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11 Abstract

12 Development of lab-on-a-chip (LOC) system based on integration of reverse transcription loop-

13 mediated isothermal amplification (RT-LAMP) and microfluidic technology is expected to speed 

14 up SARS-CoV-2 diagnostics allowing early intervention. In the current work, reverse transcriptase 

15 quantitative polymerase chain reaction (RT-qPCR) and RT-LAMP assays were performed on 

16 extracted RNA of 7 wastewater samples. RT‑LAMP assay was also performed on wastewater 

17 samples without RNA extraction. Current detection of SARS-CoV-2 is mainly by RT-qPCR of 

18 ORF (ORF1ab) and N genes so we targeted both to find the best surrogate marker for SARS-

19 CoV-2 detection. We also performed RT-LAMP with/without RNA extraction inside microfluidic 

20 device to target both genes. Positivity rates of RT-qPCR and RT-LAMP performed on extracted 

21 RNA were 100.0% (7/7) and 85.7% (6/7), respectively. RT-qPCR results revealed that all 7 

22 wastewater samples were positive for N gene (Ct range 37-39), and negative for ORF1ab, 
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23 suggesting that N gene could be used as a surrogate marker for detection of SARS-CoV-2. RT-

24 LAMP of N and ORF (ORF1a) genes performed on wastewater samples without RNA extraction 

25 indicated that all 7 samples remains pink (negative). The color remains pink in all microchannels 

26 except the one which subjected to RT-LAMP for targeting N region after RNA extraction 

27 (yellowish/orange color).  This study shows for the first time that SARS-CoV-2 was successfully 

28 detected from wastewater samples using RT-LAMP in microfluidic chips.

29 Keywords: SARS-CoV-2; RT-LAMP; microfluidic device; N gene

30 Introduction

31 Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible and 

32 pathogenic coronavirus and it is the causative agent of the coronavirus disease 2019 (COVID-19) 

33 pandemic [1]. Although there are massive coronavirus vaccination campaigns all over the world, 

34 strong public health surveillance and rapid diagnostic testing is considered as the best way to 

35 control COVID-19 [2-4]. The gold standard to diagnose COVID-19 is reverse transcriptase 

36 quantitative polymerase chain reaction (RT-qPCR) [5]. Droplet digital RT-PCR (RT-ddPCR) 

37 offers an attractive platform for quantification of SARS-CoV-2 RNA [6]. Factors such as high 

38 sensitivity and specificity, requirement of highly trained personnel, and the need of special 

39 facilities and high-cost instrumentation limit its application especially in developing countries [7]. 

40 Reverse transcription loop-mediated isothermal amplification (RT-LAMP) is an isothermal 

41 nucleic acid amplification technique that is being widely used as point-of-care detection of SARS-

42 CoV-2 in clinical samples [8]. RT-LAMP possesses some fundamental advantages such as 

43 sensitivity, speed, exclusion of a thermal cycler, and robustness to sample inhibitor making it a 

44 promising alternative to RT-qPCR [9]. LAMP takes less than one hour for amplifying the genetic 
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45 material of the pathogen, and requires a set of four to six primers, ensuring high specificity [10]. 

46 Amplification product of LAMP can be confirmed using different procedures such as changes in 

47 fluorescence using intercalating dyes, DNA probes with gold nanoparticles [11, 12], changes in 

48 turbidity caused by magnesium pyrophosphate precipitate [13], pH indicators, or gel 

49 electrophoresis followed by UV detection [14]. The most frequently used method is based on color 

50 change of colorimetric master mix containing a visible pH indicator for rapid and easy detection 

51 [4, 14, 15].

52 Although inhalation of aerosol/droplet and person-to-person contact are the major transmission 

53 routes of SARS-CoV-2, current evidence points out that the viral RNA is detected in wastewater, 

54 urging the need to better understand wastewater as potential source of epidemiological data and 

55 human health risks, which can be applied as an early warning system [16-19]. SARS-CoV-2 may 

56 cause asymptomatic or pauci-symptomatic infections [20-22], which could add more limitations 

57 to determine the actual degree of SARS-CoV-2 circulation in a community. In the meantime, 

58 wastewater surveillance can give an unbiased method of estimating the spread of infection in 

59 different places, especially in developing countries, where resources for clinical diagnosis are 

60 sparse and limited [23]. Currently, detection of SARS-CoV-2 in wastewater primarily relies on 

61 RT-qPCR [24-26], which is laborious, costly, time-consuming, and requires extensive personnel 

62 skills [4, 15]. 

