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Abstract 

IgA nephropathy (IgAN) is an autoimmune disease and the most common primary 

glomerulonephritis. The four-hit hypothesis describes mechanism of the disease, from synthesis 

of galactose deficient IgA (GD-IgA), to recognition of GD-IgA by anti-glycan antibodies and 

deposition of the formed immune complex in the mesangium. Complement and coagulation 

cascade activation ensues, resulting in mesangial activation and cytokine release, podocyte 

injury, mesangial sclerosis and tubulointerstitial damage. Currently, there is no disease cure, and 

30-40% of patients progress to end stage renal disease.  

Using complementary bioinformatic approaches, we demonstrate different levels of deviation of 

the transcriptome of the glomerulus in IgAN from normal, with the aim of identifying 

therapeutic targets. Approaches used herein include, deconvolution of the transcriptome to 

estimate immune constitution, co-regulation-based functional analysis of differentially 

expressed genes, modular co-expression analysis, network analysis of metabolic pathways and 

differential gene correlation analysis. 

We describe the immune composition in IgAN and the relatively low fold changes of the 

abundance of different immune cells and strength of immune signatures compared with control. 

Additionally, we identify enrichment of the intestinal network for IgA synthesis, repression of 

expression and dysregulation of networks of amino acid metabolism and PPAR signaling 

pathways in IgAN glomeruli. We also find loss of correlation between expression of matrix 

synthesizing and matrix degrading genes in IgAN. 

We conclude by discussing how therapies based on some nodes in these altered pathways 

described have been shown to be efficacious in IgAN and/or other inflammatory diseases and the 

potential of others in effective treatment. 
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Introduction 

Immunoglobulin A nephropathy (IgAN), also known as Berger’s disease, is the most common 

primary glomerulonephritis worldwide.1 The disease presents as a nephritic syndrome, consisting 

of hematuria, hypertension, albuminuria and elevation of serum creatinine. Significant progress 

has been made in elucidating the etiology of IgAN. The four-hit hypothesis explains the 

sequence of events from aberrant IgA synthesis to kidney disease. The first hit in IgAN is 

abnormal O-glycosylation of the hinge region of IgA heavy chain resulting in galactose deficient 

IgA 1(GD-IgA1). Absence of galactose is thought to expose normally sequestered terminal and 

sialylated N-acetylgalactosamine (GalNAc) residues on the hinge region, leading to their 

detection by naturally occurring anti-glycan IgG or IgA autoantibodies.2–4 Binding of these 

autoantibodies to GD-IgA forms immune complexes which are subsequently deposited in the 

mesangium of the kidney.1 The deposited immune complex fixes complement and attracts 

leucocytes with cytokine production, causing mesangial activation, proliferation and 

extracellular matrix deposition.5,6 Podocyte injury and loss, and tubulointerstitial inflammation 

and damage result from the elaborated cytokines from activated mesangium.7,8 The histologic 

picture consists of mesangial proliferation, endocapillary proliferation, glomerulosclerosis, 

tubular atrophy and interstitial fibrosis, and crescent formation in severe cases.9  

In spite of the progress made in understanding its etiology, there is currently no disease specific 

therapy for IgAN. About 30-40% of patients slowly develop end stage renal disease in 20-30 

years.1 There is therefore a need to identify other mechanistic features of the disease that can be 

targeted by therapy. 
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Analysis of the transcriptome has contributed considerably in elucidating disease mechanisms 

and progression. A common approach in analyzing the transcriptome of disease is by differential 

gene expression, comparing disease with normal to identify aberrantly expressed genes.10,11 

While differential gene expression has been useful in studying disease including IgAN, it has 

been shown that transcriptomic dysregulation in disease involves a concerted alteration of groups 

of co-expressed and co-regulated genes, and therefore network approaches provide more useful 

information. Differential correlation of gene pairs is another mechanism by which the 

transcriptome is altered in disease.12 Deconvolution of the transcriptome to identify presence of 

various immune infiltrates and their contribution to disease processes is another insightful use of 

genome wide measurement of gene expression.13 These different approaches in studying the 

transcriptome provide complementary information and are critical both in establishing various 

aspects of disease pathogenesis and finding candidate drugs for therapy. 

