the MSE are substantially lower for the expanded approach, the correct model,
versus the traditional approaches. The di�erence between the expanded and traditional approaches are substantially
greater for larger e�ect sizes of the binary covariate (Figure 4, Additional File 1). At higher e�ect sizes and uncertainty
of e = 0.1, coverage for the binary covariate is greater for the expanded versus the traditional approaches. The MSE
for the traditional approaches continues to climb given more uncertainty in ordinal assignments (Figure 4). While bias
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F IGURE 4 Degree of uncertainty (e) versus posterior interval width and MSE for the up, down and expanded
category models for a true e�ect size of one for the left two plots and a true e�ect size of six for the right two plots;
results reported for �rst covariate and smoothed using loess regression to better portray relationships

for the up, down, and expanded approach is negligible across uncertain assignments, bias for the random, mixture
and collapsed approaches increases in magnitude substantially and coverage decreases. The mixture model was able
to recover the true e�ect estimates at the greatest degree of uncertainty (e = 0.2).

3.2.2 | E�ect of Sample Size on Model Performance when Expanded DGM is the True
Model

At low sample sizes, the expanded category model provides more precise estimates than the traditional approaches
in terms of the average posterior interval width and lower MSE (Appendix Figure 2-3). The downstaging approach
experiences high separation of the binary covariate between adjacent categories for some of the simulations at a
low sample size, resulting in a high e�ect estimate that is highly biased. At higher sample sizes, the di�erences in
precision andMSE between the expanded approach and its up/down counterparts are less apparent (Appendix Figure
3). Meanwhile, the bias of the random, mixture and collapsed approaches appears to approach di�erent �xed values
at these higher sample sizes (Appendix Figure 2).

3.2.3 | Increasing the True E�ect of Binary Covariate on Model Performance when Ex-
panded DGM is the True Model

Across all e�ect sizes of the binary covariate for the expanded DGM, the expanded model demonstrates lower pos-
terior interval width and MSE versus down and up staging. As the e�ect size increases, so does the di�erence in
interval width and MSE. Increases in interval width across e�ect sizes can be attributed to the larger magnitude of
e�ects being measured, of which absolute deviation from the true value may increase, and potentially more sensitive
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F IGURE 5 Faceted grouped boxplots indicating distribution of mean posterior covariate and mixture parameter
e�ect estimates across simulated datasets; each facet presents di�erent covariate/mixture e�ect; x-axis labeled by
which data augmentation/modeling approach was �t to the data; y-axis is e�ect estimate; horizontal line added to
indicate true population parameter for each covariate; boxplots are colored by the true e�ect size (s) of the binary
parameter (�1) the expanded DGM, where the color of the horizontal line in the �rst panel indicates the true e�ect
size

imbalance of the binary covariate across the ordered categories. At the largest e�ect size, there is around a 20-30%
reduction in interval width and MSE by the expanded as compared to up/down rating (Figure 5, Appendix Figure 4).

3.3 | Simulations for which the Blurred DGM is the True Model

We now consider the case when the mixture model corresponds to the true DGM and assess its performance across
various settings of the data andmodel parameters aswell as the robustness of the othermodels, which are incongruent
with the DGM. Summarized reports of e�ect estimates and their agreement with the ground truth for each model-
ing approach �t after varying the degree of blurring (Table “Blur-Degree-Up(S=1)”), degree of up-rating for blurred
categories (Table “Blur-Degree-Up(S=1)”), the sample size (Table “Blur-Sample-Size(S=1)”) and size of the true e�ect
estimate (Table “Blur-E�ect-Size”) of the binary covariate can be found in the Appendix / Additional File 1.

3.3.1 | E�ect of Degree of Blurring onModel Performance when Blurred DGM is the True
Model

With increases in the degree of blurring introduced to the ordinal outcomes, we obtain higher bias (degradation of
the e�ect magnitude) and MSE estimates for the expanded, up, down and random staging models, with substantial
reductions in coverage. The magnitude of the e�ect for these approaches begins to decrease towards zero given
this blurring. In contrast, the collapsed category and mixture models are able to recover the true e�ect with optimal
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F IGURE 6 Faceted grouped boxplots indicating distribution of mean posterior covariate and mixture parameter
e�ect estimates across simulated datasets; each facet presents di�erent covariate/mixture e�ect; x-axis labeled by
which data augmentation/modeling approach was �t to the data; y-axis is e�ect estimate; horizontal line added to
indicate true population parameter for each covariate; boxplots are colored by the degree of blurring (q) in the
blurred DGM

coverage (around 0.95, the nominal probability) for all degrees of nonzero blurriness (Figure 6, Additional File 1). We
found negligible bias andMSE for these models versus the other approaches. However, the average width of the 95%
credible interval is higher for these two models versus the other modeling approaches, which may be an artifact of
providing larger magnitude e�ect estimates and how the covariate is distributed across the categories as the e�ect
becomes larger. The mixture model is also able to recover the true mixture population parameter with high coverage
(~0.91 coverage).