63 The field of microfluidics provides an alternative to the time-consuming bench assays [27]. Micro-

64 electromechanical systems and microelectronics technologies have an important role in the 

65 emergence of microfluidic devices, which are able to manipulate minute amounts of fluids and 

66 extracting information from it, offering the potential to quickly acquire information from the small 

67 sample volumes [28]. It has increasingly been used for point of care testing or bedside. There are 
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68 many available microfluidic devices for early diagnosis of diseases or other health-related 

69 conditions such as pneumonia, glucose level, and pregnancy test by the detection of target elements 

70 [27, 29]. In recent years, viruses could be also detected using microfluidic devices [30, 31]. 

71 Microfluidic devices promise cheaper, faster, sensitive and easy‐to‐use methods, so they have a 

72 high potential to be an alternative way for the viral RNA detection [32]. Microfluidic devices have 

73 previously been applied for detection of RNA viruses such as HIV [33], Hepatitis A virus [34], 

74 H1N1 [35], Zika [36], and norovirus [34], with acceptable results.

75 In the present study, we aim to evaluate the efficacy of RT-LAMP to detect SARS-CoV-2 in 

76 wastewater as a point of care method to provide early warning system for COVID-19 transmission 

77 in the community. Current detection of SARS-CoV-2 is mainly by RT-qPCR of ORF (ORF1ab) 

78 and N genes so we try to find the best surrogate gene marker for SARS-CoV-2 detection. We also 

79 aim, for the first time, to assess the application RT-LAMP in microfluidic device as an advanced 

80 point of care to detect SARS-CoV-2 in wastewater. 

81 Material and methods

82 Wastewater sampling

83 Grab sampling technique was used to collect untreated wastewater samples (sewage samples). 

84 During the peak morning flow, 500 ml of wastewater was collected from the midstream into a leak 

85 proof, sterile container at a downstream sampling site. Seven wastewater samples were collected 

86 in early morning from hot COVID-19 spots in Islamabad, capital of Pakistan on 4 April 2021 and 

87 were kept at 4 °C. In the following day (5 April 2021) early morning, samples were transported at 

88 4 °C to the BSL-3 facility at the Institute of Microbiology (IM), University of Veterinary and 

89 Animal Sciences (UVAS) Lahore, Pakistan. 
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90 Sample processing and RNA extraction

91 RNA of each wastewater sample was extracted in BSL-3 of IM, UVAS Lahore, Pakistan. Before 

92 extraction, each sample was vortexed thoroughly and 1 ml of the sample was transferred to 

93 microfuge tube. Samples were centrifuged at 5000 rpm for 15 minutes at 4 ºC. The supernatant 

94 was used for RNA extraction [37]. RNA was extracted using Viral Nucleic Acid Extraction Kit II 

95 Geneaid (Geneaid Biotech, Taiwan), according to the manufacturer’s protocol. The RNA was 

96 stored at -80ºC, and used as a template for both RT-qPCR, and RT‑LAMP. We performed RNA 

97 extraction step on the seven samples directly without virus concentration step to check if virus 

98 concentration step is necessary or can be skipped in RT-LAMP of wastewater samples.

99 RT-qPCR analysis

100 RT-qPCR analysis of the seven wastewater samples was performed by using the commercially 

101 available kit (2019-nCoV Nucleic Acid Diagnostic Kit, Sansure Biotech Inc., China). This kit is 

102 used for detection of the ORF (ORF1ab) and N genes of SARS-CoV-2. According to Sansure 

103 protocol, we selected FAM (ORF-1ab region) and ROX (N gene) channels. Each reaction mixture 

104 contained 26μl of 2019-nCoV-PCR Mix, 4μl of 2019-nCoV-PCR Enzyme Mix, and 20 μl RNA 

105 extract so the final volume will be 50 μl. Thermal cycling reactions are shown in Table 1. RT-

106 qPCR analysis was run on CFX96 real-time thermal cycler (Bio-Rad, USA). All RT-qPCR 

107 reactions also had positive and negative controls. Interpretation of results is shown in Table 2.

108 Table 1: Thermal cycling reactions of RT-qPCR of SARS-CoV-2 according to Sansure 

109 protocol.