Several differential gene expression and a few gene co-expression studies in IgAN have been 

done,14–17 but a holistic evaluation of the transcriptome, involving differential gene expression, 

differential gene correlation, alteration of gene co-expression networks, and differential immune 

cell enrichment based on deconvolution of the transcriptome, is lacking. We therefore 

comprehensively evaluate the transcriptome of IgAN to identify different levels of dysregulation 

of the transcriptome and gain insights into disease mechanisms amenable to therapeutic 

intervention. 

 

 

Methods  

Data Acquisition and Preprocessing 
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Publicly available gene expression data from glomeruli of 22 healthy controls and 20 IgAN 

patients, used in PMID: 28646076 was used for our study.18 The raw affymetrix microarray files 

accessioned as GSE93798 were downloaded from the GEO database using GEOquery (version 

2.54.1).19 The data files were read using the affy package (version 1.64.0)20 and quality control 

checks were done with the simpleaffy R package (version 2.62.0).21 We used probe level metrics, 

relative log expression and normalized unscaled standard error, and array level RNA degradation 

to assess quality of arrays. Arrays failing all 3 quality checks were to be removed. None of the 

samples failed the quality criteria. 

The raw data was read with the simpleaffy, normalized and log transformed in batches using 

gene-chip robust multiarray averaging (GCRMA) and probe level data summarized to gene level 

expression with custom CDF for affymetrix HG-U133_Plus_2 arrays based on Entrez genes 

(hgu133ahsentrezgcdf_24.0.0). The normalized expression files were then merged. Since the 

microarray data was processed at 5 different time points, we checked for presence of batch 

effects using principal component analysis (PCA) and batch effects were corrected by empirical 

Bayes with the ComBat function of the sva package (version 3.34.0).22 PCA afterwards showed 

correction of batch effect but with one outlier IgAN sample, which was removed from 

subsequent analysis.  

 

Global Changes in the Transcriptome 

A sample correlation heatmap with hierarchical clustering of samples based on disease status, 

and principal component analysis were used to identify global changes in the transcriptome in 

IgAN. The factoextra and Factominer R packages were used to extract genes most correlated 

with the first 2 principal components (PCs).23,24 An enrichment map was built to functionally 
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analyze and visualize biologic processes and Reactome pathways enriched among genes with 

absolute correlation with PC1 > 0.5 and adjusted p-value of correlation < 0.05, using the grofiler-

cytoscape-enrichment map pipeline as described.25–27 

 

Estimation of Immune Constitution 

To characterize the immune composition of IgAN using the transcriptomic data, we used the 

imsig R package (version 1.0.0).13 In imsig, a network-based deconvolution using co-expressed 

gene modules associated with human immune cell populations is used to quantitatively estimate 

the relative abundance of seven immune cell populations (B cells, macrophages, monocytes, 

neutrophils, NK cells, plasma cells, and T-cells) and 3 biological processes (proliferation, 

translation and interferon response). A correlation threshold of 0.7 between imsig signature 

genes and our data was used for feature selection. Confirmation of the presence of the cell types 

was done by visualizing the network plot of cell types and processes, and evaluating the median 

correlation between imsig signature genes used for that cell type and genes in our dataset. 

Significance of the difference in means of the relative abundance of different cells and biological 

signatures was determined using a t-test with a p-value < 0.05 as criteria. 

 

Differential Gene Expression 

Differential gene expression was performed with the Limma R package (version 3.42.2)28 using 

a Benjamini Hochberg adjusted p-value cutoff of 0.01 and a fold change of 2 as criteria for 

differentially expressed genes (DEG). The Cogena R package (version 1.22.0) was used to 

perform functional analysis of the differentially expressed genes.29 DEGs were grouped into co-
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expressed clusters and then enrichment analysis of the clusters was performed for KEGG 

pathway overrepresentation. 

 

Modular Co-expression Analysis  

 The CEMiTools R package (version 1.12.1)30 which uses several algorithms and other R 

packages for module detection, gene set enrichment of the modules in the groups being 

compared, and then functional analysis of the modules, was used for co-expression analysis. 

Briefly, unsupervised filtering of the genes using an inverse gamma distribution is first 

performed to select the most informative genes. Among the selected genes, a similarity criterion 

between gene pairs is determined using a soft thresholding power which is chosen based on the 

concept of Cauchy sequences. Dynamic tree cutting31 is then used to separate modules. Gene set 

enrichment analysis32 of identified modules is done with the fgsea R pakage33 to determine 

enrichment or repression of the identified modules in IgAN versus control patients. Functional 

analysis of the modules was then performed by assessment of overrepresentation using a 

hypergeometric test with the clusterprofiler R package34 for KEGG pathways (v7.01) 

downloaded from MSigDB. 