3.3.2 | E�ect of Proportion of Higher Assignments on Model Performance when Blurred
DGM is the True Model

When varying the proportion of assignments that were blurred to the upper two adjacent categories (p), the expanded
and random rating models demonstrate high bias, high MSE, low coverage estimates, which drifts towards a zero-
magnitude e�ect estimate. For the up-staging models, performance is optimal when p = 0 (high coverage, low bias
andMSE, slightly higher precision than the mixture approach). As p increases, the bias (away from the true parameter)
and MSE increase and coverage quickly drops. For the down-staging, the opposite holds true: optimal performance /
recovery of the true e�ect when p = 1; increases in bias (away from the true parameter) and MSE occur while there
is a decrease in coverage as p decreased.

The mixture model recovers the true covariate e�ect at all values of p , with high coverage, low bias and MSE
(Figure 7, Additional File 1). In all cases, themixturemodel is also able to recover the truemixture population parameter
with high coverage close to the nominal 95% probability, low bias and MSE. This holds true except for the cases
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F IGURE 7 Faceted grouped boxplots indicating distribution of mean posterior covariate and mixture parameter
e�ect estimates across simulated datasets; each facet presents di�erent covariate/mixture e�ect; x-axis labeled by
which data augmentation/modeling approach was �t to the data; y-axis is e�ect estimate; horizontal line added to
indicate true population parameter for each covariate; boxplots are colored by the proportion of times when the
true rating was blurred into the upper two ratings (p) via the blurred DGM

where p = 0 or p = 1, where coverage is 0. However, this is an artifact of the impossibility of the posterior mean of
the parameter to be equal to precisely 0 or 1, under a prior distribution that is a continuous density which places 0
support on both p = 0 and p = 1. The reductions in posterior interval, bias andMSE near the tails suggest that the true
parameter has e�ectively been recovered. The collapsed model exhibits performance similar to that of the mixture
model. However, performance is greatest when p = 0.5, where there is no predisposition towards up/down-staging.
Coverage remains high for the binary covariate but is slightly reduced when p approached 0 or 1. The magnitude of
the bias and MSE also increases slightly as p approached 0 or 1 (Figure 7, Additional File 1).

3.3.3 | E�ect of Sample Size onModel Performance when Blurred DGM is the TrueModel

Increasing sample size is associated with decreases in posterior width for the covariate and mixture parameters across
all models. For the expanded, down, up and random models, the reductions in posterior width is correspondent to
reductions in coverage given the already biased estimates of the approaches. Meanwhile, coverage for the mixture
and collapsed models remain largely una�ected. Finally, the mixture parameter is recovered with high coverage and
decreasing posterior credible interval width for higher sample sizes (Appendix Figure 5, Additional File 1).

3.3.4 | Increasing the True E�ect of Binary Covariate under the Blurred DGM

The mixture and collapsed category models recover the true e�ect across the full range of e�ect sizes (Figure 8,
Additional File 1). The magnitude of the e�ect estimates under the remaining approaches are signi�cantly below their
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F IGURE 8 Faceted grouped boxplots indicating distribution of mean posterior covariate and mixture parameter
e�ect estimates across simulated datasets; each facet presents di�erent covariate/mixture e�ect; x-axis labeled by
which data augmentation/modeling approach was �t to the data; y-axis is e�ect estimate; horizontal line added to
indicate true population parameter for each covariate; boxplots are colored by the true e�ect size (s) of the binary
parameter (�1) under the expanded DGM, where the color of the horizontal line in the �rst panel indicates the true
e�ect size

target value across all e�ect sizes of the binary covariate. Coverage of the expanded, random, up and down stage
models is close to 0 while there is nearly nominal coverage (close to 95%) of the covariate and mixture e�ects using
the mixture and collapsed model approaches.

3.4 | Real World Application

We now report the e�ect estimates and 90% highest posterior density credible intervals for various standardized
measurements versus the assigned �brosis stage (Table 1, Appendix Figure 6, Appendix Tables 1-2). Between the
two pathologists, the proportion of two-rating adjacent stage assignments over all assignments are 0.30 and 0.25 for
pathologists 1 and 2 respectively. Between the raters, the AST:ALT ratio is given the highest association with Fibrosis
progression, followed by the Fib4 score (based on pathologist 2; Appendix Figure 6B), then BMI. These e�ects vary
signi�cantly depending onwhich rater was assigning stages andwhichmodel is estimated. Between raters andmodels,
the mean posterior estimate of BMI varies from 0.107 to 0.164. For Fib4, mean estimates range from 0.0702 to 0.195.
For the AST:ALT Ratio, mean e�ect estimates range from 0.2 to 0.414.

Under the assumption of the blurred DGM as the true DGM, pathologist 1 (mixture parameter p = 0.91) demon-
strates preference for assigning the higher adjacent stages while the lower stage was true. In comparison, pathologist
2 (p = 0.148) prefers assigning the lower adjacent stages while assuming the upper stage was true. If the Blurred DGM
was the truth, covariate e�ects determined by themixture model are similar to the down-stagedmodel for pathologist
1 and similar to the up-staged model for pathologist 2. For these raters, these e�ect estimates appear to di�er from
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BMI Fib4 AST:ALT Ratio