Steps Temperature.  Time. Cycle No.
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1 Reverse 

transcription

50°C 30 min. 1

2 cDNA 

predenaturation

95°C 1 min. 1

Denaturation 95°C 15 sec.3

Annealing, 

extension and 

fluorescence 

collection

60°C 30 sec.

45

4 Device cooling 25°C 10 sec. 1

110

111 Table 2: Explanation of detection result according to Sansure protocol.

Conclusion Amplification results

SARS-CoV-2 Positive There is typical S-shape amplification curve detected at FAM 

and/or ROX channel, and the amplification curve which is detected 

at CY5 (internal control) channel, Ct≤40.

SARS-CoV-2 Negative There is no typical S-shape amplification curve (No Ct) or Ct＞40 

detected at FAM and ROX channel, and the amplification curve 

which is detected at CY5 channel (internal control), Ct ≤ 40.

112

113

114 RT‑LAMP assays performed with/without RNA extraction
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115 RT‑LAMP assays were performed on the seven wastewater samples according to Zhang et al. [38] 

116 with two sets of LAMP primers targeting ORF (ORF1a) and N genes [38] as shown in Table 3. 

117 We selected these two sets, because Zhang et al. [38] concluded that these two sets were the best 

118 performing among five tested sets targeted the ORF (ORF1a) and N genes [38]. The 5′ frameshift 

119 nature of polyproteins (ORF1a/ORF1ab) [39] allows us to use primers for ORF1a, ORF1ab genes 

120 in RT-LAMP, RT-qPCR respectively. In other way, ORF1ab, the largest gene, contains 

121 overlapping open reading frames that encode polyproteins PP1a and PP1ab [40] so ORF1a is part 

122 of ORF1ab.

123 In brief, the assay was performed in a 20 μl reaction mixture containing 2 μL of 10x primer mix 

124 of 16 μM (each) of Forward Inner Primer (FIP) and Backward Inner Primer (BIP), 2 μM (each) of 

125 F3 and B3 primers, 4 μM (each) of Forward Loop (LF) and Backward Loop (LB) primers, 10 μL 

126 of WarmStart Colorimetric Lamp 2X Master Mix (M1800) (New England Biolabs, USA), 5 μL of 

127 DNAse, RNAase free water (Invitrogen, USA), and 3 μl of RNA template. The reaction mixture 

128 was set at 65 °C for 30 minutes on a pre-heated dry bath. Yellow color indicates positive reaction, 

129 where pink indicates negative one. Orange color indicates positive samples with low viral loads 

130 having Ct >30 [41]. For confirmation of RT-LAMP, reactions were run on 2% agarose gel 

131 electrophoresis (100 V) for 45 min, stained with ethidium bromide and visualized using a UV 

132 transilluminator [41]. We also performed RT‑LAMP on the 7 samples directly without RNA 

133 extraction to check if RNA extraction is necessary or can be omitted in RT-LAMP of wastewater 

134 samples. 

135 Table 3: Sequences of amplicons and LAMP primers [38]

LAMP primer Sequence
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ORF1a

ORF1a - F3 CTGCACCTCATGGTCATGTT

ORF1a -B3 AGCTCGTCGCCTAAGTCAA

ORF1a -FIP GAGGGACAAGGACACCAAGTGTATGGTTGAGCTGGTAGCAGA

ORF1a -BIP CCAGTGGCTTACCGCAAGGTTTTAGATCGGCGCCGTAAC

ORF1a -LF CCGTACTGAATGCCTTCGAGT

ORF1a -LB TTCGTAAGAACGGTAATAAAGGAGC

N

N-F3 TGGCTACTACCGAAGAGCT

N-B3 TGCAGCATTGTTAGCAGGAT

N-FIP TCTGGCCCAGTTCCTAGGTAGTCCAGACGAATTCGTGGTGG

N-BIP AGACGGCATCATATGGGTTGCACGGGTGCCAATGTGATCT

N-LF GGACTGAGATCTTTCATTTTACCGT

N-LB ACTGAGGGAGCCTTGAATACA

136

137 RT‑LAMP assays in microfluidic device

138 The microchips were designed using CAD software (SolidWorks, Dassault Systemes) and 8 mm 

139 long microchannels were micromachined on a polymethyl methacrylate (PMMA) piece (1.2 mm 

