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Abstract 16 

Single-cell RNA sequencing (scRNA-seq) can reveal accurate and sensitive RNA abundance in a single 17 

sample, but robust integration of multiple samples remains challenging. Large-scale scRNA-seq data 18 

generated by different workflows or laboratories can contain batch-specific systemic variation. Such 19 

variation challenges data integration by confounding sample-specific biology with undesirable batch-specific 20 

systemic effects. Therefore, there is a need for guidance in selecting computational and experimental 21 

approaches to minimize batch-specific impacts on data interpretation and a need to empirically evaluate the 22 

sources of systemic variation in a given dataset. To uncover the contributions of experimental variables to 23 

systemic variation, we intentionally perturb four potential sources of batch-effect in five human peripheral 24 

blood samples. We investigate sequencing replicate, sequencing depth, sample replicate, and the effects of 25 

pooling libraries for concurrent sequencing. To quantify the downstream effects of these variables on data 26 

interpretation, we introduced a new scoring metric, the Cell Misclassification Statistic (CMS), which 27 

identifies losses to cell type fidelity that occur when merging datasets of different batches. CMS reveals an 28 

undesirable overcorrection by popular batch-effect correction and data integration methods. We show that 29 

optimizing gene expression matrix normalization and merging can reduce the need for batch-effect 30 

correction and minimize the risk of overcorrecting true biological differences between samples. 31 

  32 
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Introduction 33 

Recent advances in throughput and commercial availability of single-cell RNA-sequencing (scRNA-34 

seq) technology have increased accessibility and led to widespread adoption of this technology by the 35 

scientific community (Supplementary Fig. 1). A single study may encompass thousands of cells from 36 

multiple samples, often spanning time points and conditions, resulting in large and heterogenous scRNA-37 

seq datasets1,2. This dramatic shift is empowering scientists to massively profile multiple samples in parallel 38 

at extremely high resolution. As experiments grow more complicated, the need arises to align and co-39 

analyze ever larger and more diverse outputs of single-cell workflows.  40 

Minute and often uncontrollable technical variations in sample collection and data processing can 41 

manifest as noticeable effects which confound the interpretation of data3. This systemic variation, referred to 42 

commonly as “batch-effect,” can pose an obstacle to data interpretation by confounding biologically-derived 43 

variation (desirable) with technically-derived variation (undesirable). An inability to discern the source of a 44 

particular signal can even lead to over-interpretation of data, in that systemic variation arising from technical 45 

differences may be interpreted as a biologically driven phenotypic difference. A typical case in which batch-46 

effect confounds data interpretation will present as an over-merging or under-merging of cell types. 47 

Uncorrected batch-effect can cause similar cell populations between samples to appear divergent. In the 48 

inverse case, batch-effect can cause two biologically distinct populations to appear as one due to a shared 49 

technical signal. Both the prevalence and persistence of batch-specific signals have been highlighted by 50 

prior work, as well as the spectrum of methods existing to correct and remove them4,5. However, there 51 

remains an insufficient understanding of how experimental design and data analysis approaches play a role 52 

in producing batch-effect or identifying batch-effect when present in a sample. An understanding of the 53 

source of batch-effect and the informed selection of tools to identify batch-effect has the potential to alter 54 

the outcomes and conclusions of scRNA-seq studies. 55 

Technical sources of variation most apparently manifest themselves in the Principal Component 56 

Analysis (PCA) matrix, representing a shared low-dimensional space. Therefore, isolation and removal of 57 

these effects in PCA dimensions are critical, as PCAs are the foundation used to produce cell cluster 58 
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assignments and UMAP visualizations. Towards this aim, many methods have been applied to isolate and 59 

remove batch-effect from scRNA-seq data6-11. These methods try to merge biologically similar populations 60 

into a shared low-dimensional space while disregarding the influence of undesirable signals. A commonly 61 

shared assumption of current methods is that batch-specific, technically-derived signals are contained 62 

within the sample, while true biologically-derived signals are shared between samples. However, current 63 

methods are mostly agnostic to the fundamental sources of systemic variation and the underlying biological 64 

heterogeneity contained within each sample. 65 

Here, we present a novel approach to validating batch-correction methods by demonstrating 66 