 

Network Analysis of Downregulated Metabolic Pathways in IgAN 

To further demonstrate and provide granular details of the dysregulation of metabolic pathways 

in IgAN, we considered the metabolic pathways identified as aberrantly expressed in both 

functional analysis of DEG clusters and co-expression modules, and evaluated the preservation 

of internal structures of these pathways in IgAN compared with control. Each selected pathway 

was considered as a module, and the module in controls was used as a reference, and 
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preservation of the module was assessed in IgAN using a composite network-based module 

preservation statistic called the Z-summary, with the module preservation function of the 

WGCNA R package (version 1.69).35 The Z-summary measures the preservation of the density 

and connectivity of genes in test network/module compared to the reference network.36  

To visualize the internal structure of dysregulated pathways, we made pathway circle plots for 

the 2 least preserved pathways using a custom circle plot function available on 

https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/ModulePreservation/Tutorials/ and 

described in Langfelder et al. 36 In this plot, nodes represent genes and edges indicate connection 

between genes. The size of the nodes is determined by intramodular connectivity of the gene, 

with larger sizes indicating higher intramodular connectivity. Genes with higher intramodular 

connectivity are more central in the pathway and behave as hub genes. The width of the edges 

represents the absolute value of the correlation between nodes, with red colored edges indicating 

positive correlation and blue colored ones for negatively correlated gene pairs.  

 

Differential Gene Correlation Analysis 

We evaluated the IgAN transcriptome for ubiquity and type of differential gene correlation, and 

functional insights of differentially correlated genes. We filtered out genes with low variance by 

using the “filtergenes” function of the DGCA R package (version 1.0.2)12, keeping genes in the 

80th percentile of coefficient variation- a total of 4084 genes. Gene pair correlations among the 

4084 genes in control was determined and used as reference for comparison for correlation of the 

same gene pairs in IgAN. The “ddcorall” function of DGCA determined gene pairs with altered 

correlation in IgAN compared with control. The function computes the difference in pairwise 
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correlation in control versus IgAN, Z-transforms the difference and determines significance of 

the difference. We determined significance of differences in correlation after 100 permutations. 

 

Results 

Global Changes in the Transcriptome 

Sample correlation heatmap and principal component analysis showed clustering of samples 

based on disease status (Fig 1a and Fig 1b). Genes contributing the most to PC1 include 

ARHGAP33 and DACT3-AS1 while LOC105376856 and NKAIN1 contributed the most to PC2 

(Fig 1c and Fig 1d). Enrichment analysis showed that the most varying genes in the dataset, ie 

genes most significantly correlated with PC1, were enriched in cell adhesion, leucocyte 

differentiation, extracellular matrix organization and membrane transport (Fig 1e). 
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Figure 1a: Sample correlation heatmap showing separation of samples by 
disease status.

Figure 1b: Biplot of 1st 2 Principal Components with samples clustering by 
disease status, and genes(variables) colored by contribution to PC1 or PC2.
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Figure 1c: Variables with the highest contributions 
to the first principal component.

Figure 1d: Variables with the highest contributions to the second principal 
component.

Figure 1e: Enrichment map of biological processes 
and Reactome pathways of variables significantly 

correlated with the first principal component.
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Estimation of Immune Constitution 

Immune environment analysis showed enrichment of B cells, macrophages, monocytes, plasma 

cells and T cells in IgAN (Fig 2a). Neutrophils and NK cells were excluded from further analysis 

because of their low median correlation and/or low abundance from the network plot (Fig 2A), as 

suggested by the authors of the package. The fold changes of enrichment of the estimated 

immune cells in IgAN were however not drastic, ranging from 0.07 for B-cells to 0.30 for 

plasma cells. The cell type with the highest average relative abundance in IgAN were monocytes. 

Additionally, interferon, translation and proliferation signatures were enriched in IgAN, with the 

proliferation signature showing the highest fold change compared with controls (Fig 2B). 
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Fig 2a: Network plot of various cell types and biologic processes in controls and IgAN.