140 thickness) with a cross-section of 0.6 x 0.6 mm (width x depth). A sample container was also 

141 micromilled using 5 mm thick PMMA sheets to load 10 μL sample into each well. Before use, 

142 microcapillaries were coated with polyvinyl alcohol (PVA) to convert their surfaces from 

143 hydrophobic to hydrophilic, allowing liquid to rise in the microchannels [42, 43] with 

144 modifications. In brief, 2% PVA (molecular weight 146000–186000) was prepared in deionized 
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145 water (DI) water and used to fill the microchannels at room temperature. After 30 minutes, excess 

146 PVA was removed and the microchannels were dried by injection of compressed air. Then, the 

147 microchip was simply dipped into the RT-LAMP reaction solution loaded via capillary action 

148 without need of pump.

149 We performed RT-LAMP inside microfluidic device to target ORF (ORF1a), and N genes of the 

150 first sample. We used both RNA extract and direct wastewater sample (without RNA extraction). 

151 In brief, the assay was performed in a 20 μl reaction mixture containing 2 μL of 10x primer mix 

152 of 16 μM (each) of Forward Inner Primer (FIP) and Backward Inner Primer (BIP), 2 μM (each) of 

153 F3 and B3 primers, 4 μM (each) of Forward Loop (LF) and Backward Loop (LB) primers, 10 μL 

154 of WarmStart Colorimetric Lamp 2X Master Mix (M1800) (New England Biolabs, USA), 5 μL of 

155 DNAse, RNAase free water (Invitrogen, USA), and 3 μl of RNA template (in case of using RNA 

156 extracts) or 3 μl of wastewater sample directly (in case of not using RNA extracts). The, we placed 

157 this reaction mixture in the wells for successful loading into microchannels. Then, microfluidic 

158 device was carefully placed in a pre-heated dry bath at 65 °C for 30 minutes.

159 Results

160 Analysis of RT-qPCR and RT-LAMP done on RNA extracts

161 The results of 7 samples tested by RT-LAMP and RT-qPCR are shown in Table 4. Positivity rates 

162 of RT-qPCR and RT-LAMP were 100.0% (7/7) and 85.7% (6/7), respectively. RT-qPCR results 

163 revealed that all 7 wastewater samples were positive for N gene (Ct range 37-39), and negative for 

164 ORF (ORF1ab). All samples had Ct for internal control (CY5 channel) less than 40. Therefore, 

165 according to the guidelines of RT-qPCR kit manufacturer company (Sansure), all 7 samples were 

166 positive for SARS-CoV-2. This was also the case for RT-LAMP except for sample ID 3, where it 
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167 was negative for both N and ORF (ORF1a) as confirmed by visualization in 2% agarose gel stained 

168 with ethidium bromide. 

169 Of 7 wastewater samples positive for SARS-CoV-2 by RT-qPCR, 6 were positive by RT-LAMP 

170 (sensitivity of 85.7%). As shown in Figure 2, results of RT-LAMP targeted N gene of SARS-CoV-

171 2 revealed that 5 samples (sample id 1, 4, 5, 6, and 7) showed color change to orange color. Sample 

172 ID 2, and 3 did not show conclusive change in color. Visualization in 2% agarose gel stained with 

173 ethidium bromide revealed that 6 samples (sample id 1, 2, 4, 5, 6, and 7) have characteristic LAMP 

174 amplicon profiles. It is worthy to mention that sample id 5 has the strongest intensity when it 

175 visualized in 2% agarose gel, which also has the lowest N gene Ct value of 35 among all other 

176 samples. As shown in Figure 3, results of RT-LAMP targeted ORF (ORF1a gene) of SARS-CoV-2 

177 revealed are not confirmatory by naked eye. We cannot confirm that these are negative (pink) or 

178 positive (yellow/orange) by just naked eye. Visualization in 2% agarose gel stained with ethidium 

179 bromide showed that RT-LAMP targeted ORF (ORF1a gene) of these 7 samples are negative with 

180 no LAMP amplicon profiles (Figure 1).

181 RT-LAMP without RNA extraction

182 We performed RT-LAMP for amplification of N and ORF (ORF1a) genes directly on wastewater 

183 samples without RNA extraction, and found that all seven samples remains pink indicating 

184 negative results with naked eyes (Figure 4). Visualization in 2% agarose gel stained with ethidium 

185 bromide showed that all 7 samples are negative with no LAMP amplicon profiles.