experimental variables which contribute most to systemic variation. To assess the degree of batch-effect, 67 

we introduce a biologically-grounded metric, the Cell Misclassification Statistic (CMS). While most current 68 

scoring systems are agnostic to cell identity, the CMS directly grounds itself in the cell-type classification of 69 

every single cell and is therefore uniquely able to quantify the loss of biological information during sample 70 

merging. Using CMS to quantify batch-associated systemic variation, we show that sequencing replicates 71 

and sequencing depth contribute only minimally to batch-effect and that pooling samples together for 72 

sequencing does not meaningfully improve the measured or observed batch-effect. Instead, we find that 73 

sample donor, along with the microfluidic encapsulation and library preparation steps, represent the main 74 

source of batch-associated variation. We test three popular batch-correction algorithms (Harmony8, 75 

LIGER11, and Seurat V310), which have been previously scored as the best performing5. Our CMS scoring, 76 

which accounts for cell identity as a biological feature, revealed misclassifications of major cell lineages in 77 

all three commonly used batch-correction methods. We further applied CMS in a supervised approach to 78 

reveal that selecting a proper dataset normalization and merging strategy can perform comparably to 79 

popular batch-correction algorithms. Furthermore, we revealed that much of the batch-effect present is due 80 

to low expression levels of broadly expressed genes, which can be minimized by selecting a proper 81 

normalization and dataset merging strategy. Our unique and biologically-grounded approach allows for 82 

effective data integration in a carefully supervised workflow without the need for corrective algorithms.83 
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Results 84 

A Cell Misclassification Statistic quantifies data integration and batch-correction fidelity 85 

We generated seven single-cell RNA-seq datasets from five individual donors of human peripheral 86 

blood mononuclear cells (PBMCs) (Fig. 1a). To quantify the contributions of known variables to batch effect 87 

and evaluate the performance of data integration and batch correction methods, we developed a cell 88 

misclassification statistic (CMS) metric (Fig. 1b). CMS is grounded in the premise that if different systems 89 

identify a single cell as different biological types, both cannot be correct. To calculate a CMS, we first gather 90 

the cell-type identities obtained by classifying cells from only a single sample, meaning that all cells were 91 

processed under identical conditions and are influenced identically by potential technical sources of 92 

variance, if at all. Then, to calculate a CMS score, we compare the cell-type classifications of each sample 93 

individually to cell-type classifications after multiple sample merging. We measure the fraction of cells that 94 

have changed classification and generate a statistic, such that a CMS score of 0 means that no cells 95 

changed classification/cell-type identity after merging datasets, while a CMS of 0.2 means a 96 

misclassification of 20% of cells. A higher CMS score will result when cell barcodes change cell-type identity 97 

after sample merging and indicates over-correction of the sample. By relying on invariable biological 98 

principles (a single, non-doublet cell barcode must hold only one cell classification), we directly interpret 99 

CMS scores as a measure of biological signal loss during data integration.  100 

To produce the initial cell type classifications required for CMS, we analyzed seven datasets 101 

generated from five PBMC samples. Each dataset contained two matrices holding independent modalities 102 

of data: gene expression (GEX) and antibody-derived tag (ADT) cell-surface protein expression. First, we 103 

confirmed the cell types present in each single sample by removing an aliquot of cells and performing flow 104 

cytometry staining and analysis by a gold-standard “gating strategy” approach (representative data shown 105 

in Supplementary Fig. 2). In parallel, we processed the GEX sequencing data to generate clusters 106 

according to the Seurat V3 workflow, following default settings10. We next assigned each cluster to a major 107 

lineage using both ADT and GEX markers based on a gating strategy similar to flow cytometry, as we have 108 

previously reported12 (representative data shown in Supplementary Fig. 3). With cell-type classifications 109 
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independently established for each sample, we can assess the impacts of batch-effect on cell-type 110 

classification in merged datasets.  111 

CMS measures consistency in cell-type classification, which is only one of two metrics we used to 112 

validate data integration. Another important aspect of data integration and batch correction methods is 113 

generating UMAP embeddings for data visualization. To assess the performance of UMAP embeddings for 114 

visualization of integrated datasets, we employed a modified Local Inverse Simpson’s Index (LISI)8,13, which 115 

we used specifically to measure the final UMAP integration, or integration LISI (iLISI) (Fig. 1b). In our 116 

system, an iLISI score of 1 represents a UMAP completely segregated by sample ID, while an iLISI of 0 117 

represents a perfectly integrated UMAP. Therefore, the best-integrated data will have both CMS and iLISI 118 

scores approaching 0, while the most segregated data will return both CMS and iLISI scores approaching 1 119 

