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Abstract1

Previous studies indicate a role of dopamine in hippocampus-dependent spatial navi-2

gation. Although neural representations of direction are an important aspect of spatial3

cognition, it is not well understood whether dopamine directly affects these representations,4

or only impacts other aspects of spatial brain function. Moreover, both dopamine and spa-5

tial cognition decline sharply during age, raising the question which effect dopamine has6

on directional signals in the brain of older adults. To investigate these questions, we used7

a double-blind cross-over L-DOPA/Placebo intervention design in which 43 younger and 378

older adults navigated in a virtual spatial environment while undergoing functional magnetic9

resonance imaging (fMRI). We studied the effect of L-DOPA, a DA precursor, on fMRI ac-10

tivation patterns that encode spatial walking directions that have previously been shown to11

lose specificity with age. This was done in predefined regions of interest, including the early12

visual cortex, retrosplenial cortex, and hippocampus. Classification of brain activation pat-13

terns associated with different walking directions was improved in the hippocampus and the14

retrosplenial cortex following L-DOPA administration. This suggests that DA enhances the15

specificity of neural representations of walking direction in these areas. In the hippocampus16

these results were found in both age groups, while in the RSC they were only observed in17

younger adults. Taken together, our study provides evidence for a mechanistic link between18

DA and the specificity of neural responses during spatial navigation.19

Significance Statement: The sense of direction is an important aspect of spatial navi-20

gation, and neural representations of direction can be found throughout a large network of21

space-related brain regions. But what influences how well these representations track some-22

one’s true direction? Using a double-blind cross-over L-DOPA/Placebo intervention design,23

we find causal evidence that the neurotransmitter dopamine impacts the fidelity of direction24

selective neural representations in the human hippocampus and retrosplenial cortex. Inter-25

estingly, the effect of L-DOPA was either equally present or even smaller in older adults,26

despite the well-known age related decline of dopamine. These results provide novel insights27

into how dopamine shapes the neural representations that underlie spatial navigation.28

Keywords: spatial navigation; aging; neural dedifferentiation; tuning functions; fMRI;29

MVPA; dopamine30
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1 Introduction31

A role of dopamine (DA) in spatial navigation is well established. Anatomically, spatial32

cognition depends on a network of brain regions centered around the hippocampus (HC)33

(Burgess, Maguire, & O’Keefe, 2002; Chersi & Burgess, 2015) that is a target of dopaminergic34

innervation from the ventral tegmental area and the locus coeruleus (McNamara & Dupret,35

2017). Behaviorally, spatial navigation abilities are influenced by DA functioning in younger36

as well as older animals and humans (Granado et al., 2008; El-Ghundi et al., 1999; Thurm37

et al., 2016; Kentros, Agnihotri, Streater, Hawkins, & Kandel, 2004).38

Much less is known about how DA might change the neural representations that support39

spatial navigation. Particularly interesting for human neuroscience are direction selective40

representations (Taube, 2007), which have been found, amongst others, in the HC, the41

retrosplenial cortex (RSC) and visual cortex (Shine, Valdés-Herrera, Hegarty, & Wolbers,42

2016; Flossmann & Rochefort, 2021; Guitchounts, Maśıs, Wolff, & Cox, 2020; Cacucci,43

Lever, Wills, Burgess, & O’Keefe, 2004), and can be decoded from human fMRI signals44

(Koch, Li, Polk, & Schuck, 2020). We hypothesized that DA affects direction encoding in the45

human brain and tested this idea using a double-blind placebo controlled intervention design.46

Specifically, we predicted that oral administration of L-DOPA, a dopamine precursor, would47

influence how accurately walking direction can be decoded from multi-voxel fMRI patterns.48

Next to its role in spatial navigation, DA has also received much attention in the context49

of aging, where reduced DA functions are prevalent and are thought to underlie age-related50

cognitive declines (Bäckman, Nyberg, Lindenberger, Li, & Farde, 2006; Li, Lindenberger,51

& Bäckman, 2010; Volkow et al., 1998; Chowdhury et al., 2013). Computational models52

have shown that declining neuromodulatory effects of DA lead to losses in the signal-to-53

noise ratio of neural responses (Cohen & Servan-Schreiber, 1992; Servan-Schreiber, Printz,54

& Cohen, 1990), which in the aging brain can lead to neural representations that are less55

specific or ”dedifferentiated” (Li, Lindenberger, & Sikström, 2001; Li & Rieckmann, 2014).56

In line with these models, dedifferentiation has repeatedly been observed in older adults57

(OA) at the behavioral and neural levels (Park et al., 2004; Carp, Park, Polk, & Park, 2011;58

Carp, Park, Hebrank, Park, & Polk, 2011; Koch et al., 2020; Kobelt, Sommer, Keresztes,59

Werkle-Bergner, & Sander, 2021; Li et al., 2004). Neural dedifferentiation, in turn, has been60
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linked to decreased memory performance (Koen, Hauck, & Rugg, 2019; Sommer et al., 2019;61

St-Laurent, Abdi, Bondad, & Buchsbaum, 2014), establishing an explanatory link between62

DA, neural representations and cognitive aging.63

These roles of DA in spatial navigation and aging might contribute to the pronounced64

decline in spatial cognition with age (Moffat, 2009; Lester, Moffat, Wiener, Barnes, & Wol-65

bers, 2017; Wolbers, Dudchenko, & Wood, 2014; Schuck, Doeller, Polk, Lindenberger, & Li,66

2015), and to the neural dedifferentiation of direction-selective (Koch et al., 2020) and hip-67

pocampal signals (Schuck et al., 2015) in the aging brain. Moreover, since the sharp decline68

of DA with age should lead to lower baseline availability of DA in OA, the effects of DA69

might be stronger in OA relative to younger adults (YA) – reflecting DA’s inverted-U-shape70

relation to cognitive performance (Cools & D’Esposito, 2011; Li et al., 2013; Vijayraghavan,71

Wang, Birnbaum, Williams, & Arnsten, 2007; Li et al., 2010). Indeed, one previous study72

found age-related effects of the DA receptor agonist bromocriptine on dedifferentiation in73

the HC (Abdulrahman, Fletcher, Bullmore, & Morcom, 2017). Moreover, HC-dependent74

episodic memory, spatial navigation, and learning have been found to be affected by genetic75

polymorphisms related to dopamine D2 receptor availability (COMT Val158Met, C957T CC;76

Papenberg et al., 2014; Li et al., 2013) or hippocampal function (KIBRA SNP rs17070145;77

Schuck et al., 2013, 2018) in OA, but not YA. Based on these findings, we therefore also tested78

whether L-DOPA effects on walking direction decoding would be stronger in OA relative to79

YA.80

Finally, we expected that DA could also influence the shape of population-based tuning81

functions of direction. Although direction-sensitive cells often have a preferred direction,82

they also fire in response to non-preferred directions in proportion to their similarity to the83

preferred direction (Taube, 2007). Hence, encoding of direction information seems to follow a84