186 RT‑LAMP assays in microfluidic device

187 As shown in Figure 5, the color remains pink in all microchannels except the one which subjected 

188 to RT-LAMP for targeting N region after RNA extraction (yellowish/orange color). Although there 
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189 may be slight change in color of microchannel that subjected to RT-LAMP for targeting ORF1a 

190 gene after RNA extraction, visualization in 2% agarose gel stained with ethidium bromide showed 

191 that it is negative with no LAMP amplicon profiles.

192 Table 4: Comparison of detection accuracy between RT-LAMP and RT-qPCR 

RT-qPCR RT‑LAMP

Sample ID ORF (ORF1ab) N ORF (ORF1a) N

1 41 39 - +

2 N/A 38 - +

3 42 37 - -

4 N/A 39 - +

5 41 35 - +

6 N/A 38 - +

7 44 37 - +

193 + Positive reaction; - Negative reaction; N/A not detected
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194

195 Figure 1: The seven samples were tested for the presence of N gene on the left of the gel, and 

196 they were tested again for the presence of ORF1a region on the right of the gel. Amplification 

197 visualized in a 2% agarose gel stained with ethidium bromide, showing characteristic LAMP 

198 amplicon profiles in positive samples and no amplification in non-template controls (NTC). 

199

200 Figure 2: The colorimetric detection of SARS-CoV-2 (N gene) using RT-LAMP of the seven 

201 wastewater samples after RNA extraction.
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202

203 Figure 3: The colorimetric detection of SARS-CoV-2 (ORF1a gene) using RT-LAMP of the 

204 seven wastewater samples after RNA extraction.

205

206

207
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208

209 Figure 4: The colorimetric detection of SARS-CoV-2 (N and ORF1a genes) using RT-LAMP of 

210 the seven wastewater samples directly without RNA extraction (All seven samples remains pink 

211 indicating negative results).

212

213

214

215

216
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217

218

219

220

221  Figure 5: (A) successful loading of RT-LAMP reaction mixture to target N, and ORF1a genes of 

222 one sample into microfluidic chip. (B) RT-LAMP reaction results showing change of color into 

223 yellowish/orange in samples after RNA extraction in sample 1 targeting N gene.   

224 Discussion

225 RT-LAMP recently emerges as an alternative point-of-care test for detection of SARS-CoV-2, 

226 including clinical sample testing, with reaction time varying between 20 and 40 minutes [38, 41, 

227 44]. RT-LAMP has some fundamental advantages such as constant temperature amplification, 

228 elimination of a thermal cycler, quick test result, constant temperature amplification, and wide 

229 diagnostic capacity, while keeping similar specificity and sensitivity, thus making it more 

230 appropriate than the RT-qPCR for monitoring a pandemic such as COVID-19 [45]. To detect 

231 SARS-CoV-2 RNA with RT-LAMP, we used the WarmStart Colorimetric LAMP 2X Master Mix 

232 (DNA and RNA) from New England Biolabs (USA), which contains two enzymes, an engineered 

233 reverse transcriptase (RTx) and a warmStart strand-displacing DNA polymerase (Bst 2.0) in a 
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234 special low-buffer reaction solution containing a visible pH indicator for easy and rapid detection 

235 of LAMP (DNA) and RT-LAMP (RNA) reactions. As a way to avoid nonspecific priming 

236 reactions, there are oligonucleotide-based aptamers in the reaction mixture to work as reversible 

237 temperature-dependent inhibitors, ensuring that the reaction only starts at high temperature 

238 (WarmStart) (https://international.neb.com/products/m1800-warmstart-colorimetric-lamp-2x-

239 master-mix-dna-rna). This aim of this system is to provide a fast, clear visual detection of 

240 amplification based on the production of protons, leading to pH drop due to extensive DNA 

241 polymerase activity in a LAMP reaction, producing a color change from pink (alkaline) to yellow 

242 (red). 