(Fig. 1b). As described below, we applied the CMS and iLISI methods to compare the fidelity of the various 120 

data-integration/batch-correction methods we evaluated in this study.  121 

 122 

Batch-associated systemic variation is observed when sample replicates and sequencing depth are 123 

perturbed, but not sequencing replicate 124 

To examine the contributions of experimental variables to batch-associated data effects, we first 125 

describe four unique steps of a typical scRNA-seq workflow in which sample-specific variation may be 126 

introduced: 127 

1. Sample donor 128 

2. Sample and library preparation 129 

3. Library sequencing 130 

4. Data analysis 131 

The sample donor (i) represents the baseline variation intrinsic to each human subject who donated blood 132 

for this study. Sample preparation (ii) includes the processes of extracting cells from donor tissue and 133 

preparing a single-cell suspension (the sample) (Fig. 1a). Together, sample and library preparation (ii) 134 

encompasses all steps spanning microfluidic encapsulation of donor cells through to the generation of a 135 
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barcoded cDNA library (Fig. 1a). (Note: As sample and library preparation will largely be tissue and 136 

platform-specific and will not typically be varied for a single-donor aliquot of cells, we consider them here as 137 

processes intrinsically linked to sample donor and not as independent sources of batch-effect). Library 138 

sequencing (iii) consists of converting the cDNA molecules (i.e., barcoded libraries) into aligned reads, and 139 

finally, an expression matrix of gene counts per cell (Fig. 1a). Data analysis (iv) constitutes the last unit of 140 

the workflow. During data analysis, we make interpretations on the expression matrix by assigning cell type 141 

IDs to cell barcodes and clusters, visualizing cells by UMAP embeddings, and detecting differential gene 142 

expression (DGE) (Fig. 1a). To evaluate the contributions of each of these steps (i-iv) to batch-effect, we 143 

knowingly introduced differences in key variables to sets of human PBMC samples and evaluated the 144 

downstream batch-effect observed. Finally, we directly evaluated whether pooling libraries for concurrent 145 

sequencing could reduce sample-associated batch-effect compared to the same libraries sequenced 146 

independently.  147 

Sample donor: We assessed the systemic batch variation in identically-prepared PBMC samples from three 148 

healthy adult donors (samples 1-3, Supplementary Table 1). We processed samples simultaneously for 149 

PBMC isolation, single-cell encapsulation, and barcoded cDNA library generation. Following library 150 

preparation, we pooled samples for simultaneous sequencing. Depth of sequence (reads per cell) was not 151 

significantly different between samples (Wilcoxon rank-sum test, p = 0.3487, 0.2445, 0.8471 for samples 1, 152 

2, 3, respectively), and we proceeded with 16,946 cell barcodes after concatenating the GEX matrices. 153 

Next, we assigned each cluster to a cell type using both GEX and ADT data (Supplementary Fig. 3). After 154 

sample merging, the three PBMC samples were mostly segregated by donor when visualized on a UMAP 155 

(Fig. 2a). The failure to effectively integrate the three samples, as readily apparent in the UMAP embedding, 156 

was confirmed by our modified iLISI scoring (iLISI = 0.861, Fig. 2a). We then applied CMS scoring and 157 

revealed approximately ten percent cell-type misclassification after sample merging (CMS = 0.099, Figs. 2a 158 

and Supplementary Fig. 4). Hence, we demonstrate that sample-specific variations cause a loss of 159 

biological signal in the integrated data analysis and contribute to undesirable batch-associated data effects. 160 
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Library Sequencing Replication: To demonstrate the contributions of library sequencing to systemic 161 

variation, we aliquoted a single library in two and performed duplicate sequencing under similar conditions 162 