Gaussian tuning function, in particular on a population level (Averbeck, Latham, & Pouget,85

2006). Research has also shown that age-related neural dedifferentiation results in increased86

width of such tuning functions with age (Liang et al., 2010; Leventhal, Wang, Pu, Zhou, &87

Ma, 2003; Schmolesky, Wang, Pu, & Leventhal, 2000), which we too have reported previously88

using fMRI (Koch et al., 2020). We therefore also investigated whether L-DOPA has effects89

on the precision of fMRI-derived tuning functions of direction information and whether such90
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effects may interact with age.91

2 Materials and Methods92

2.1 Participants93

This study was part of a larger project in which the same participants performed multiple94

tasks, including a sequential decision making task and a virtual reality spatial memory task95

inside the scanner and other decision tasks outside of the scanner.96

Here, we only report results from the MRI analysis of the VR task described below.97

Specifically, following our previous publication (Koch et al., 2020), our analyses were specific98

to neural representations of direction signals during the spatial memory task performed while99

undergoing fMRI. Other data from the same participants was not within the purview of this100

study and was therefore not investigated. Data of 102 participants which were recruited for101

two MRI sessions and randomly assigned to one of the two drug intervention groups (i.e., L-102

DOPA–Placebo or Placebo–L-DOPA) was available for investigating our research question.103

Ninety-one of these participants (46 OA, 45 YA) successfully completed both sessions. Four104

OA were excluded from further analyses because they did not respond in at least a third105

of the trials in at least one of the two sessions. Furthermore, technical issues during data106

collection led to incomplete or inaccurate data for three other OA, resulting in an overall107

exclusion of 7 OA. The main sample therefore consisted of 84 participants, out of which 39108

were OA (age 65–75, 7 female) and 45 YA (age 26–35, 16 female). Note that the relatively109

low number of female OA reflects difficulties in recruitment after the onset of the COVID-19110

pandemic.111

Decoding analyses of the L-DOPA effects introduced additional requirements for the112

distribution of walking direction (see Materials and Methods) that were not met for four113

participants (2 OA, 2 YA). Thus, the final effective sample for these analyses also excluded114

these participants and comprise of a total of 37 OA (age 65–75, 6 female) and 43 YA (age115

26–35, 16 female).116
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2.2 Virtual Reality Task117

During each session of fMRI data collection participants had to complete a similar variant of118

a spatial memory task that was used in previous studies (Schuck et al., 2015; Thurm et al.,119

2016). Analyses of the present work are mainly concerned with directional signals obtained120

during free navigation, and hence focus on the corresponding task phases. Specifically, to121

avoid effects of changed environmental cues on directional signals (e.g. Taube, Muller, &122

Ranck, 1990) or initial learning, we considered only data from the feedback phase for this123

study (see below). On average, the included data reflected a period of 17.36 minutes from124

free navigation per session.125

Briefly, participants were placed in a virtual, circular arena in which they could move126

around freely using a custom-made MRI-compatible joystick. The arena consisted of a127

circular grass plane surrounded by a wall. Participants could also see distal cues (mountains,128

clouds) as well as a local cue (traffic cone) to aid orientation (see Fig 1). We asked participants129

to remember the location of five objects within the 360◦arena. First, an initial encoding130

phase took place in which participants could see and walk to the locations of all objects131

appearing one after the other. Learning of object location then continued in a feedback phase:132

participants were placed close to the center of the arena with a random heading direction.133

After the brief presentation of a grey screen and fixation cross, a picture of the first object134

was shown. Participants were asked to navigate as closely as possible to the location of this135

object and indicate their final position with a button press within a maximum of 60 seconds.136

To provide feedback, the true object location was shown to participants following their137

response, and they were then asked to navigate to and walk over the shown location. After138

the feedback, participants were shown another object and the procedure repeated without139

placing the player in the center of the arena until all five objects were completed. The order140

in which the five objects were shown was pseudo-randomized. Once all five objects were141

completed, participants were again placed close to the arena’s center and had to navigate to142

all five objects in the same manner for a total of six repetitions (i.e., 5 × 6 = 30 feedback143

trials). In a final transfer phase of the task (data not analyzed in this study, see above),144

either the arena size or the location of the traffic cone were altered, and participants‘ object145

location memory was tested again as above. For the second session participants had to learn146
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the location of five different objects, but the trial structure and procedures were identical147

otherwise. Completing one session took participants between 14 and 49 minutes.148

ITI Cue Placement Feedback Cue
2s 4s max. 60s time

Figure 1: Task procedure during feedback phase. Each trial started with a fixation cross on a grey
background for two seconds. Afterwards a cue was presented showing the object to which participants
needed to navigate (object locations were learned during encoding phase). The participant then had 60
seconds to navigate from their starting location (cross) to the object location according to their spatial
memory. Participants indicated that they had arrived at the remembered location (circle) by pressing
a response button, after which the object appeared at its true location. Participants could observe the
difference between their response and the correct location and were required to navigate towards and
walk over the correct location, before the cue of the next trial was presented.

2.3 Drug administration149

Following a double-blind drug administration design, participants were given either a total150

of 225mg of L-DOPA (Madopar, Roche, Levodopa/Benserazid, 4:1 ratio) or a placebo (P-151

Tabletten white 8mm Lichtenstein, Winthrop Arzneimittel) before each MRI session in the152

form of two orally administered dosages. A first dosage (150mg L-DOPA/Placebo) was153

given about 10 minutes before subjects entered the MRI scanner, roughly one hour before154

the spatial navigation task began. To assure high dopamine availability during the task,155

a second booster dosage (75mg L-DOPA/Placebo) was administered roughly ten minutes156

before task onset (cf. Kroemer et al., 2019). Participants were pseudo-randomly assigned to157

one of two groups with different session order, either the group that received L-DOPA in the158

first session and placebo in the second session (Drug-Placebo group, 40 subjects) or the group159

that started with the placebo in the first session (Placebo-Drug group, 44 participants).160

2.4 Image acquisition161

All data was collected on a 3 Tesla Siemens Magnetom Trio (Siemens, Erlangen, Germany)162

MRI scanner. T1-weighted structural images were collected at the beginning of the first163

session using a MP-RAGE pulse sequence (0.8 × 0.8 × 0.8mm voxels, TR = 2400ms, TE =164
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2.19ms, TI = 1000ms, acquisition matrix = 320 × 320 × 240, FOV = 272mm, flip angle =165

8◦, bandwidth = 210 Hz
Px ). At the beginning of the second session T2-weighted structural scan166

was collected (0.8× 0.8× 0.8mm voxels, TR = 3200ms, TE = 565ms, acquisition matrix =167

350 × 350 × 2630, FOV = 272mm, bandwidth = 744 Hz
Px ).168

Functional on-task data was collected using a T2*-weighted echo-planar imaging (EPI)169

pulse sequence 3 × 3 × 2.5mm voxels, slice thickness = 2.5mm, distance factor = 20%,170

TR = 2360ms, TE = 25ms, image matrix = 64 × 64, FOV = 192mm, flip angle = 80◦,171