Pathologist Model �1 b[1]: 90% CI
Low

b[1]:
90% CI
High

b[1]: Poste-
rior Interval
Width

�2 b[2]: 90%
CI Low

b[2]:
90% CI
High

b[2]: Poste-
rior Interval
Width

�3 b[3]:
90% CI
Low

b[3]:
90% CI
High

b[3]: Poste-
rior Interval
Width

Pathologist 1 Up 0.143 0.0372 0.263 0.226 0.0702 -0.0554 0.188 0.243 0.305 0.178 0.442 0.263
Down 0.164 0.0492 0.271 0.222 0.0865 -0.036 0.21 0.246 0.414 0.269 0.55 0.281
Random 0.135 0.0242 0.247 0.223 0.0881 -0.0276 0.219 0.247 0.336 0.198 0.473 0.274
Expanded 0.149 0.0433 0.264 0.221 0.09 -0.0295 0.203 0.232 0.367 0.237 0.501 0.264
Mixture 0.164 0.049 0.282 0.233 0.0908 -0.0379 0.205 0.243 0.405 0.27 0.553 0.283
Collapsed 0.161 0.0518 0.286 0.234 0.0891 -0.0406 0.21 0.25 0.372 0.23 0.51 0.28

Pathologist 2 Up 0.114 -0.0047 0.221 0.226 0.163 0.0346 0.286 0.251 0.255 0.115 0.384 0.27
Down 0.107 -0.00264 0.226 0.228 0.167 0.0451 0.295 0.25 0.243 0.113 0.368 0.255
Random 0.114 0.00318 0.228 0.225 0.195 0.0783 0.327 0.249 0.2 0.0636 0.326 0.263
Expanded 0.11 -0.00468 0.217 0.222 0.163 0.0352 0.285 0.25 0.243 0.127 0.372 0.246
Mixture 0.119 0.00889 0.231 0.222 0.167 0.0351 0.293 0.258 0.264 0.113 0.403 0.29
Collapsed 0.12 -0.00501 0.241 0.246 0.174 0.0483 0.309 0.261 0.287 0.134 0.42 0.286

TABLE 1 Posterior estimates for covariates for �brosis staging model (BMI [1], Fib4 [2], AST:ALT Ratio [3])

upstaging. For pathologist 2, the e�ect of BMI on Fibrosis becomes positively signi�cant according to a 90% credible
interval for the mixture model.

4 | DISCUSSION

Clinical grading and staging scales, largely ordinal in nature, are incredibly important for the assessment of disease, not
only for real-time clinical decision making, but also for establishing screening and assessment of baseline predictors
and endpoint outcomes for the conduct of FDA regulated drug trials. The existence of measurement error, uncertainty
and reliability issues between raters may reduce the study power, thereby causing a drug to fail clinical trials [44, 45].
While many rating scales, such as the NASH CRN scale for the grading and staging of liver �brosis for progression
into cirrhosis, have been validated through testing of interrater reliability [17], it is not uncommon to see follow-up
studies dispute the reported reliability [15, 5]. Consequently, the e�ectiveness of the scale itself may be called into
question as it pertains to these aforementioned matters (clinical triage and trials).

The assignment of two adjacent ordinal ratings is no di�erent. Although under-reported, the potential impact
of such ratings on interrater reliability and measurement of a treatment e�ect across the appropriate biomedical dis-
cipline should be explored within other biomedical specializations. For instance, the AJCC Cancer Staging Manual
recommends for TNM (tumor histology, lymph node, metastasis) staging that in the presence of uncertain assignment
of stage, the lower of two possible adjacent categories should be assigned [7, 10], while other interpretations of the
guide have pointed out that the highest stage descriptor should be selected [46]. For staging criteria with subcat-
egorization (e.g. Stage 1a, 1b, 1c), the AJCC guide also recommends assigning the general category (e.g. Stage 1)
and reporting that the tissue cannot be assessed[7]. In this scenario, the rater would cast uncertainty over the three
ordinal measurements contained within the staging group (e.g. Stage 1). These guidelines have informed staging prac-
tices internationally, yet some critics have pointed out that these recommendations regarding stage uncertainty are
not substantiated and leave room for mis-classi�cation [13]. Furthermore, we suspect that active discouragement for
reporting ambiguity in staging can lead to the application of these ad hoc procedures or potentially the omission of
the observations and may explain why such reports are virtually ignored in the research setting.

In this paper, we discussed the treatment of simultaneous assignment of two adjacent ordinal ratings, bridge
ratings, and potential implications when evaluating the e�ect of binary (eg. treatment) and continuous (eg. some
serological marker or confounder) covariates. Clinicians indicate in interviews that simultaneous adjacent stage as-
signments are a common occurrence, yet they are often obscured from the view of the reader/regulator because
methods to account for these uncertain adjacent assignments do not currently exist. We developed three likelihood
functions (the expanded, mixture adjacent, and collapsed bridge category models) and evaluated for their potential
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to yield meaningful results when the expanded and blurred DGM are the true models. We ran simulation studies
to illustrate where to expect the greatest advantage when using the expanded, mixture and collapsed approaches
versus the traditional approaches under the expanded and blurred DGM. We followed this analysis with a real-world
use case, identi�cation of clinical and serological factors pertaining to the staging of liver �brosis for the assessment
of NASH.

From our simulation studies of the expanded and blurred DGM, we found that the bridge category models were
able to outperform the traditional approaches with respect to their applicable data generating mechanism.