(samples 4-A and 4-B) (Fig. 2b). We sequenced each aliquot in a separate flow cell, on different days, with 163 

similar target sequence depth (~40,000 reads/cell) (Fig. 2b). After merging, the dataset contained 164 

approximately 13,000 cells, representing a shared set of approximately 6,500 barcodes, duplicated. We 165 

found that 6,392, or greater than 99 percent, of cell barcodes, were shared between both sequencing 166 

replicates, indicating minimal new cells were identified by additional sequencing. As above, we followed a 167 

default Seurat workflow to generate UMAP visualizations and Louvain clusters (Fig. 2c) and used the GEX 168 

and ADT data to classify clusters by cell type. We constructed a table of the proportion of each sample that 169 

contributed to each cell type and cluster (Supplementary Table 2). As both libraries are derived from two 170 

aliquots of the same cDNA pool, we would expect the proportions of cell types to be equal by replicate, 171 

which they were (Supplementary Table 2; chi-square test, p = 1). Scoring the replicates by iLISI confirmed a 172 

homogenous distribution of replicates in the UMAP (iLISI = 0.030) while CMS revealed only 3.2% of cells 173 

changed classification (CMS = 0.032, Supplementary Fig. 4), which represents fewer cells than the 174 

expected cell-cell doublet rate for this technology. Hence, we find that variation introduced by library 175 

sequencing was a non-significant contributor to batch-effect by all measures. 176 

Library Sequencing Depth: Next, we quantified the effect of sequencing depth by intentionally altering the 177 

number of reads between replicates. For this comparison, we constructed two identical aliquots of a PBMC 178 

library containing approximately 4,000 cells, sequenced to different depths (samples 5-A and 5-B) (Fig. 2b). 179 

Sample 5-B contained three-fold more total reads than sample 5-A (170M reads for 5-A vs. 560M reads for 180 

5-B). Notably, we sequenced samples 5-A and 5-B on the same Illumina flow cell as samples 4-A and 4-B, 181 

respectively, from the experiment above (Fig. 2b). Having already established that library sequencing 182 

replication (i.e., sample 4) produced minimal batch-effect (Fig. 2c), we interpret that any differences 183 

observed between samples 5-A and 5-B can be attributed to sequence depth. We recovered similar 184 

numbers of cells per replicate, resulting in averages of 45,160 reads/cell in sample 5-A and 138,274 185 
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reads/cell in 5-B, with 94% overlap in cell barcode sequences (3,758 of 4,007). Of the 249 non-shared cell 186 

barcodes, all were present only in 5-B, the sample with greater sequencing depth (i.e., higher reads/cell). As 187 

before, we analyzed the gene expression matrices following the Seurat workflow under default settings and 188 

assigned cell types using a GEX and ADT-based gating approach (Fig. 2d). Surprisingly, in this comparison 189 

cell-type compositions were biased by sequencing replicate (Supplementary Table 2; chi-square, p < 190 

2.2x10-16) while iLISI and CMS scores remained favorable (iLISI = 0.028, CMS = 0.033). One notable cell 191 

type, erythrocytes, stood out as batch-biased: 0.3% of total cells in sample 5-A were classified as 192 

erythrocytes, compared to 5% in 5-B. Indeed, removing the erythrocyte-classified population resulted in a 193 

homogenous composition of cell types by sample (Supplementary Table 2; chi-square, p = 1). Removing 194 

erythrocytes also improved the CMS score from 0.033 to 0.017, still well below the expected cell-cell 195 

doublet rate.  196 

We hypothesized that erythrocyte-classified barcodes appeared only in the greater read depth 197 

sample because they contain fewer unique molecular identifiers (UMIs), requiring more reads to capture 198 

their relatively rare transcripts. We confirmed that erythrocytes did contain fewer unique mRNA molecules 199 

(Supplementary Fig. 5, Wilcoxon rank-sum test, p < 2.2x10-16). In addition, we observed that hematopoietic 200 

stem and progenitor cells (HSPCs) co-clustered with erythrocytes, which may explain the few high-UMI dots 201 

present in Supplementary Fig. 5. We also confirmed that sample 5-B (the higher read-depth sample) 202 

contained more UMIs per cell than sample 5-A (Supplementary Fig. 5, Wilcoxon rank-sum test, p = 203 