Fig 2b: Differential abundance of immune cells and signatures for biologic processes in control versus IgAN.
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Differential Gene Expression 

We identified 523 DEGs (Fig 3a and 3b). Of these, 174 were upregulated in IgAN and 349 were 

downregulated in IgAN. Upregulated genes included AGTR1, ECM1, COL15A1, CXCl11, C1QA 

and C1QB (Fig 3c). PHGDH, FABP1, NFKBIA, PSAT1, BHMT and BHMT2 were among the 

downregulated genes (Fig 3d). The DEGs were clustered into 7 groups using partitioning around 

the medoid algorithm (Fig 3e). Three of the clusters consisted of upregulated genes and the other 

four consisted of downregulated genes. KEGG pathway enrichment was then performed for each 

cluster. Functional analysis revealed upregulation of known pathways involved in IgAN 

including focal adhesion, complement and coagulation cascades, hematopoietic lineage and 

extracellular matrix receptor interaction (Fig 3f). Cluster 6, a metabolic cluster, is a group of one 

hundred and ninety-one (191) co-downregulated genes showing enrichment of multiple amino 

acid metabolic pathways such as tryptophan metabolism, glycine, serine and threonine 

metabolism and PPAR signaling pathway (Fig 3f). 
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Fig 3a: Volcano plot for differentially expressed genes using adjusted p-value <  
0.01 and absolute fold change > 2, as criteria. Fig 3b: Heatmap of differentially expressed genes.
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Fig 3e: Seven clusters of co-expressed genes defined by partitioning around the 
medoids. Clusters 1-3 are upregulated in IgAN and clusters 4-7 are down-
regulated. 

Fig 3f: Functional analysis of enriched KEGG pathways in the seven co-expressed 
clusters.

Fig 3c: Select upregulated genes in IgAN. Fig 3d: Select downregulated genes in IgAN.
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Modular Co-expression Analysis 

After gene filtering, 1703 genes were selected for module identification. Six (6) modules of co-

expressed genes were identified. Gene set enrichment analysis revealed significant enrichment of 

modules 2, 5 and 6 in IgAN, and significant repression of modules 1, 3 and 4 (Fig 4a). 

Functional analysis showed significant enrichment of KEGG pathways in modules 1, 2, 6 while 

modules 3, 4, 5, had no pathway enriched to statistical significance (Fig 4b). 

Module one (1), a metabolic module, was repressed in IgA and showed functional enrichment 

enriched in amino acid metabolism such as glycine-serine-threonine metabolism, tryptophan 

metabolism and PPAR signaling. Since most of the amino acids involved in module 1 are 

involved in one-carbon metabolism, we imported the one-carbon metabolism network from 

NDEX using cytoscape. Module 1 genes were superimposed on the network as nodes and nodes 

colored by fold chain (Fig 4b), showing predicted repression of the pathway. Modules 2 and 6 

were immune modules, enriched in IgAN and showed functional enrichment in expected 

immune processes such as leucocyte migration, cytokine-cytokine receptor interaction, 

complement activation and coagulation cascade, NK- cell mediated cytotoxicity, chemokine 

signaling and FC-gamma receptor mediated phagocytosis. Curiously, in module 2, we identified 

enrichment of the intestinal network for IgA production in IgAN.  
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Fig 4b: Enriched pathways in co-expressed modules 1,2,6 
(from top to bottom).
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Network Analysis of Downregulated Metabolic Pathways 

We selected glycine, serine and threonine metabolic pathway, PPAR signaling pathway, arginine 

and proline metabolic pathway and tryptophan metabolism, as pathways enriched in both the 

repressed metabolic module and downregulated DEG metabolic cluster in IgAN, for analysis of 

preservation. All the pathways showed weak to moderate evidence of preservation (2 < Z-

summary <10) (Fig 5a). PPAR signaling and glycine, serine and threonine metabolic pathways 

were the least preserved. Circle plot of the pathways revealed some interesting findings. There is 

a loss of intramodular connectivity (hubness) of PPARA as well as a reduction in the correlation 

between transcript levels between PPARA and its receptor RXRA in IgAN (Fig 5b). PPARA 

however seems to gain correlation with RXRB in IgAN. On the other hand, PPARG, gains 

intramodular connectivity in IgAN and shows an increase in its correlation with its receptor 

RXRG (Fig 5b).  