243 Wastewater-based epidemiology is an alternative method to predict virus spread and it considered 

244 as an early warning pandemic through detecting pathogens in wastewater [16, 46]. SARS-CoV-2 

245 biomarkers can be detected in the wastewater and/or sewer system, because the SARS-CoV-2 can 

246 be isolated from the infected patients’ urine and feces [47]. Therefore, wastewater analysis in 

247 communities is a potential method to track infected people, and to monitor the epidemiology of 

248 the communities [48]. Most of published papers are about using of RT-LAMP for detection of 

249 SARS-CoV-2 in patient or clinical samples [14, 41, 49-53], with few of them have focused on 

250 detection of SARS-CoV-2 using RT-LAMP in wastewater or sewage samples [54, 55]. We found 

251 that results of RT-LAMP for these wastewater samples were largely consistent with those of RT-

252 qPCR, with 6 out of 7 (85.7%) samples were positive for both RT-LAMP and RT-qPCR. Only one 

253 sample (sample id 3) tested positive by RT-qPCR was negative by our RT-LAMP. The observed 

254 difference in positive predictive value of RT-LAMP and RT-qPCR may be due to more /less RNA 

255 input [56]. We also noticed that the final volume of RT-LAMP product of this sample (sample id 

256 3) was very low, which may reflect on the result of RT-LAMP. This raises concerns about the 
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257 effect of final volume of RT-LAMP product and interpretation of result. Our RT-LAMP positive 

258 samples (40>Ct>35) showed color change to orange color, which is in agreement with previously 

259 mentioned [41] that orange color indicates positive samples with low viral loads having Ct >30.

260 The Nucleocapsid protein can regulate the replication, transcription and packaging, and it is 

261 important for viral viability. There is a growing interest in studying the N protein for vaccine 

262 development because of its highly immunogenic and its highly conserved amino acid sequence 

263 [57]. Currently, the detection of SARS-CoV-2 RNA is mainly performed by RT-qPCR detection 

264 of two target genes, including ORF1ab and N [56]. We found that the Ct values of N gene for all 

265 of our 7 wastewater samples were lower than the Ct values of ORF1ab gene, suggesting that N 

266 gene is the most important gene when monitoring SARS-CoV-2. Our results were similar to what 

267 previously reported [58], where the highest proportion of positive results among COVID-19 was 

268 the N gene, followed by both ORF1ab and N. They found that the main positive fragment is the N 

269 gene, and the proportion of those positive for single ORF1ab was very low [58]. Therefore, we 

270 recommended monitoring of the N gene as surrogate marker for detection in clinical and 

271 wastewater samples, reducing the time and cost of nucleic acid detection. Amplified products of 

272 RT-LAMP targeting N gene of 6 samples visualized in agarose gel showed characteristic LAMP 

273 profile, whereas there was negative for ORF1a gene. This again confirms that N gene is the most 

274 important gene when monitoring SARS-CoV-2, especially with samples with weakly positive 

275 results (Ct>30). Loying and colleagues [59] studied the dynamics of ORF1ab and N genes among 

276 hospitalized COVID-19 positive patients, and they found that the persistent of positivity of N gene 

277 is significantly for more duration than ORF1ab, indicating that N gene requires longer duration of 

278 days to become negative than ORF1ab. This also underscores our proposition that N gene should 

279 be considered as a surrogate marker for detection in clinical and wastewater samples. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 18, 2021. ; https://doi.org/10.1101/2021.08.18.456880doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.18.456880
http://creativecommons.org/licenses/by/4.0/


18

280 One of the most important advantage of RT-LAMP is its ability to detect SARS-CoV-2 directly 

281 from clinical samples without the need of RNA extraction [49, 60]. Wei and colleagues [60] 

282 developed and tested a highly sensitive and robust method based on RT-LAMP that uses readily 

283 available reagents and a simple heat block using contrived spike-in and actual clinical samples. 

284 They directly tested clinical nasopharyngeal swab samples in viral transport media without 

285 previous time-consuming and laborious RNA extraction with results in just 30 min. Mautner and 

286 colleagues [49] developed RT-LAMP assay to directly detect SARS-CoV-2 from pharyngeal swab 

287 samples without previous RNA extraction. They found that this method is 10 times cheaper and 

288 12 times faster than RT-qPCR, depending on the assay used. Previous study performed RT-LAMP 

289 on wastewater samples after RNA extraction and virus concentration [54]. According to CDC 

290 guidelines for wastewater surveillance testing methods 

291 (https://www.cdc.gov/healthywater/surveillance/wastewater-surveillance/testing-methods.html), 

292 small volumes of wastewater (e.g., 1 ml) may be tested without additional concentration processes 