1.482x10-10), and that sample 5-B also contained more unique genes per cell (Supplementary Fig. 5, 204 

Wilcoxon rank-sum test, p < 2.2x10-16). As a standard part of the 10X Genomics Cell Ranger workflow (i.e., 205 

the sequencing read alignment and demultiplexing steps), cell barcodes with low-UMI counts are excluded 206 

as potential empty droplets containing ambient mRNA/noise. To confirm that the erythrocyte cell barcodes 207 

unique to sample 5-B were also present in the aliquot sequenced for 5-A but instead had been artificially 208 

excluded as low-UMI barcodes, we investigated the unfiltered sequencing matrices of sample 5-A. We 209 

discovered 100% of cell barcodes specific to 5-B were contained within the unfiltered 5-A data matrix but 210 

were excluded as part of the Cell Ranger quality control steps. Only in sample 5-B, the high-depth replicate, 211 
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were enough UMIs sequenced to distinguish erythrocytes from ambient noise. Hence, our results 212 

demonstrate that imbalanced sequencing depth may result in cell type biases, contributing somewhat to 213 

batch-associated data effects. 214 

Pooled Library Sequencing: It is widely assumed that technical effects can be minimized by pooling libraries 215 

for sequencing in a single batch. However, we demonstrate above that duplicated sequencing of identical 216 

library aliquots can yield highly similar results with minimal batch-specific variation (Fig. 2c). To directly 217 

evaluate the benefits of sequencing libraries together in a single pool, compared to sequencing un-pooled 218 

libraries independently, we again analyzed the sequenced replicates of PBMC samples 4 and 5 (samples 4-219 

A, 4-B, and 5-A). We do not expect samples 4 and 5 to be identical, as they originate from different sample 220 

donors. However, we will directly contrast the analysis of merged samples 4-A/5-A, which we sequenced in 221 

a single pool, against the analysis of merged samples 4-B/5-A, which we sequenced in different pools (see 222 

experimental design, Fig. 3a). If indeed pooled sequencing alleviates batch-effect, we would expect to 223 

identify less batch-specific variation (lower iLISI and CMS scores) when merging samples that were pooled 224 

for sequencing together (samples 4-A vs. 5-A) as compared to un-pooled samples sequenced separately 225 

(samples 4-B vs. 5-A). Notably, we sequenced all samples for these comparisons to a highly similar read 226 

depth (~40,000 reads/cell). Surprisingly, we find that pooling libraries for sequencing yields nearly identical 227 

results as sequencing unpooled libraries independently (Figs. 3b-c). Cell misclassification rates rose 228 

compared to the previously presented experiments of duplicated sequencing of identical libraries (Fig. 2d) 229 

but remained constant between pooled and un-pooled comparisons (CMS = 0.070 and 0.070, respectively). 230 

The UMAP homogeneity similarly remained near-constant between pooled and un-pooled sequencing 231 

batches (iLISI = 0.279, 0.295, respectively; Figs. 3b-c). Our results assert that pooling libraries for 232 

sequencing neither reduced nor contributed to a major source of batch-associated data effects in these 233 

samples.  234 

 235 
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Commonly used batch-effect correction and data integration methods imperfectly resolve batch-236 

associated systemic variation 237 

We examined the extent to which commonly cited data integration algorithms can minimize the 238 

batch-specific systemic variation we quantified in the prior experiments. Above, we showed that the sample 239 

donor variable significantly confounded our ability to correctly assign cell types and resulted in a sample-240 

biased UMAP from a merged dataset (samples 1-3; Fig. 2a, iLISI = 0.861). Here, we attempt to improve the 241 

low-dimensional embeddings (i.e., UMAP and clusters) and the robustness of cell-type classifications by 242 

applying commonly-used batch-effect correction algorithms. First, we selected three of the most cited 243 

packages for integrating gene expression data: Harmony8, LIGER11, and Seurat V3 (SCTransform and data 244 

anchoring)6,10, which have been established as the best performing by prior study5. Next, we followed the 245 

default workflow settings recommended by the respective publications and applied each method to our 246 