48 axial slices, GRAPPA parallel imaging, acceleration factor: 2, interleaved acquisition). The172

sequence lasted until the task was completed and took about 15 – 50 minutes. Additional173

functional scans not analyzed in this manuscript included data from the transfer phase, data174

from a decision making task, as well as data from a resting state scan collected at the start175

of each session.176

Quality of all collected functional sequences was assessed using MRI quality control177

(MRIQC; Esteban et al., 2017). The quality measure of framewise displacement (FD,178

threshold 3mm), a measure for movement during image acquisition (Power et al., 2014), was179

extracted and used for statistical control.180

2.5 ROIs181

Each ROI was created from anatomical labels obtained from Mindboggle’s FreeSurfer-based182

segmentation of each participant’s individual T1-weighted images (Klein et al., 2017). We183

investigated three predefined ROIs in light of previous findings indicating direction selective184

coding in these regions (Taube, 2007; Shine et al., 2016; Flossmann & Rochefort, 2021;185

Guitchounts et al., 2020; Cacucci et al., 2004; Koch et al., 2020). An early visual cortex186

(EVC) ROI, consisting of the bilateral cortical masks of the cuneus, lateral occipital cortex,187

and the pericalcarine cortex. A ROI of the retrosplenial cortex (RSC) constructed from188

the bilateral, cortical masks of the cingulate ishtmus. A mask of the hippocampus (HC)189

was extracted from the respective bilateral masks of the parcellation. In addition to these190

core masks, we added a ROI of the left motor cortex, constructed from the cortical mask of191

the left precentral gyrus, to serve as a control. Although our resolution was suboptimal to192

investigate small areas, we included a mask of the entorhinal cortex (EC) in order to explore193
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if direction signals could be found there as well.194

2.6 Image preprocessing195

Copyright Waiver Results included in this manuscript come from preprocessing per-196

formed using fMRIPrep 20.0.6 (Esteban, Markiewicz, et al., 2018; Esteban, Blair, et al.,197

2018; RRID:SCR 016216), which is based on Nipype 1.4.2 (Gorgolewski et al., 2011, 2018;198

RRID:SCR 002502). The boilerplate text in this section (2.6) was automatically generated199

by fMRIPrep with the express intention that users should copy and paste this text into their200

manuscripts unchanged. It is released under the CC0 license.201

Anatomical data preprocessing The T1-weighted (T1w) image was corrected for202

intensity non-uniformity (INU) with N4BiasFieldCorrection (Tustison et al., 2010), dis-203

tributed with ANTs 2.2.0 (Avants, Epstein, Grossman, & Gee, 2008; RRID:SCR 004757),204

and used as T1w-reference throughout the workflow. The T1w-reference was then skull-205

stripped with a Nipype implementation of the antsBrainExtraction.sh workflow (from206

ANTs), using OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal207

fluid (CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-extracted208

T1w using fast (FSL 5.0.9; RRID:SCR 002823; Zhang, Brady, & Smith, 2001). Brain sur-209

faces were reconstructed using recon-all (FreeSurfer 6.0.1; RRID:SCR 001847; Dale, Fis-210

chl, & Sereno, 1999), and the brain mask estimated previously was refined with a custom211

variation of the method to reconcile ANTs-derived and FreeSurfer-derived segmentations of212

the cortical gray-matter of Mindboggle (RRID:SCR 002438; Klein et al., 2017). Volume-213

based spatial normalization to two standard spaces (MNI152Lin, MNI152NLin2009cAsym)214

was performed through nonlinear registration with antsRegistration (ANTs 2.2.0), using215

brain-extracted versions of both T1w reference and the T1w template. The following tem-216

plates were selected for spatial normalization: Linear ICBM Average Brain (ICBM152)217

Stereotaxic Registration Model (Mazziotta, Toga, Evans, Fox, & Lancaster, 1995; Tem-218

plateFlow ID: MNI152Lin), ICBM 152 Nonlinear Asymmetrical template version 2009c219

(Fonov, Evans, McKinstry, Almli, & Collins, 2009; RRID:SCR 008796; TemplateFlow ID:220

MNI152NLin2009cAsym).221
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Functional data preprocessing For each of the 4 BOLD runs collected per subject222

(two task related runs reported here and 2 resting state runs not reported here), the following223

preprocessing was performed. First, a reference volume and its skull-stripped version were224

generated using a custom methodology of fMRIPrep. Susceptibility distortion correction225

(SDC) was omitted. The BOLD reference was then co-registered to the T1w reference using226

bbregister (FreeSurfer) which implements boundary-based registration (Greve & Fischl,227

2009). Co-registration was configured with six degrees of freedom. Head-motion parameters228

with respect to the BOLD reference (transformation matrices, and six corresponding rotation229

and translation parameters) are estimated before any spatiotemporal filtering using mcflirt230

(FSL 5.0.9; Jenkinson, Bannister, Brady, & Smith, 2002). BOLD runs were slice-time cor-231

rected using 3dTshift from AFNI 20160207 (Cox & Hyde, 1997; RRID:SCR 005927). The232

BOLD time-series were resampled onto the following surfaces (FreeSurfer reconstruction233

nomenclature): fsnative, fsaverage. The BOLD time-series (including slice-timing correction234

when applied) were resampled onto their original, native space by applying the transforms235

to correct for head-motion. These resampled BOLD time-series will be referred to as pre-236

processed BOLD in original space, or just preprocessed BOLD. The BOLD time-series were237

resampled into standard space, generating a preprocessed BOLD run in MNI152Lin space.238

The first step in this process was that a reference volume and its skull-stripped version239

were generated using a custom methodology of fMRIPrep. Several confounding time-series240

were calculated based on the preprocessed BOLD : framewise displacement (FD), DVARS241

and three region-wise global signals. FD and DVARS are calculated for each functional run,242

both using their implementations in Nipype (following the definitions by Power et al., 2014).243

The three global signals are extracted within the CSF, the WM, and the whole-brain masks.244

Additionally, a set of physiological regressors were extracted to allow for component-based245

noise correction (CompCor ; Behzadi, Restom, Liau, & Liu, 2007). Principal components are246

estimated after high-pass filtering the preprocessed BOLD time-series (using a discrete cosine247

filter with 128s cut-off) for the two CompCor variants: temporal (tCompCor) and anatomi-248

cal (aCompCor). tCompCor components are then calculated from the top 5% variable voxels249

within a mask covering the subcortical regions. This subcortical mask is obtained by heavily250

eroding the brain mask, which ensures it does not include cortical GM regions. For aComp-251
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Cor, components are calculated within the intersection of the aforementioned mask and the252

union of CSF and WM masks calculated in T1w space, after their projection to the native253

space of each functional run (using the inverse BOLD-to-T1w transformation). Components254

are also calculated separately within the WM and CSF masks. For each CompCor decompo-255

sition, the k components with the largest singular values are retained, such that the retained256

components’ time series are sufficient to explain 50 percent of variance across the nuisance257

mask (CSF, WM, combined, or temporal). The remaining components are dropped from258

consideration. The head-motion estimates calculated in the correction step were also placed259

within the corresponding confounds file. The confound time series derived from head motion260

estimates and global signals were expanded with the inclusion of temporal derivatives and261

quadratic terms for each (Satterthwaite et al., 2013). Frames that exceeded a threshold of 0.5262

mm FD or 1.5 standardised DVARS were annotated as motion outliers. All resamplings can263

be performed with a single interpolation step by composing all the pertinent transformations264