In controls, transcript levels of phosphoglycerate dehydrogenase (PHGDH), which is the rate 

limiting step in serine synthesis, correlates with SHMT1 which reversibly converts serine to 

glycine in the cytosol (Fig 5c). This correlation appears lost in IgAN. Similarly, in IgAN, 

SHMT2, the mitochondrial form of serine hydroxymethyltransferase, thought to be the primary 

source of intracellular glycine, shows loss of positive correlations with its cytosolic isoform 

SHMT1 and with PSAT1, an upstream protein in serine synthesis whose products feeds into the 

SHMT2 reaction (Fig 5c).  
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Fig 5b: Circle plot of PPAR-signaling pathway using control (left circle) as reference and showing network alteration in IgAN (right circle). 
Nodes represent genes and node size is proportional with intramodular connectivity (hubness). Edges represent connection between genes. 
Red edges indicate positive correlation, and blue edges indicate negative correlation.  Edge thickness represents absolute correlation. 
Network alterations in IgAN include loss and gain of hubness in PPARA and PPARD respectively.

Fig 5a: Composite preservation statistic, Zsummary, for KEGG 
pathways repressed on both modular co-expression and 
differential gene  expression analyses, all showing weak to 
moderate preservation (2 < Zsummary < 10).

Gly_Ser_Thr: Glycine, serine, threonine metabolism.
Trp: Tryptophan metabolism.
Ala_Asp_Glu: Alanine, aspartate, glutamate metabolism.
PPAR: Peroxisome proliferator-activated receptor signaling.

Fig 5c: Circle plot of glycine-serine-threonine pathway using control (left circle) as reference, showing network alterations in IgAN (right circle) 
including loss of correlation between PHGDH, the rate determining step in serine synthesis, and SHMT1, which converts serine to glycine.
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Differential Gene Correlation Analysis 

There were 1560 gene pairs with significantly altered correlations in IgAN, indicating that 

differential gene correlation is a common phenomenon in IgAN (Fig 6a). The different classes of 

pairwise alteration of correlation are shown in Fig 6b. We find that several of the significantly 

different alterations involve matrix producing and matrix degrading genes. A notable example is 

the correlation between the matrix producing, COL14A1 and matrix degrading, MMP1, which is 

a strong positive correlation in controls, but the correlation is lost in IgAN (Fig 6c). A similar 

loss of positive correlation between MFAP2 which is matrix producing and MMP1 in IgAN. 
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Fig 6c: Positive correlation between COL14A1 and MMP1 in control ( top right) and loss of the correlation in IgAN (top left). Similar loss of correlation 
seen between MMP1 and MFAP2 in IgAN.
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Discussion 

IgA Nephropathy is the most common type of glomerulonephritis and currently considered an 

autoimmune disease with a four-hit hypothesis elaborating the mechanism of the disease. It is a 

progressive disease with no definitive cure. We have comprehensively characterized different 

ways the transcriptome of IgAN deviate from normal, with the aim of identifying features 

targetable by therapy. 

Traditional immunosuppressive and B-cell depleting therapies have not shown significant 

efficacy in IgAN, and instead cause considerable adverse effects in patients.37–39 On estimation 

of the immune constitution of IgAN, we find significantly higher abundance of inflammatory 

cells and strength of signatures for translation, proliferation and interferon signaling. However, 

the fold changes for the inflammatory cells and biological signatures were considerably low. 

While this might be a feature of just this dataset, especially since the immune infiltrate of IgAN 

typically varies on histology of renal biopsies, there is the possibility that the low fold changes of 

the biological processes partly explain why immunosuppressive agents, which target different 

points along these signatures, have not shown convincing efficacy in IgAN. Conversely, 

considering the ranges of the strength of these signatures in our analysis, it may be useful to 

estimate abundance of inflammatory cells and strength of biological signatures as biomarkers to 

stratify patients in future clinical trials for IgAN therapy. Monocytes were the most abundant in 

IgAN while plasma cells had the highest fold change compared to controls. The latter finding is 

interesting considering that plasmablasts, the precursor cells of plasma cells, were found to be 

elevated in serum of IgAN patients, a finding distinct from other glomerulonephritis.40 

Circulating plasmablasts have been found to correlate with level of proteinuria in IgAN 

patients41 and these findings suggests possible utility of plasma cell targeting therapies in IgAN. 
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Mesangial IgA is considered to be derived from circulation, evidence of which is supported by 

clearance of abnormal IgA in allografts from donors with subclinical IgA nephropathy few 

weeks after transplant.42–44 Our immune module 2, which is upregulated in IgAN, shows 

enrichment of the intestinal network for IgA production. While this pathway has been known to 

be enriched in genome wide association studies of IgAN patients45–47 and functional analysis of 

transcriptome of blood derived cells48,  transcriptomic evidence of its enrichment in glomerular 

biopsies is curious. Renal infiltrates of CD19+CD5+ B cells, which secrete IgA and 

inflammatory cytokines, have been described in IgAN patients.49 This finding suggests, that 

there might be need for renal suppression of IgA production in addition to current efforts 

designed to treat IgAN by suppressing intestinal IgA production with long-acting steroids.50  