The results from the simulation studies highlight that it is critical to select a modeling approach commensurate
with the true data generating mechanism. Misalignment of the approach with the DGM can result in more biased
and/or less precise estimates. For instance, we noticed that the mixture and collapsed models were not well-adjusted
to the expandedDGMand biased e�ect estimateswith reports of highermagnitude e�ects than intended. Meanwhile,
the expanded DGM su�ered the same de�ciencies that the up/down/random staging models experienced on the
blurred DGM. We note that up and down rating were relevant for particular use cases (p = 0 and p = 1 respectively).
These may be special cases where the mixture model can essentially learn whether the augmentation applied to the
data should be up or down-staged. The e�ects of the misalignment are far reaching in the small sample setting, while
coverage can rapidly diminish in the large sample setting with improper treatment of the bridge rating.

From our real-world models �t to estimate �brosis stage under the probit speci�cation, it was di�cult to charac-
terize the true DGM. However, we noticed a tendency of e�ect estimates to track that expected of lower and higher
staging, as suggested by the e�ects from the mixture modeling approach. This information is concordant with inter-
views conducted with pathologists at the Department of Pathology at Dartmouth Hitchcock Medical Center, where
pathologists were asked for reasons that could explain the bridged assignments. One pathologist indicated the biopsy
had features which were mostly indicative of the lower of two stages, while some features suggestive of the higher of
the two adjacent stages were also present: “When I use [bridge ratings], i.e. stage 2-3, the specimen shows features
that are mostly indicative of a stage 2, though focal area with possible bridging �brosis are suggestive of a stage 3.
The specimen is not a de�nitive stage 3. The same is true for a stage 3-4, where the specimen shows features that are
predominantly stage 3 (bridging �brosis), though focal areas will show nodule formation that are suggestive of stage
4. The specimen is not a de�nite stage 4”. We received feedback from another pathologist, who had noted that the
NASH CRN scale had been developed with an abundance of tissue material with multiple portal regions from which
to make stage assignments [47, 5, 48]. For clinical trials, biopsies which may contain ample portal tract (at least 10
tracts), needle biopsies, and large tissue cores (2-3 cm) are recommended[48]. The pathologist suggested that in prac-
tice, liver biopsies often contain scant information. As such, an incomplete set of diagnostic features may diminish
the con�dence in stage assessment. Finally, outside of the host institution, another pathologist had indicated to our
group that grading and staging assessment is non-uniform across the tissue biopsy [49, 50, 51]. In summary, a lack of
diagnostic/prognostic information and a distribution of features across the tissue biopsy that may lean towards one
particular category may lead to the assignment of bridge ratings, which is consistent with some of the motivations for
bridge category models.

4.1 | Recommendations

From the simulation studies and real-world examples, we have a few guiding principles when selecting a DGM and
appropriate corresponding model in the presence of bridge ratings:

1. In general, random stage assignments may likely contribute to biased e�ect estimates.
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2. When the estimates acquired from up/down-staging di�er, the mixture model may identify a mixture parameter
estimatewhich can help explain the di�erences in e�ect. Relying on up or down-staging alonemay be problematic
when the true propensity for up/down-rating may be opposite to the ad-hoc approach.

3. If the e�ects from up/down staging are similar, the expanded model may provide a more precise estimate, but
this is best accomplished in a situation where blurring e�ects are not suspected.

4. Reporting bridge ratings and interfacing with domain experts can contribute to an understanding of why they
occur and inform approaches for proper adjustment. Should the domain experts communicate back that there
was complete ambiguity in assignment, evaluating models under the expanded DGM may prove useful. The lack
of mixing of the mixture parameter sampling may con�rm this hypothesis. If the raters reply that instead, which
was in our case for the real-world �brosis data, that “stages assigned were mostly indicative of a 2, but had
features of a 3”, then models may perform well under the assumption of the blurred DGM.

4.2 | Limitations

These results, while promising, have limitations. We acknowledge that exhaustive tests over the simulations were
not performed (asymmetric distributions of ordinal outcomes, di�erent mass assigned to di�erent uncertainty cate-
gories under the expanded DGM, interaction e�ects). However, the chosen simulations highlighted the advantages
of the expanded and mixture approaches. Tests on the real-world data were conducted on two speci�c subsets of
the data (two pathologists at particular testing intervals). While selection of the raters and tests were arbitrary, we
did not model the nested (biopsies per patient) and cross-classi�ed (repeat measures of biopsies versus pathologist)
structure of the data in the real-world example in order to match the simplicity of the simulation analyses, which are
focused more on methods development rather than application. In a true, real-world scenario, hierarchical Bayesian
methods are employed to simultaneously adjust for multiple raters and repeated measurements [52]. We plan to ex-
tend the modeling approach into this context to account for rater speci�c e�ects and clustering by case and biopsy.
In a similar vein, the mixture parameter utilized in the mixture model is a population parameter. While the e�ect
explained by the parameter holds true across the cohort, the parameter in its current con�guration is independent of
any �xed or random e�ect and cannot currently use these factors to explain how they impact blurriness. For instance,
blurriness patterns may be rater-speci�c, dependent on the assigned rating/conditional mean or be case-dependent
(random intercept). Nor did we consider heteroskedastic variance [16], from which the variance in the response may
be dependent on the covariates that estimate the conditional mean.