(i.e. head-motion transform matrices, susceptibility distortion correction when available, and265

co-registrations to anatomical and output spaces). Gridded (volumetric) resamplings were266

performed using antsApplyTransforms (ANTs), configured with Lanczos interpolation to267

minimize the smoothing effects of other kernels (Lanczos, 1964). Non-gridded (surface) re-268

samplings were performed using mri vol2surf (FreeSurfer).269

Many internal operations of fMRIPrep use Nilearn 0.6.2 (RRID:SCR 001362; Abraham270

et al., 2014), mostly within the functional processing workflow. For more details of the271

pipeline, see the section corresponding to workflows in fMRIPrep’s documentation.272

2.7 fMRI analyses273

Classification of walking direction All classification of walking direction was per-274

formed in Python (Python Software Foundation; Python Language Reference, version 3.7.8;275

available at http://www.python.org) and relied on scikit-learn (Pedregosa et al., 2011)276

and nilearn (Abraham et al., 2014). Statistical analysis was performed using R (version277

4.0.3, R Core Team, 2021) and the packages lme4 (Bates, Mächler, Bolker, & Walker, 2015)278

and emmeans (Lenth, 2021). All statistical figures were created using the ggplot2 package279

(Wickham, 2016).280
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Functional data was prepared for classification by smoothing images with a 3mm FWHM281

kernel. Next, nilearn’s signal.clean function was used to detrend, high-pass filter ( 1
128Hz),282

de-noise (using 10 components of aCompCor) and z-standardize the time courses.283

Participants’ walking direction was extracted from navigated paths within the virtual284

environment. The complete 360◦-space of direction was binned into six equally spaced bins of285

60◦. Classifier training examples were then constructed by taking fMRI multi-voxel patterns286

in response to consistent walking within one binned direction for at least one second. Hence287

the number of classifier examples for each participant and direction were dependent on the288

travelled paths and the number of direction changes. If the same example spanned multiple289

TRs (i.e., was longer than 2.36s) all TRs spanned were averaged to assure a single voxel-290

pattern per example. Voxel responses were taken two TRs (4.72s) after the event to adjust291

for hemodynamic lag. A multinomial logistic regression classifier (L2 regularization, C = 1,292

tolerance = 10-4, 1000 maximum iterations; as implemented in scikit-learn) was applied293

to the resulting activation patterns in order to test whether walking direction could be294

classified. Two cross-validation approaches were used for classification: cross-session and295

within-session. Cross-session decoding was used to asses overall decoding, irrespective of296

drug intervention. Within-session decoding was used to separately assess decoding in the297

L-DOPA and placebo sessions. Results for both approaches are reported separately.298

For cross-session cross-validation, in order to reduce auto-correlation of noise, the data299

of each session was first split into two sets, one consisting of odd and one of even walking300

direction events. Cross validation approaches as described below were then performed sep-301

arately for each split. This approach ensured that walking direction events within each of302

the sets had a higher temporal separation (average: 8.31 seconds, median of 5.70 seconds)303

as compared to the original data. In consequence, auto-correlation of noise between consec-304

utive examples was reduced, resulting in classifiers that were less biased by autocorrelated305

event structure (for details, see Koch et al., 2020). Each set was further split into four folds306

for cross-validation purposes. Specifically, each of the two sessions was split once such that307

both resulting folds contained the same amount of examples. Separate leave-one-fold-out308

classification analyses were then performed within each of the two sets (odd/even). The test309

set, as opposed to the training set, included odd as well as even examples to maximize the310
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number of predictions. Cross-validated decoding results from both sets were combined only311

afterwards.312

Because session was associated with intervention type (placebo or L-DOPA), we also313

adopted a within-session approach for corss-validation. Specifically, cross-session cross-314

validation was problematic in two ways: First, it could not be used to asses intervention315

effects that may differ between sessions. Second, training on data from a DA session and316

testing on a Placebo session (and vice versa) would risk that DA induced changes in direction317

specific activation patterns could result in reduced classification. To address these issues,318

data from one session was separated into three folds, and cross-validated decoding was per-319

formed across these folds from the same session. An equal number of events per direction in320

each fold was ensured as above. The separation into odd and even events was dropped due321

to reduced data amount when considering only one session. Nevertheless, four participants322

(2 OA, 2 YA) had to be excluded for missing examples of at least one class in any of the two323

sessions, leaving a final sample of 80 participants (37 OA, 43 YA).324

In both cross-validation approaches, we ensured a balanced number of training examples325

for each class by upsampling underrepresented classes if necessary. Trained classifiers were326

then used to predict the walking direction from examples in a testing set given by the remain-327

ing fold. A balanced accuracy score was calculated for each test set and results were pooled328

across all cross-validation runs. The resulting score was compared to a permutation distri-329

bution resulting from repeating the same classification 1000 times with randomly permuted330

class labels in the training set. Additionally, a linear mixed model (LMM) of classification331

accuracy with fixed effects of age group and ROI, and a random effect of participant was used332

to asses possible group- or ROI-based differences, as well as their interaction. The model333

for session-specific decoding results included main- and interaction effects of intervention334

(L-DOPA vs. Placebo), age group (OA vs. YA), ROI, and session order (L-DOPA – Placebo335

vs. Placebo – L-DOPA; to allow assessing order effects of the drug intervention). To assess336

whether drug effects scaled with the administered drug dosage relative to body weight the337

model also included a relative dosage/kg × intervention interaction. Additionally, in both338

models main effects of FD and an FD × intervention interaction were included in the model339

as a nuisance variable to capture possible effects of drug-related head motion. Random ef-340
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fects included a random intercept of participant and a random slope of intervention to assure341

a within-subject comparison of decoding accuracy in both sessions.342

Influence of spatial angular difference on fMRI pattern similarity To test343

if neural representations of walking direction show the same circular similarity structure as344

directions in geometrical space, we analysed the structure of classifiers predictions as in Koch345

et al. (2020). If the similarity of two fMRI patterns of two different directions is associated346

with their angular distance in space, this should be reflected in the probability distributions347

over all possible directions. Specifically, we extracted the probability estimates of each of the348

six classes for each example of the testing set as calculated by the logistic regression classifier.349

These estimates were aligned with regard to relative angular difference from the target class350