PBMC samples 1-3. Finally, we generated UMAP embeddings and cluster/cell-type assignments to assess 247 

each corrected dataset (Fig. 4). 248 

We first evaluated Harmony, implemented through the Seurat function “RunHarmony”8,14. Although 249 

homogeneity of the UMAP is greatly improved (Fig. 4a; iLISI improved from 0.861 to 0.183), CMS scoring of 250 

the harmonized sample revealed a greater loss of cell-type fidelity (Fig. 4a; CMS rose from 0.099 to 0.154). 251 

Interestingly, the increased proportion of cell-type misclassification (from 9.9% in the uncorrected sample to 252 

15.4% in the harmonized sample) comes largely from over-merging CD4+ and CD8+ T cells into mixed-253 

lineage clusters (Figs. 4a and Supplementary Fig. 4). This highlights the potential to over-homogenize data 254 

while ignoring specific cell type-exclusive signals. 255 

We next tested LIGER, as implemented through the R package “rliger” and the Seurat functions 256 

“RunOptimizeALS” and “RunQuantileNorm”11,15,16. We generated a UMAP from the LIGER integrative non-257 

negative matrix factorization (iNMF) components (Fig. 4b). LIGER produced a homogeneously distributed 258 

UMAP (Fig. 4b; iLISI = 0.132) but severely over-merged clusters, resulting in a major loss of cell-type 259 

information for nearly one-quarter of all cells, as measured by a severely increased CMS score (Fig. 4b; 260 

CMS rose from 0.099 to 0.257). As with Harmony, the most affected cell types were the CD4+ and CD8+ T 261 
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cells. LIGER could not differentiate those two distinct subsets of T cells (Supplementary Fig. 4) and incurred 262 

a misclassification cost of greater than 25% of cells (i.e., CMS = 0.257). 263 

Lastly, we evaluated the performance of Seurat V3, as implemented through the Seurat 264 

SCTransform and data anchoring workflows6,17. Data integration by Seurat V3 resulted in improved 265 

homogeneity of UMAP embeddings (Fig. 4c; iLISI improved from 0.861 to 0.191), accompanied by an 266 

increase in CMS scores compared to uncorrected data (Fig. 4c; CMS rose from 0.099 to 0.182). Again, as 267 

with both Harmony and Liger, the Seurat data integration methods were unable to effectively segregate 268 

subsets of CD4+ and CD8+ T cells (Supplementary Fig. 4). We conclude that similar yet transcriptionally 269 

distinct types of PBMCs pose a problem for data integration methods as all three failed to resolve these 270 

specific T-cell subsets. While we focus our subsequent efforts on detailing the batch-effect impacting T-cell 271 

subsets, it is important to note that these effects were global and impacted other major lineages, including 272 

NK cells, B cells, and monocytes (Supplementary Fig. 4). Crucially, each method generated a different set 273 

of clusters when applied to the same merged dataset (Fig. 4), highlighting a potential to misinterpret results 274 

from a single method, especially when relying on clusters as a meaningful descriptor of biological status. 275 

Notably, by applying the CMS score, we are uniquely able to reveal and quantify the hazards that dataset 276 

integration can pose to data interpretation. 277 

 278 

Optimized dataset normalization and scaling before integration resolves batch-effect without the 279 

need for batch-correction methods 280 

 We showed that batch-specific variations negatively impact UMAP embeddings (iLISI scores) and 281 

cell-type classifications (CMS scores) in merged samples, and yet commonly-used batch-correction 282 

methods imperfectly resolve these effects (Figs. 2 and 4). Hence, we sought to identify and optimize the 283 

specific data processing steps which can influence downstream UMAP embeddings and clustering. We 284 

focused on the steps of data normalization and data scaling, which are required to produce comparable 285 

transcript counts between cells and across genes, and must be applied prior to any PCA and downstream 286 

UMAP and clustering. To quantify the effect of data normalization and scaling on resolving batch-associated 287 
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systemic variation, we applied two unique data normalization and scaling methods with two different data 288 

pooling workflows to generate a total of four datasets for comparison (Fig. 5). 289 