4.3 | Opportunities

Opportunities exist to further develop and apply the method for consideration of more real-world scenarios, such
as estimating variance parameters that describe between and within-cluster e�ects. Where appropriate, hierarchical
modeling renditions of bridge category models may help assess the validity of the clinical grading/staging scale and
the application in clinical trial design after proper validation [53].

While we have developed statistical models and estimation methods that are suitable to use with each data
generating mechanism (DGM), we have not fully explored methods to selecting which model is best to use on a
given data set for which the true DGM is unknown. We envision adapting Bayesian model comparison methods
to this situation and to considering Bayesian model averaging methods; that latter will incorporate the uncertainty
in the underlying DGM into the analysis. Such methods can make the posterior probability of each model being
the true model a part of the output from the analysis. A yet further complication is that case when raters within a
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study may conform to di�erent rating systems. While the observation of a bridge-rating implies what a rater may be
thinking in terms of an expanded scale, the absence of one might imply that they are reporting on the original scale.
However, one cannot identify whether the rating just happened to be a non-bridge rating or if the original scale was
being used. Incorporating this uncertainty would extend the models into the latent class realm with the latent class
being the choice of scale. Ideally this complication would be obviated at the design-stage by specifying to raters that
bridge ratings should be used to represent truly discretionary assessments. However, this still does not o�er absolute
guarantee that the raters will exactly follow the stated protocol. Clearly, imposing some consistency across the use of
a scale may be helpful. But as demonstrated by our results, if this resulted in raters arbitrarily determining their �nal
ratings, this could potentially a�ect the quality of the data and so would not be a good practice.

Algorithms in arti�cial intelligence (AI) may resolve issues with interrater variability [54], measurement uncer-
tainty and error by providing quantitative assessments of tissue histology and other tangential tasks which may be of
immediate value [55, 12, 56, 57, 58, 59]. A combination of both rater uncertainty and incomplete information about
the histology may present additional challenges for training and evaluating AI technologies. As such, these methods
may bene�t from incorporating such bridge category methods into their speci�cation and evaluation. For instance,
a machine learning model trained to stage a tumor may output an ordinal response. Such ordinal outcomes must
be compared appropriately to a measurement from pathologist(s) which may include bridged stage assignments. As
another example, a recent large scale validation study of virtual tissue staining technologies utilized down/upstaging
as a strategy for overcoming bridged ratings [12]. Here, upstaging, downstaging, random-staging or treating the ordi-
nal variable as continuous may violate the true DGM, leading to biased estimates and potentially over/understating
the e�cacy of the AI technology. Such studies may bene�t from reassessment using bridge category modeling ap-
proaches. Finally, there exists opportunity to utilize such methods to reassess ordinal outcomes for molecular/omics
data with bridge ratings [60, 61, 62, 24, 63]. As such, we plan to apply these methods towards better understand-
ing their impact on clinical trial design, interrater variability for establishment of accepted grading/staging scales and
development/assessment of AI technologies.

5 | CONCLUSION

Ordinal ratings are commonly used in biomedical applications to assess factors related to disease progression. While
such ratings are regularly employed for clinical decision making, inferring the e�ectiveness of grading/staging scales,
evaluating clinical trial e�cacy, and development and assessment of AI technologies, bridge ratings remain a relatively
unexplored, ubiquitous phenomenon which may contribute to biased and imprecise study results if erroneously ana-
lyzed. While the data generating mechanisms may re�ect scenarios where information is added/expanded, blurred,
or collapsed, bridge ratings should be modeled, not dismissed. These ratings often have a speci�c meaning in terms of
the precision or certainty with which a rater trusts their assessments (either higher or lower than the original scale may
represent) and as such are a form of information. Failure to account for bridge ratings (re�ecting greater uncertainty),
implies a coarsening on the categories and a loss of informationwhichwill make themodel work harder than necessary
to �t that observation. In turn, this will reduce the relative attention the model applies to other observations whose
precision is greater and again will result in a lack of e�ciency compared to the optimal analysis. Under both scenarios,
ad hoc methods that truncate, randomly re-assign, or otherwise transform the data to get it into a form amenable
to a standard analysis may impart bias on the results. By building and using statistical models that account for the
believed data generating mechanism(s), we can potentially improve practices surrounding drug approval, validation of
measurement scales and evaluation of diagnostic decision aids. At a minimum, reporting bridged ordinal ratings and
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discussing with domain experts and raters as to how such ratings arise should be actively encouraged in biomedical
research.
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Bridged Category Model Appendix

1 | ORDINAL RESPONSE VARIABLES AND CUMULATIVE LINK MODELS (CLM)

An ordinal response variable may re�ect a latent continuous process, the categories of which are represented by
adjacent intervals of di�ering width within the distribution. While it is erroneous to directly encode ordinal variables
as nominal or continuous [1, 2, 3, 4, 5], several regression techniques have been developed to represent ordinal data[6].
The cumulative linkmodel is a special case of ordinal regressionmodels and is particularly advantageous in that it bears
resemblance to both categorical and continuous processes through indirect modeling of a latent continuous process
(Main Text Figure 1A).