(−120◦, −60◦, 0◦, 60◦, 120◦, 180◦) and then averaged over all examples, resulting in a single351

curve for each participant which we refer to as the confusion function. Two simple models352

of the confusion function with one parameter each were compared: A Gaussian curve in the353

form of354

g(x) =
1

Z
e−

1
2 τx

2

, (1)

where x denotes the angular difference and τ the precision (the inverse of the variance, 1
σ2 ).355

Furthermore, Z normalizes the curve. This model captures an inverse relationship between356

the angular difference of two walking directions and the confusability of their associated357

neural patterns. An alternative model expressing an absence of such relationship is described358

by a uniform distribution of classification errors over the remaining five off-center bins. This359

model could still accommodate high classification for the target class, but would assume that360

the probabilities of other classes are flat, i.e unrelated to the distance from the target class.361

Such a model is given by362

u(x) =


a, if x = 0

100−a
5 , otherwise

(2)

where a denotes the classification accuracy. Models were fitted separately within each par-363

ticipant and ROI. Because both models had only one free parameter (τ and a, respectively),364

we compared the square root of the mean squared errors (RMSE) between off-center model365
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predictions for both models directly. A better model fit of the Gaussian model indicates366

directional tuning, i.e. an inverse relationship between the angular difference of directions367

and the similarity of their neural representations.368

In addition to comparing model fits, the Gaussian model allowed us to assess age-369

differences in directional tuning specificity, which were captured by the precision parameter370

τ . A LMM identical to the one modelling classification accuracy described in the previous371

section was used to analyze differences in precision.372

2.8 Behavioral analysis373

Task performance during the feedback phase was measured by the distance error: the Eu-374

clidean distance between the true location of an object and the location the participant375

placed the respective object (measured in virtual meters; vm; 1vm = 62.5 Unreal units).376

Performance for each trial was given by the average distance error across all five presented377

objects within a trial (missing responses due to exceeding the time limit were excluded).378

Kolmogorov–Smirnov tests indicated that performance scores of YA were not normally dis-379

tributed (D = .169, p = .010, D = .064, p = .881, for YA and OA, respectively; tested380

for performance on the last trial). To assure normality, the average distance errors in each381

trial were log-transformed (D = .054, p = .941, D = .106, p = .323 after transform for382

YA and OA, respectively). To assess the process of learning during the feedback phase of383

the task, we compared the difference between the first and last trial. Note that in light of384

non-linear learning curves we did not use a linear model across all trials on purpose. The dif-385

ference between the two log-transformed measures was modeled using an LMM including the386

fixed effects of intervention (L-DOPA vs. Placebo), age group, and session order (L-DOPA–387

Placebo vs. Placebo–L-DOPA) as well as a random intercept of participant. Additionally,388

we compared performance after learning (last trial) with an identical LMM. Furthermore,389

group-level performance was compared to chance given by the average distance error as-390

suming random responses for every object. To this end, we uniformly sampled 105 possible391

locations within the circular arena. The task was then simulated 1000 times while each392

response of each participant was randomly drawn from the pool of possible locations. This393

yielded a distribution of 1000 group-means assuming random performance over a given trial394
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and allowed a comparison of trial-specific group-means395

Finally, we aimed to quantify the relationship between the specificity of direction signals396

and task performance to see if more specific direction signals allow better performance on397

the given task. To this end, we used previous LMMs of classification accuracy but added the398

regressor of performance in the last trial of the experiment. To assure normally distributed399

values the log-transformed performance variable was used. Furthermore, performance values400

were demeaned to eliminate a possible confound between age group and task performance.401

The FD-related nuisance regressors as well as the interaction between dosage per body weight402

and intervention were dropped from the model. To see if L-DOPA enhanced signal specificity403

in proportion to its enhancement of task performance the above model was adapted to predict404

the difference between sessions in classification accuracy (L-DOPA - Placebo). The increase405

in task performance was given by the session difference (L-DOPA - Placebo) of the log-406

transformed performance in the last trial of the task.407

3 Results408

3.1 Behavioral results409

Log-transformed average distance errors on each trial for both age groups and interventions410

(L-DOPA vs. placebo) are displayed in Fig. 2. We first investigated log transformed distance411

errors on the last trial after learning, using a linear mixed model with fixed effects of interest412

for intervention and age group and a random effect of participant.413

The LMM showed a significant main effect of age group (χ2(1) = 167.010, p > .001, the414

χ2 reflect likelihood ratio tests, see Methods). Post-hoc tests showed that OA had higher415

distance errors compared to YA at the end of learning (t(80) = 12.811, p < .001). The416

model did not display any significant main effect of intervention (χ2(1) = 1.479, p = .224)417

or intervention by age interaction.418

Next, we investigated performance increases, i.e. log distance errors on the first minus419

the last trial. Again, a LMM revealed a significant main effect of age group (χ2(1) = 61.054,420

p > .001), but no main effect of intervention or intervention × age interaction.421

Investigating the nuisance variable of session order revealed no main effects in either422
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end-of-learning performance (χ2(1) = 0.1784, p = .673) or in performance changes (χ2(1) =423

0.948, p = .330). No session order × intervention effect was found for performance changes.424

Unexpectedly, we found a significant interaction of intervention × session order in end-of-425

learning performance (χ2(1) = 13.744, p < .001), reflecting a trend for a positive effect of426

DA if L-DOPA was given in the second session (t(80) = −1.693, p = .094), while this was427

reversed if L-DOPA was given in the first session (t(80) = 3.368, p = .001).428
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Figure 2: Behavioral results. Average error in object placement for all six trials for OA and YA. Error
was measured as the Euclidean distance in vm between the true location of an object and the participants’
placement. Reduction in error shows better task performance. All values of the placebo session depicted
in black, all values of the L-DOPA session depicted in white. Small dots indicate individual values of
participants. Average over participants in each trial shown by the large dots. Shown on the upper left
are session-specific distributions of 103 average performance values in a trial assuming random placement
of objects. Note that, in turn, only the trial averages (large dots) can be compared to this chance-
distribution.

3.2 Decodability of walking direction429

We first assessed decoding using a cross-validation approach across intervention sessions430

(see Methods). In line with previous work (Koch et al., 2020), walking direction could be431

decoded in the EVC (p < .001) and RSC (p = .040), but not in the left motor cortex432

(p = .255), entorhinal cortex (p > .999) and HC (p > .999), compared to a permutation test433

(Bonferroni corrected for five comparisons, one sided). A LMM of classification accuracy434

with fixed effects of interest for age group and ROI, and a random effect of participant435

revealed a significant main effect of age group (χ2(1) = 16.209, p < .001), a main effect436

of ROI (χ2(4) = 194.810, p < .001), and a ROI × age group interaction (χ2(4) = 37.851,437

16

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 19, 2021. ; https://doi.org/10.1101/2021.08.18.456677doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.18.456677
http://creativecommons.org/licenses/by-nc-nd/4.0/


p > .001). Post-hoc mean comparisons showed significantly higher classification accuracy in438

YA in the EVC (t(320) = −7.280, p < .001), but no such age-related effects in the RSC or439

HC (t(320) ≥ −1.489, p ≥ .138), see Fig. 3A. Although classification accuracy was higher in440