293 if levels of SARS-CoV-2 RNA are sufficiently high in wastewater. Therefore, we targeted hotspots 

294 in Islamabad with recorded high COVID-19 cases, and took 7 wastewater samples to see the 

295 possibility to detect SARS-CoV-2 in wastewater without RNA extraction and virus concentration 

296 using direct RT-LAMP alone. Although RNA extraction may be omitted in RT-LAMP performed 

297 on clinical samples [49, 60], we found that RNA extraction is necessary in RT-LAMP performed 

298 on wastewater samples. However, Ongerth and Danielson detected SARS-CoV-2 in raw sewage 

299 samples with no preliminary sample processing for virus concentration and RNA extraction [61].

300 Microfluidic techniques are emerging as disposable and cost-efficient tools for rapid diagnosis of 

301 viral infection [31]. Since microfluidic devices are sensitive, cheaper, faster, and easy‐to‐use 

302 methods, they have a high potential to be an alternative way for the viral RNA detection [32]. 
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303 Safavieh et al. developed RT‐LAMP cellulose‐based paper microchips and amplified the target 

304 RNA using the RT‐LAMP technique and detected the HIV‐1 virus via the electrical sensing of 

305 LAMP amplicons [33]. Fraisse et al. designed RT‐PCR integrated microfluidic device to detect 

306 Hepatitis A and noroviruses in the gut [34]. Song et al. developed RT‐LAMP integrated 

307 microfluidic for detection of Zika virus [36]. Recently, Kim et al. designed RT‐PCR integrated 

308 microfluidic device for detecting of H1N1 influenza in saliva [35]. 

309 For the first time, we used RT-LAMP in microfluidic chip for detection of SARS-CoV-2 in 

310 wastewater. After coating of microfluidic chip with PVA, RT-LAMP mixture can be successfully 

311 uploaded into microchannels. Then, we observed color change in microfluidic chip after placing 

312 it in pre-heated dry bath at 65 °C for 30 minutes. Although we found that detection of SARS-

313 CoV-2 in wastewater using RT-LAMP in microfluidic chip requires RNA extraction, we propose 

314 that our workflow (without RNA extraction) could work with clinical samples since there are many 

315 reports about successful detection of SARS-CoV-2 in clinical samples using RT-LAMP without 

316 RNA extraction [49, 60, 62, 63]. If RNA extraction could be achieved in this microfluidic chip, 

317 this could greatly improve the results of this chip. Mauk and colleagues developed simple plastic 

318 microfluidic chip for nucleic acid-based testing of blood, other clinical specimens, water, food, 

319 and environmental samples [64]. They combines isolation of nucleic acid by solid-phase 

320 extraction; isothermal enzymatic amplification such as LAMP, nucleic acid sequence based 

321 amplification, and recombinase polymerase amplification; and real-time optical detection of DNA 

322 or RNA analytes. Although we could not detect clear color change in sample not subjected to RNA 

323 extraction, we propose that performing RNA extraction inside microchannels could greatly 

324 improve results.
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325 Our work is expected to pave the road for designing readymade microfluidic chip with specific 

326 chamber for RNA extraction then another amplification chamber for RT-LAMP. This 

327 amplification product could be also labeled with a fluorophore reporter that could be excited with 

328 a LED light source and monitored in situ in real time with a photodiode or a CCD detector (such 

329 as available in a smartphone).  

330 Conclusion

331 RT-LAMP has been emerging as a great alternative to the RT-qPCR because RT-LAMP is a 

332 specific, sensitive, fast, cheap, and easy‐to‐use method. We successfully detected SARS-CoV-2 

333 through color change (orange color) in our positive wastewater samples having Ct >30. We also 

334 found that the Ct values of N gene for all of our wastewater samples were lower than the Ct values 

335 of ORF1ab gene, suggesting that N gene could be used as a surrogate marker for monitoring and 

336 surveillance of environmental circulating SARS-CoV-2. This is also confirmed with RT-LAMP, 

337 where we detected characteristic RT-LAMP amplicon profile only for N gene. To our knowledge, 

338 we, for the first time, successfully detected SARS-CoV-2 from wastewater samples using RT-

339 LAMP in microfluidic chips. This will provide an opportunity for developing more robust and 

340 economical approach for using this microchip device along with RT-LAMP as an advanced point 

341 of care for detection of SARS-CoV-2 in different samples.
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