LetY represent the ordinal response variable, j 2 {1, 2, . . . ,K � 1} (i.e., disease stage). Let X be a design matrix of
observations by predictors. The latent variable,Y ⇤, represents the true, unobserved continuous process (i.e., disease
progression) underlying the ordinal observations. The predictors serve to explain this latent variable. Thus, a linear
combination of these predictors may be employed to generate:

Y
⇤
i
= X

T

i
� + ✏i (1)

where ✏i ⇠ N (0, 1) is the parametric distribution assumption consistent with the ordered probit regression model.
Alternatively, the logistic link function is obtained by exchanging the assumption of normality of the error terms for
the logistic distribution, yielding the proportional odds model. Generally, the error term may have any cumulative
distribution F , which impacts model �tting and interpretation of the results. The conditional mean is given by:

µi = E
⇥
Y

⇤
i

��Xi

⇤
= X

T

i
� (2)

Cumulative link models (CLM) include a set of threshold parameters, {✓j }j 2{1,2,...,K�1}, which correspond to cutpoints
of a continuous latent distribution from which partially observed or limited outcomes are obtained. These also de�ne
endpoints from which interval and continuous probasbilities are de�ned, from which the e�ect of covariates can be
measured against. Intervals between the cutpoints represent the observed classes {Yj }j 2{1,2,...,K }. Here, we include the
motivation and derivation of the link function and likelihood. The thresholds, represented by vector �!✓ are used to
partition the latent distribution as:

Y = j () ✓j�1 < Y
⇤  ✓j (3)

In this latent distribution, distances are meaningfully encoded, which permits the use of linear regression on the latent
outcome:

Y
⇤ = µ + ✏ (4)

where µ represents the conditional mean, and ✏ the error term as above. In order to map the latent distribution to a
set of probabilities, we specify the distribution F of ✏ (which can be any cumulative distribution):

P (✏  z ) = F (z ) (5)
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Combining the previous three equations:

P (Y  j |µ) = P
�
Y

⇤  ✓j

��µ� = P
�
µ + ✏  ✓j

�
= P

�
✏  ✓j � µ

�
= F

�
✓j � µ

�
(6)

The probability ofY being less than or equal to j given the conditional mean µ is equal to the cumulative distribution
F evaluated at ✓j � µ. Because the probability of an event occuring and the probability of it not occurring sum to 1, it
follows that:

P (Y  j |µ) = 1 � P (Y > j |µ) (7)

Therefore, the probabilityY = j given µ is as follows:

P (Y = j |µ) = P (Y  j |µ) � P (Y  j � 1 |µ)

= F
�
✓j � µ

�
� F

�
✓j�1 � µ

�

Finally, the likelihood of an observationY = j assuming it is generated from a multinomial distribution with a cumula-
tive link function de�ning category probabilities as above is given by:

L (Y |✓, � ) = ���������!
p (Y |✓, � ) =

h
P (Y = 1 |µ)I (Y=1) · · · P (Y = K |µ)I (Y=K )

i
(8)

We summarize the likelihood and link function below:

�ij = P (Y  j ) = P
�
Y

⇤
i

 ✓j

�
= P

�
✏i < ✓j � µi

�
= F

�
✓j � µi

�
(9)

g
�
�ij
�
= F

�1 �
�ij
�
= ✓j � µi (10)

P (Yi = j |✓) = P (Yi  j ) � P (Yi  j � 1) = F
�
Yi

⇤ = ✓j � µi

�
� F

�
Yi

⇤ = ✓j�1 � µi

�
(11)

In this model, the probability of drawing a particular class is the area of the cumulative distribution between two
estimated cutpoints after centering by µi . At the tails of the distribution, whereY 2 {1,K }, the predicted probabilities
of the classes are P (Y = 1) = F (Yi ⇤ = ✓1 � µi ) and P (Y = K ) = 1 � F (Yi ⇤ = ✓K�1 � µi ) respectively. The threshold
and conditional mean parameters of these models are not identi�able, as the conditional mean µi can be re-scaled
without changing the �tted probabilities, given the constraint of the cumulative distribution F (i.e. multiplying ✓� µ by
a constant leads to an equivalent �t) [7]. However, by imposing the restriction that the observations have a variance
of 1 (or any other constant), we can make the model parameters identi�able by the data. We implemented estimation
of a multinomial model with the above cumulative link function using the Stan probabilistic programming language
[8, 9]. Stan uses Hamiltonian Monte Carlo methods to perform Bayesian model estimation (See Appendix, section
“Bayesian Computation and Hamiltonian Monte Carlo”) [10, 11]. The Bayesian model for a cumulative link model
for K ordinal response categories is speci�ed below for predictors indexed by m 2 {1, 2, . . . ,M } and cutpoints from
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j 2 {1, 2, 3, . . . ,K � 1}:

Li (Y |✓) ⇠ Multinomial
⇣�!
p

⌘
�!
p =

h
F (✓1) · · · F

�
✓j � µi

�
� F

�
✓j�1 � µi

�
· · · 1 � F (✓K�1)

i

µi = x
T

i

����!
�1..M

✓j ⇠ N

⇣
0,�2

⌘
, �m ⇠ N

⇣
0,�2

⌘
(12)