YA in the EVC, a permutation test revealed significant above-chance decoding also in OA441

(p < .001). No main effect of the nuisance variable FD was found (χ2(1) = .482, p > .487).442

Investigating the predicted probabilities by the logistic regression directly, rather than the443

percent of correctly predicted events, revealed a peak at the true direction and decreasing444

probabilities for the off-target directions in RSC and EVC, as expected (see Fig. 3B.).445

Notably, in this more sensitive analysis also the HC exhibited an above-chance probability446

of the target direction (t(83) = 5.346, p < .001, corr.).447
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Figure 3: Cross-intervention walking direction decoding. A: Cross-validated decoding accuracy of
walking direction within both age groups for the cross-session approach, in which the classifier was
partially trained on the placebo session and tested on the DA session, or vice versa. Results are shown
separately for EVC (green), RSC (yellow), and hippocampus (orange) and each age group (dashed/solid
lines). Violin plots indicate distributions, dots represent individual participants and white diamonds
mean accuracy. Horizontal, dashed line indicates chance level. B: Confusion function for each classifier.
Depicted are class probabilities of the logistic classifier as a function of angular distance from the target
class. Colored lines indicate individual participants, black lines the group average. Colors as in A.

3.3 Influence of L-DOPA intervention on decodability448

Decoding analyses reported above combined data across sessions/interventions and thus can-449

not be used to examine the effects of intervention type. We therefore used a within-session450

decoding analysis to investigate the influence of L-DOPA administration on the decodabil-451

ity of walking direction (see Methods). A LMM of classification accuracy indeed showed a452
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significant main effect of L-DOPA intervention (χ2(1) = 6.796, p = .009), which indicated453

higher decoding in L-DOPA compared to placebo sessions. As before, we also found main ef-454

fects of ROI (χ2(4) = 271.674, p < .001), but no L-DOPA × ROI interaction (χ2(4) = 3.847,455

p = .427). Despite the lack of an interaction, post-hoc tests revealed that significantly higher456

decoding accuracy in the drug compared to the placebo condition was most apparent in the457

HC (t(603) = 2.153, p = .032) and trending in the RSC (t(603) = 1.916, p = .055), while no458

comparable effects were found in the EVC (t(603) = 1.447, p = .148). Results are displayed459

in Fig. 4A.460

In addition, we also found a main effect of age group (χ2(1) = 6.273, p = .012) and a461

age group × ROI interaction (χ2(4) = 60.970, p < .001). We will elucidate these age effects462

further below, using separate LMMs per ROI. None of the included nuisance regressors of463

FD (χ2(1) = 3.064, p = .080) or an interaction between FD and intervention (χ2(1) = .048,464

p = .826) showed a significant effect on decodability of walking direction. The same was true465

for any effects of session order (χ2(1) = .083, p = .774). There was no significant interaction466

between the intervention and the administered dosage per body weight (χ2(2) = .286, p =467

.867).468

To further specify the region-specific effects of DA, LMMs were run separately for each469

ROI. These ROI-specific LMMs reproduced the main effects of intervention within the HC470

(χ2(1) = 5.263, p = .022) and the RSC (χ2(1) = 4.868, p = .027). In addition, we found471

an intervention × age group interaction within the RSC (χ2(1) = 3.877, p = .049), but no472

such interaction in HC (χ2(1) = 1.518, p = .218). Post-hoc comparisons showed that the473

effect in RSC was driven by higher decodability of walking direction in the DA compared to474

placebo session in young adults (t(75.6) = 2.879, p = .005), but not in OA (t(75.4) = −.161,475

p = .872). Within the EVC, only a main effect of age group (χ2(1) = 16.350, p < .001), but476

no effect of DA intervention (χ2(1) = 2.038, p = .153) was found.477

Fig. 4B shows the increase in decodability of walking direction in the L-DOPA condition478

for the HC and RSC, respectively for each age group. Note that the random slope of inter-479

vention had to be dropped from these models to avoid having the same number of random480

effects as there are data points.481

Investigating nuisance variables, we found no impact of dosage per body weight on the482
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intervention effect in any ROI (χ2(2) < 3.578, p ≥ .167, for the interaction). Investigating483

the movement related variable FD, we found no significant main effects of FD (χ2(1) ≤ 1.448,484

p ≥ .229) or an interaction between FD and intervention (χ2(1) ≤ .644, p ≥ .422) in HC485

or RSC. A significant main effect of FD was found in the EVC, however (χ2(1) = 4.935,486

p = .026). This reflected worse classification accuracy with higher movement during image487

acquisition (linear regression relating classification accuracy to FD: b = −.118, t(158) =488

−6.302, p < .001).489

A final control analysis within the left motor cortex did neither identify a main effect of490

intervention (χ2(1) = .027, p = .869) nor any other main effects. Post-hoc tests confirmed491

that direction decodability under L-DOPA was not significantly different from decodability492

under placebo, regardless of session order (t(74.9) = −1.519, p = .133, and t(74.1) = 1.202,493

p = .233, L-DOPA–Placebo and Placebo–L-DOPA, respectively).494
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Figure 4: Effect of L-DOPA on decoding of neural walking direction signals. A: Intervention-specific
decodability of walking direction within each ROI. Black dots show values of participants and violin
plots depict intervention-specific distribution. Means are represented by white diamonds. Chance-level is
shown by dashed line and based on the total number of classes (6 classes, 16.6% chance). B: Influence of
drug intervention on decodability (L-DOPA−Placebo) shown for the RSC and hippocampus and split by
age groups. Values higher than zero indicate higher decoding accuracy in the L-DOPA condition. Bars
reflect group means and error bars reflect SEM. Black dots show individual values of each participant.

3.4 Influence of L-DOPA intervention on tuning specificity495

We next investigated tuning width. Omnibus analyses across ROIs revealed no L-DOPA496

effect, a main effect of ROI (χ2(2) = 281.509, p < .001), and results otherwise consistent497

with those reported below. We therefore immediately report results of ROI-specific LMMs.498

A model of EVC tuning width found no main effect of intervention or intervention × age499

effect was found in EVC. We did find a significant main effect of age group (χ2(1) = 20.631,500
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p < .001), reflecting lower precision of the fitted Gaussian curves in OA compared to YA501

(t(79.7) = −4.533, p < .001). The same analyses in RSC an HC showed no significant main502

effects of intervention, age, or intervention × age interactions.503

No nuisance effect of FD or FD × intervention interaction were found in any ROI-specific504

model (χ2(1) ≤ .857, p ≥ .355 and χ2(1) ≤ .578, p ≥ .447, respectively) just as there were505

no main effects of session order (χ2(1) ≤ .257, p ≥ .612) Additionally, intervention was506

not involved in any interaction with dosage per body weight (χ2(2) ≤ 4.412, p ≥ .110).507