We find differential expression of immune modulatory genes and enrichment of inflammatory 

pathways in line with the autoimmune nature of the disease. Complement and coagulation 

cascade, chemokine signaling, cytokine-cytokine interaction and leucocyte transendothelial 

migration, already established features of the disease, were all enriched in our analysis. Among 

upregulated genes were AGTR1 and CXCL11. Failure to suppress AGTR1 expression after 

prolonged exposure to Gd-IgA1 has been associated with increased inflammatory and 

proliferative processes in mesangial cells.1 NFKBIA which we found to be downregulated in 

IgAN, encodes IkBa, a potent inhibitor of NF-kB, a key driver of inflammation.51 Targeted 

therapy of these gene products may be beneficial in modulating the immune activity in IgAN. 

Mesangial sclerosis is a feature of IgAN and results from increased matrix synthesis in activated 

mesangial cells and is an adverse prognostic indicator.52,53 Not surprisingly, there was 

enrichment of extracellular matrix organization among the genes contributing to the most 

variation in the global transcriptome of IgAN. Additionally, focal adhesion was seen in the 
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cluster 1 of upregulated genes and immune module 1 enriched in IgAN. We found increased 

expression of basement membrane and extracellular matrix proteins ECM1 and COL15A1 in 

IgAN in agreement with proteomic studies evaluating the nature of the matrix in IgAN.54 We 

identified a difference in the correlation between expression of matrix-producing and matrix 

degrading genes in controls versus IgAN, on differential gene correlation analysis. While 

increasing expression of the extra-cellular matrix producing genes such as COLA14 and MFAP2, 

is associated with an increase in expression of the matrix degrading gene MMP1 in controls, this 

correlation is not observed in IgAN. This demonstrates the altered balance between matrix 

synthesis and degradation in IgAN. Identifying the drivers for this altered correlation may be 

useful in further understanding and targeting mesangial sclerosis in IgAN. 

Metabolic reprogramming has been associated with the inflammatory phenotype in diseases 

such as systemic lupus erythematous, multiple sclerosis (MS), rheumatoid arthritis, psoriasis 

and some glomerulopathies, and has been the target of therapeutic interventions.55 For 

instance, modulation of reprogrammed metabolic pathways with dimethyl fumarate (DMF) in 

multiple sclerosis, psoriasis and SLE, switches the immune phenotype to an anti-inflammatory 

profile.56 In MS patients, modulation of lipid and fatty acid metabolism by DMF was associated 

with reduction in absolute lymphocyte counts and levels of subsets of cytotoxic T-cells.57 In 

autosomal dominant polycystic disease, alterations of glucose, fatty acid and amino acid 

metabolism are suspected to contribute to cyst proliferation and growth.58 Among our DEG 

clusters and co-expressed modules, cluster 6 and module 1, are a group of co-regulated and 

under expressed genes, and a repressed module of co-expressed genes, respectively, which 

show repression of amino acid metabolic pathways such as glycine-serine-threonine 

metabolism, alanine-aspartate-glutamate metabolism and tryptophan metabolism, in IgAN.  
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Serine, glycine, threonine metabolism is involved in many pathways including the one-carbon 

cycle, which provides substrates for nucleotide synthesis, methylation reactions and anti-

oxidant defense.59 Serine metabolism pathway genes such as PSAT1 and PHGDH were among 

the downregulated genes in our analysis. PHGDH catalyzes the committed step in de novo 

serine synthesis, and is critical for nucleotide synthesis and one-carbon metabolism.60 

Downregulation of BHMT and BHMT2, as seen in our analysis, may impair their critical roles of 

maintaining methionine levels in the cell, reducing levels of homocysteine, and regulating 

cellular volume and tonicity through control of the cellular osmolyte betaine.61 

Using network analysis, we demonstrated with more granular evidence, the dysregulation of 

these metabolic pathways, in the form of loss of pathway preservation of in IgAN, as well as 

impairment of co-ordination of transcript levels of pathway genes. The relevance of the results 

of our analyses is underscored by the demonstrated efficacy in pre-clinical studies targeting 

these aberrant metabolic pathways in IgAN and other glomerulonephritides.  