2 | BAYESIAN COMPUTATION AND HAMILTONIAN MONTE CARLO

While frequentist statistics focus on optimization of the likelihood, Bayesian statistics focus on estimation of the
posterior distribution, p (✓ |X ) , where ✓ are parameters treated as random variables and X are the data that the
posterior is conditioned on and thereby are treated as �xed [12, 5]. The posterior can be related to the likelihood of
the cumulative link model via Bayes Theorem:

p (✓ |X ) = p (X |✓) p (✓)
p (Y ) (13)

In eq.(13) p (✓) is the prior distribution of the parameters and p (Y ) is the marginal distribution of the data, a
normalizing factor. The Bayesian approaches were essential for estimation of our models because of their �exibility
to handle di�erent DGM, speci�cation of priors, and better estimates of uncertainty through sampling the posterior
rather than some approximation through maximum likelihood methods. Bayesian priors centered around zero may
potentially also make estimates more conservative, which can in turn reduce the need for correction for multiple
comparisons.

The cumulative link model, as implemented in packages, such as clm [13], typically involves optimization of the
likelihood, given some starting parameters. Here, we utilize Bayesian model �tting procedures versus the frequentist
approaches because estimates avoid approximations to aid computation, are typically more precise, numerical com-
putations may be easily implemented and there is no strict constraint on the shape of the posterior distribution of the
unknown parameters. While frequentist approaches optimize the likelihood for a set of parameters using maximum
likelihood estimation and approximate the variance of the estimator using the Hessian, Bayesian approaches derive a
posterior distribution for a set of parameters by updating the prior hypothesis with appropriate weight given to the
likelihood over the prior. Amongst a few di�erent approaches towards posterior estimation (eg. variational inference),
Markov Chain Monte Carlo (MCMC) methods sample the posterior distribution of parameters until convergence of
the joint posterior to a stationary solution. Hamiltonian Monte Carlo, while not conditionally sampling posterior pa-
rameters via a Markov Chain, is similar in spirit as the MCMC algorithms, drawing from the joint density of the model
parameters and some auxiliary momentum variables, sampling through simulation of moving particles for a number of
time steps under the joint state (✓) and momentum (�) density: p (�, ✓) = p (� |✓) p (✓) , where the goal is to ultimately
sample the joint posterior p (✓) . In our motivating example (e.g., CLM), ✓ = ( Æ�1,..,M , Æ✓) and � = ( Ær� 1,..,M , Ær✓ ) , where r

corresponds to parameter-speci�c momentum parameters, initially drawn from a uniform distribution then updated
over time by the Hamiltonian dynamics of the system. The Hamiltonian is represented by:
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H (�, ✓) = � log (p (�, ✓)) = � log (p (� |✓)) � log (p (✓)) = T (� |✓) +V (✓) (14)

Where T and V represent the kinetic and potential energy respectively. Hamilton’s equations govern how particles
move across the density landscape, which can be summarized as:

d✓

dt =
@T

@�
(15)

d�

dt = � @V

@�
(16)

Automatic numerical di�erentiation solves the above di�erential equations, allowing the particles to move for L
steps given a random sampling of momentum to initialize the trajectory, where they are then sampled (collection of
parameters ✓) and either accepted or rejected based onMetropolis Hastings criteria. No U-Turn Sampling (NUTS) is an
extension on this sampler that attempts to increase the e�ciency of the sampling process through adaptive measures
that promote landscape exploration. We have implemented such samplers using the Stan programming language,
integrated into R via RStan [9, 10], with some elements of the code inspired by design choices featured in the brms
package [8].

3 | LOCATION OF EXPANDED SUPPLEMENTARY TABLES

Expanded supplementary tables detailing assessment of model performance may be found in additional �le 1. The
�rst tab provides descriptions of the sensitivity tests for the simulation studies, the data generating mechanisms and
the true covariate e�ects.

4 | SUPPLEMENTARY RESULTS TABLES AND FIGURES

Pathologist 0 0-1 1 1-2 2 2-3 3 3-4 4

Pathologist 1 10 12 33 10 52 31 56 24 28

Pathologist 2 2 8 18 10 82 26 58 19 33

APPENDIX TABLE 1 Tabulated stage assignments for pathologists at particular tests
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Pathologist p 90% CI Low 90% CI High Posterior Interval Width