Unexpectedly, however, we found a significant intervention × session order interaction in508

the EVC (χ2(1) = 10.713, p < .001; see Fig. 5A), suggesting that tuning precision was509

higher when L-DOPA was administered in the second session (t(74.0) = 2.911, p < .005)510

compared to when it was administered in the first session (t(75.2) = −1.607, p = .112). No511

intervention × session order interaction was found in any other ROI. An exploratory follow512

up of three-way interactions found a intervention × age group × session order effect in the513

RSC (χ2(1) = 6.626, p = .010), which pointed towards L-DOPA effects only when given in514

the second session, and only in YA (t(74.6) = 2.818, p = .006).515

The means of the fitted Gaussian curves in the L-DOPA condition are shown in Fig.516

5B. Please note that the interpretability of these results is limited since a model comparison517

between a Gaussian and uniform model of the confusion function remained inconclusive518

towards either model in both, the drug and placebo condition (t(79) ≤ 1.749 or t(79) ≥519

−1.921, all p ≥ .350, corr.).520

3.5 Relations between task performance, L-DOPA and direction521

decoding522

Finally, we asked whether task performance (spatial distance error) was related to neural523

direction encoding as well as to the effects of L-DOPA on these neural signals. We therefore524

investigated the link between session-specific decoding accuracy and task performance on525

the last trial, in addition to age group, intervention and session order. Because performance526

on the last trial was highly confounded with age group (see 2) performance values were527

demeaned within each age group to investigate effects unrelated to age-specific performance528

differences.529
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Figure 5: Effect of L-DOPA on tuning specificity. A: Precision of Gaussian curves fitted to individual
confusion functions in both age groups. Shown separately for the L-DOPA and Placebo intervention
in the EVC, RSC, and Hippocampus. Black dots show values of individual participants. Intervention-
specific distributions are shown by violin plots. White diamonds depict means. Plots of OA shown in
dashed lines for easier distinction. B: Mean Gaussian tuning curves shown separately for age groups
and intervention (L-DOPA vs. Placebo). ROI separation identical to that of panel A. OA are depicted
with dashed lines. Shaded area represents SEM and is colored according to ROI. For each participant a
Gaussian curve was fitted to the individual confusion function (given by the classifier). The shown mean
Gaussian curves were obtained by averaging participants’ individual Gaussian curves.

No effects related to task performance were found in the RSC or the HC (ps ≥ .053). A530

model within the EVC revealed a significant main effect of distance error on the last trial on531

direction decoding (χ2(1) = 7.594, p = .006; see Fig. 6A), pointing towards better decoding532

accuracy with better task performance (b = .040). Besides the main effect, task performance533

in the EVC also interacted with age group (χ2(1) = 3.921, p = .048), reflecting that the534

above mentioned relationship was present in YA (F (1, 111.03) = 11.912, p < .001, b = .033)535

and absent in OA (F (1, 121.83) = .066, p = .798, b = .006). While there was no main536

effect of session order (χ2(1) = .009, p = .922), the model furthermore indicated a separate537

interaction between task performance and session order (χ2(1) = 4.332, p = .037). A post-538

hoc test revealed a trend towards differing slopes depending if L-DOPA was given in the539

first or second session (t(132) = 1.904, p = .059) but separate tests within each session order540

did not display any significant relationships between performance and classification accuracy541

(F (1, 143.83) = .607, p = .437, F (1, 118.80) = 3.164, p = .078, for L-DOPA – Placebo and542

Placebo – L-DOPA, respectively). As expected the model of EVC decoding accuracy also543

displayed a main effect of age group (χ2(1) = 40.244, p < .001; see results for influence of544

21

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 19, 2021. ; https://doi.org/10.1101/2021.08.18.456677doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.18.456677
http://creativecommons.org/licenses/by-nc-nd/4.0/


DA on decoding accuracy).545

We next investigated change-change relations, asking whether L-DOPA-related changes546

in decoding were related to L-DOPA-related changes in task performance (see Fig. 6B).547

Linear regressions revealed that in YA L-DOPA-related changes in direction decoding in EVC548

were indeed positively related to changes in task performance (F (1, 72) = 6.730, p = .011,549

b = −.053, negative slopes since performance increase means less errors). In OA this was550

not the case (F (1, 72) = .049, p = 826, b = .006). Linear models within the RSC and HC551

did not show any significant effects in change-change relations.552
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Figure 6: Relationship between decoding accuracy and behavioral performance. A: Relationship be-
tween decoding accuracy and log-transformed and demeaned distance errors. Shown for the EVC, RSC,
and hippocampus separately for both age groups. Dots represent individual participants where OA are
shown in white. Lines represent linear models of represented subset and are colored according to the ROI
and shown in dashed for OA. B: Drug-related change-change relationship between decoding accuracy
and behavioral performance. Axes show influence of L-DOPA administration by showing the difference
in values between the L-DOPA session and placebo session. Depiction accordingly to A. Please note that
in both, A and B, the slope lines were extended beyond the data points purely to aid visibility.

4 Discussion553

In this work we tested the impact of L-DOPA on neural representations of walking direction554

in younger and older adults, using a double-blind, cross-over intervention design. In addition555

to a classic decoding approach, we assessed direction specificity of neural signals, a proxy556

for tuning functions, using the relative structure of classifier probability estimates. Our557
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results revealed that decodability of walking direction signals in the hippocampus and the558

retrosplenial cortex was enhanced following the administration of L-DOPA. L-DOPA had559

comparable effects on HC walking direction signals in both age groups, but in the RSC these560

DA effects were present only in YA. No L-DOPA effects were found in visual cortex (EVC).561

Yet, behavioral investigations showed that in younger adults, EVC direction decoding was562

related to task performance (spatial distance error), and that L-DOPA related changes in563

EVC decoding were related to changes in task performance. An investigation of tuning564

specificity revealed no main effects of L-DOPA or L-DOPA × age group interactions.565

Furthermore, decoding across interventions, we found evidence for stable direction sig-566

nals in EVC and RSC, and so some extent also in HPC. Investigating age group differences,567

we found higher classification accuracy and precision of tuning functions in the EVC of YA568

compared to OA, a sign of neural dedifferentiation. No age effects on decoding in the HPC569

or RSC were found. These results confirm our previous finding that neural representations570

of walking direction can be found in EVC and RSC, and that strong age-related differenti-571

ation is present particularly in EVC (Koch et al., 2020). We also showed that better EVC572

classification accuracy was related to better performance on task, suggesting an important573

functional role of this area in our task.574

Importantly, our results also offer a number of novel insights. First, we show a causal575

influence of L-DOPA on how walking directions are encoded in the brain, in particular in the576

HC and the RSC. Both areas have been linked to directional and other spatial information577

(Spiers & Barry, 2015; Shine et al., 2016; Burles, Slone, & Iaria, 2017), and have even been578

shown to be part of the same dorsal pathway involved in visuospatial processing (Kravitz,579

Saleem, Baker, & Mishkin, 2011). Additionally, both areas display dopaminergic innervation580