Gong et al described an injury pattern in rat mesangial cells induced by surfactants which cause 

proinflammatory and fibrotic transcriptomic changes akin to IgAN, as well as repression of 

amino acid metabolism. Curiously, pre-treatment of mesangial cells with amino acid 

supplementation, significantly reduced the surfactant induced inflammatory and fibrotic 

changes.62 The above suggests that rewiring these aberrant metabolic profiles in IgAN using 

small molecule inhibitors or nutritional interventions may be therapeutically beneficial in 

controlling the inflammatory phenotype and enhancing podocyte and tubulointerstitial cell 

survival. 
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Our results and discussion so far demonstrate immune cell and signature enrichment, altered 

balance in collagen synthesizing and degrading genes, and repression of amino acid metabolism 

in IgAN. The peroxisome proliferator activator pathway is linked to all these three aberrations 

and serves as a potential nodal point to control these aberrant processes.63 PPARs are nuclear 

receptors which regulate transcription of gene cassettes after ligand binding and 

heterodimerization with retinoid X receptors, mediating a coordinated response to a specific 

stimulus.63 There are three PPAR isoforms and together, they have anti-inflammatory effects, 

modulate lipid, glucose and amino acid metabolism, and exhibit anti-fibrotic activity.64–67 

Not surprisingly, our analyses show that amino acid metabolic pathway genes and PPAR 

pathway genes cluster together in module 1, and are both repressed in IgAN. We also find loss of 

preservation of the PPAR pathway in IgAN, using network analysis, and illustrate aberrant 

transcriptional network connectivity between PPARs and their respective retinoid X receptors.  

This suggests a role for targeting PPAR activity in IgAN treatment. Indeed, several studies have 

shown efficacy of PPAR agonists in pre-clinical and clinical studies in IgAN. 

Rosiglitazone, a PPARG agonist potentiated the anti-inflammatory effect of angiotensin 

receptor blockers in proximal tubular epithelial cells activated by conditioned media from 

human mesangial cells incubated with IgA1 from IgAN patients.68 Administration of 

pemafibrate, a selective peroxisome proliferator-activated receptor-alpha modulator, to IgAN 

patients was associated with reduction in proteinuria.69  Of note, we see an increase in 

intramodular connectivity of PPARD in IgAN, which is a curious finding considering the variation 

in the biology of PPARs. Ligand binding results in PPAR dissociation from its co-repressors, and 

binding to co-activators, allowing binding of the complex to response elements on DNA. PPARD, 
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unlike PPARA and PPARG, is able to bind DNA while still bound to co-repressors, in a ligand 

independent manner and exhibit competitive antagonism of ligand induced DNA binding by 

PPARA and PPARG.70 The relevance of increased connectivity of PPARD in the context of this 

known phenomenon and how it affects the effects of PPAR action in IgAN would have to be 

studied further. However, it may mean that PPAR targeted therapy may be more efficacious by 

stimulating multiple receptors to prevent this competition. Additionally, we find a reduction in 

expression of FABP1, which may have an effect on patient response to PPARA agonists. FABP1 

controls lipid metabolism and loss of its expression reduces PPARA activation in response to 

agonist treatment.71 

In summary, we have used complementary bioinformatic approaches to describe how the 

transcriptome of the glomeruli of IgA nephropathy deviates from normal glomeruli. Our 

approach demonstrates enrichment of immune processes such as complement and coagulation 

system, focal adhesion and cytokine receptor interactions, and enrichment of various immune 

cells and signatures, recapitulating known mechanisms of the disease. We identify 

transcriptomic evidence of enrichment of intestinal network for IgA synthesis in the glomeruli 

of IgAN patients. Our analysis describes alteration of the well-coordinated and correlated 

expression of matrix producing and matrix degrading genes. We additionally identify 

transcriptomic evidence of metabolic reprogramming in IgAN, predominantly involving 

repression of expression and dysregulation of networks of amino acid metabolic pathways 

together with the peroxisome proliferator activator receptor pathways. Our study highlights 

alterations in amino acid metabolism and PPAR pathways and suggests the use of drugs and 

other interventions targeting these alterations in treating IgAN. 
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