1 0.91 0.665 1 0.335

2 0.148 0 0.472 0.472

APPENDIX TABLE 2 Posterior estimates for mixture parameters for �brosis staging model (BMI, Fib4,
AST:ALT Ratio) for di�erent pathologists
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APPENDIX F IGURE 1 Faceted grouped boxplots indicating distribution of mean posterior covariate and
mixture parameter e�ect estimates across simulated datasets; each facet presents di�erent covariate/mixture e�ect;
x-axis labeled by which data augmentation/modeling approach was �t to the data; y-axis is e�ect estimate;
horizontal line added to indicate true population parameter for each covariate; boxplots are colored by the degree of
uncertainty in the expanded DGM, where the e�ect size of the binary covariate is 1; all covariates were
standardized prior to generation of the ratings
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APPENDIX F IGURE 2 Faceted grouped boxplots indicating distribution of mean posterior covariate and
mixture parameter e�ect estimates across simulated datasets; each facet presents di�erent covariate/mixture e�ect;
x-axis labeled by which data augmentation/modeling approach was �t to the data; y-axis is e�ect estimate;
horizontal line added to indicate true population parameter for each covariate; boxplots are colored by the sample
size in the expanded DGM, where the e�ect size of the binary covariate is 6
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APPENDIX F IGURE 5 Faceted grouped boxplots indicating distribution of mean posterior covariate and
mixture parameter e�ect (true mixture e�ect of 0.5) estimates across simulated datasets; each facet presents
di�erent covariate/mixture e�ect; x-axis labeled by which data augmentation/modeling approach was �t to the data;
y-axis is e�ect estimate; horizontal line added to indicate true population parameter for each covariate; boxplots are
colored by the number of samples for the blurred DGM
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5 | ADDITIONAL DISCUSSION

5.1 | Expanded DGM Simulation

For the expanded DGM, the expanded approach provided greater precision in estimates versus up and down staging.
This was true across all sample sizes and e�ect sizes. However, greater precision is conferred when the sample size
is small, e�ect size is large, and the proportion of ratings assigned to a bridge rating is similar to that of the certain
assignments. We were surprised to �nd that ordinal models �t on up- and down-staged responses to exhibit similar
degrees of bias as the expanded approach. However, these results are consistentwith prior studieswhich demonstrate
that collapsing adjacent categories has negligible impact on bias but in�ates the standard error of the estimate [14, 15,
16, 17, 18]. Likewise, the expanded categories are able to maintain high precision, while down and up rating provides
coarser estimates of the true ratings. Randomup/down ratingmay serve to bias and de�ate the e�ect estimate toward
zero, while the mixture and collapsed approaches may in�ate the e�ect estimate. As such, when confronted with data
that is suspected to be of the expanded DGM, the expanded model o�ers the truest estimate of the e�ect.

5.2 | Blurred DGM Simulation

For the blurred DGM, we note vastly superior performance for the mixture and collapsed models as compared to the
traditional approaches, regardless of the degree bywhich the ordinal ratings were blurred, the propensity for assigning
the upper two categories, sample size and e�ect size. The mixture model would appear to learn the properties of
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the data that it is �tting, while the collapsed category was highly applicable when the propensity of bridge-ratings is
around 0.5, but slightly biased otherwise. This is likely because the collapsed category model considers two categories
simultaneously, much like the mixture model but does not learn a mixture parameter. The �exibility in learning a
population parameter avoids bias when measurements are blurred. In contrast, the e�ect estimates provided by the
expanded and traditional approaches were biased towards zero. As such, when confronted with data that is suspected
to be of the blurred DGM, the mixture adjacent model o�ers the truest and most �exible estimate of the e�ect.

5.3 | Deciding on the Ideal DGM

In a real-world scenario, it can be di�cult to decide which DGM is applicable to the data. Likelihood ratio tests
calculated on the data for model selection may lead to misleading conclusions when the ratings are coarsely treated
[19, 20, 21]. Constructing a likelihood test (e.g. Bayes Factor and Pareto Smoothed Importance Sampling) to compare
the expanded model to the other approaches is challenging due to the fact that one model is not nested in the other
and the two models support non-overlapping categories. In sum, a mixture of interviewing expert raters and data
driven testing of parameters and comparison of model e�ects to di�erences in e�ects registered under simulations
should inform the selection of both the DGM and ideal model.

5.4 | Additional Limitations and Opportunities

While our models took into account bridged categories, they do not explicitly account for instances of greater mea-
surement error (outside of those expected from adjacent categories). However, given the widely varying reports of
stages between the two raters (high inter-rater variability), this is suggestive of additional measurement error which
may have obfuscated some of the e�ects of the true DGM [22]. Potentially, bridge category models may bene�t from
incorporating elements from other models which tackle uncertainty across larger number of categories. For instance,
mixture adjacent models bear resemblance to the proposed GEM (Generalized Mixture Models with Uncertainty)
and CUB (Combination of a discrete Uniform and a shifted Binomial random variable), models and their derivatives
[23, 24, 25]. These models attempt to ascribe two components to providing ordinal ratings. Feeling (attraction and
awareness) components towards a particular rating may make the rating more likely to be chosen, as modeled by a
Binomial random variable. Uncertainty (indecision and blurriness) components, from which a discrete uniform distri-
bution is assumed, places greater weight on the remaining categories. However, neither of these methods take into
account bridge ratings into the decision-making process and are thus inappropriate for the treatment of bridge ratings
yet feeling and uncertainty components may inform future iterations of bridge category models.

In addition, the DGMmay be rater-speci�c, as we had estimated di�erent mixture parameters for di�erent pathol-
ogists, which may be correspondent to the widely varying e�ect estimates within and between raters depending on
the model being used to �t the data. Given the relatively moderate degree of bridged category assignment, these
were not of high enough magnitude for e�ects to become heavily distorted. While the e�ect of inter-rater variability
more likely pertains to measurement error and diminishing of e�ect estimates, utilizing the mixture approach in one
instance in the real-world setting provided a signi�cant e�ect estimate, when the other approaches had suggested
otherwise.
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