(Berger, Verney, Alvarez, Vigny, & Helle, 1985; McNamara & Dupret, 2017), and previous581

reports have linked DA and spatial cognition more generally (Granado et al., 2008; El-Ghundi582

et al., 1999; Thurm et al., 2016). Second, the positive effects of DA on decoding are in line583

with computational models and empirical findings which suggest that DA affects neuronal584

gain (Li & Rieckmann, 2014; Cohen & Servan-Schreiber, 1992; Thurley, Senn, & Lüscher,585

2008). Accordingly, DA’s influence on neural gain could lead to a stronger separation between586

signal and noise, which made different stimuli more specific and easier to distinguish for the587
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classifier. It should be noted, however, that we did not find any direct effects of L-DOPA on588

neural direction tuning specificity, which measures how similar neural patterns are to similar589

directions. Given the effects of DA on neural gain, we had hypothesized that this measure590

could be more sensitive to the effects of our intervention, but this was not the case. One591

possible explanation is that our design lacked the power to fully capture the neural tuning592

functions within just one session. Tentative analyses of EVC and RSC tuning specificity593

did show DA-related enhancement only in participants who received L-DOPA in the second594

session. We will discuss these session-specific effects further below.595

Third, our study was set up to ask whether the L-DOPA intervention might reduce age-596

related neural dedifferentiation. Virtual walking direction offered a promising window to597

answer these questions since it has previously been shown to be subject to age-related neural598

dedifferentiation (Koch et al., 2020) and the broader domain of spatial cognition has been599

shown to be highly age-sensitive (Wolbers et al., 2014; Lester et al., 2017). Age is also known600

to cause substantial loss of DA functioning (e.g. Bäckman et al., 2006), and we speculated601

that a lower baseline DA availability might magnify the effects of L-DOPA. Surprisingly, we602

did not find that the effects of L-DOPA were particularly pronounced in OA. Rather, the HC603

showed age-equivalent effects, and decoding in RSC was in fact enhanced only in YA. Other604

than individual differences in baseline DA level, task demand may also affect the inverted-U605

function of DA modulation (Cools & D’Esposito, 2011). The spatial navigation task used in606

our study is quite demanding, such that YA though have higher baseline DA level could still607

benefit from the L-DOPA intervention, whereas in OA the task demand may still outweigh608

the benefit of L-DOPA intervention. While unexpected, these results could offer interesting609

insights into the complexity of how external DA medication might interact with neural610

differentiation and compensatory plasticity mechanisms that counteract age-related losses.611

One notable aspect in this regard is that we found no evidence of age-related dedifferentiation612

in HC or RSC, which speculatively could be a sign of compensatory mechanisms. It seems613

possible that DA interventions might only recover neural specificity in brain areas that are614

affected by age-related dedifferentiation. Contrary to this idea, we found no age-related615

L-DOPA effects in visual cortex, where dedifferentiation was observed – but this might be616

due to the relatively low D2 receptor density in this area (Lidow, Goldman-Rakic, Rakic,617
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& Innis, 1989). Another possibility is that we did not observe age-specific effects of L-618

DOPA on neural direction encoding in RSC and HC for the same reasons we did not find619

age-related dedifferentiation in these regions. According to this idea, compensatory factors620

that have mitigated dedifferentiation also affected the effectiveness of external dopamine621

administration, for instance because of changed connectivity. Both ideas remain speculative622

and further studies are needed to fully understand how the effects of L-DOPA interventions623

on neural direction encoding interact with age and dedifferentiation.624

Beyond these main implications, a number of interesting observation arose that warrant625

further investigation. Although we did not find any main effects of session order, we found626

some indications that session order could influence the effect of L-DOPA on neural signals627

that underlie spatial navigation. Age-differences in learning were stronger when L-DOPA628

was administered in the second compared to the first session. In addition, we found tuning629

specificity in EVC and RSC to be enhanced by L-DOPA only in participants who received the630

drug in the second session. Stronger effects when DA is administered in a second session have631

previously been reported in the context of spatial navigation (Thurm et al., 2016). The reason632

why session order effects could exist in this context are numerous. Garrett et al. (2015), for633

instance, highlight two possible explanations in the context of DA effects on neural signal634

variability. One is that previous training may increase the amount of baseline DA-release,635

based on findings in rodents (Owesson-White, Cheer, Beyene, Carelli, & Wightman, 2008).636

A DA intervention could therefore lead to differing DA-availability depending on whether637

the participants had already been trained with the same or a similar task. A second possible638

explanation raised by Garrett et al. (2015) is that the environment is either learned in a639

state of higher or normal DA-availability. The state of the second sessions will consequently640

always be mismatched to the first session, leading to effects of drug administration given the641

respective session. Related to the first idea, we speculate that in our case general learning642

about the environment in a first placebo session could have established beneficial baseline643

for the effects of L-DOPA in the second session. Unfortunately, the present design is unfit644

to address such explanations and further evidence is warranted.645

One open question is why the effect of L-DOPA on decoding in HC and RSC was not646

reflected in task performance, where no L-DOPA effect was found. In addition to generally647
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small effects on neural representations, another explanation might be that task performance648

did does only depend on direction signals, but also replies on distance estimation and using649

distal and local cues, processes which themselves are affected by age (Schuck et al., 2015).650

The task might therefore have been to complex to provide a suitable behavioral measure.651

Interestingly, however, we we did find some relationships between behavior and the specificity652

of directional information in visual cortex, indicating that neural markers might have different653

relations to performance in our task. This is shown by some of our results also offer insights654

about age-related changes in the context of spatial navigation more generally. The results655

in the EVC showed that OA exhibit lower precision of directional tuning functions. This656

is a replication of findings reported in an earlier study using a similar analysis approach657

(Koch et al., 2020). During natural navigation and the perception of direction vision plays a658

major role as it allows stable directional signals (Goodridge, 1998) and corrects and prevents659

the accumulation of errors during path integration (Jeffery, 2007). A less precise visual660

signal in OA could therefore influence spatial signals downstream and contribute towards the661

pronounced difficulties OA have in spatial tasks. Interestingly, we also found a relationship662

between EVC direction decoding in YA and performance on task, suggesting better spatial663

memory performance if walking direction could be decoded with higher accuracy. While this664

concurs with previous reports of a link between (non-spatial) memory and signal specificity665

(Koen et al., 2019; Sommer et al., 2019; St-Laurent et al., 2014), previous studies have mostly666

reported such links in older adults. Future work is required to further understand how age-667

related loss in specificity of visual signals might be involved in spatial cognition. That said,668

a simple propagation of less specific visual signals to the resplenial complex network seems669

unlikely, since there was no evidence for age-related dedifferentiation in the RSC or HC.670

In summary, we provide first causal insights into the role of dopamine in the encod-671

ing of spatial direction signals in the human hippocampus. In addition, our findings show672

that dopamine also enhances direction encoding in retrosplenial cortex, albeit exclusively in673

younger adults. In combination with the replication of our own previous results (Koch et al.,674

2020), these findings offer insights into the neural processes underlying spatial navigation in675

the human brain, and how they are affected by age more generally.676
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