 We first evaluated the common normalization/scaling method of log-transformation and gene 290 

centering, as implemented by Seurat methods NormalizeData and ScaleData10. Because each cell has a 291 

different number of UMI sequenced, NormalizeData divides gene count values by the total number of read 292 

counts per cell and multiplies by a scaling factor (10,000 by default). The result is a scaling of each cell to a 293 

total of 10k UMIs to avoid the effect of a different sequencing depth across cell types in a sample. 294 

NormalizeData then adds a pseudocount of 1 (to avoid transcript zero-values) and takes the natural log of 295 

each count. In this way, we normalize cells for per-cell sequencing depth, fostering more similar cell-cell 296 

comparisons. The data requires further scaling, however, to stabilize the relationship between gene 297 

expression level and variance. ScaleData employs a simple gene-level centering and scaling, meaning that 298 

each gene will be mean-centered to zero and expression values scaled by the standard deviation. The 299 

resulting scaled values (a z-score) are clipped to a maximum (default of 10) to reduce the effect of outlier 300 

high-variance genes expressed by a minority subset of cells. 301 

The second method evaluated is the SCTransform method included in Seurat V310. Briefly, 302 

SCTransform models UMI counts using a regularized negative binomial model to remove the cell-cell 303 

variation caused by differing sequencing depth between cell barcodes. In accomplishing this, SCTransform 304 

pools genes with similar abundance to obtain stable parameter estimates, preventing the overfitting caused 305 

by a global scaling model. In this way, SCTransform simultaneously corrects for influences of both total UMI 306 

and mean expression on the gene variance. 307 

We applied the above two normalization/scaling methods to PBMC samples 1-3, which had the 308 

greatest batch-effect in our prior experiments (Fig. 2a), and which were ineffectively integrated by common 309 

batch-effect correction algorithms (Fig. 4). Importantly, each dataset was processed by each method, either 310 

log-normalization and scaling (Fig. 5a) or SCTransform (Fig. 5b), both prior to data merging or after data 311 

merging as a single unified/concatenated dataset. We then assessed the differences in the final UMAP 312 

visualization and cluster compositions and generated iLISI and CMS scores for each method (Figs. 5 and 313 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 19, 2021. ; https://doi.org/10.1101/2021.08.18.456898doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.18.456898


 

 14

Supplementary Fig. 4). SCTransform normalization produced undesirable results, showing greater numbers 314 

of cell-type misclassification (high CMS scores) and sample-stratified UMAP embeddings (high iLISI 315 

scores), irrespective of whether it was performed prior to or after dataset merging (Fig. 5b; CMS = 0.202 316 

and iLISI = 0.416 prior to merging; CMS = 0.204 and iLISI = 0.559 after merging). We identified one 317 

method, log-normalization with mean-centering performed on each sample independently and prior to data 318 

merging, that produced the best homogenized UMAP (Fig. 5a; iLISI = 0.211). However, nearly one in every 319 

six cells was misclassified after dataset merging (Fig. 5a; CMS = 0.159). In contrast, the same 320 

normalization/scaling method performed after dataset merging showed a highly stratified UMAP embedding, 321 

even though it had the best CMS score (Fig. 5a; iLISI = 0.861, CMS = 0.099). The simple default methods 322 

of log-normalization with mean-centering performed prior to dataset merging surprised us by their ability to 323 

nearly match the performance of dedicated batch-effect correction algorithms (Figs. 4 and 5a). 324 

Taken together, our results implicate data normalization and scaling as an effective method to de-325 

emphasize the systemic variation present in the sample-specific data matrix, performing similarly to the 326 

Harmony and Seurat V3 batch-effect correction methods. However, even the best normalization 327 

approaches led to high levels of cell misclassification, which carry a dangerous potential for 328 

misinterpretation of data and false conclusions. 329 

 330 

Low levels of highly variable transcripts are associated with batch-effect 331 

We show above that normalization and merging strategies can have dramatic impacts on the 332 

observed levels of batch-effect. Here, we attempt to isolate the gene transcripts, which may be responsible 333 

for the batch effects observed when the integrated samples are normalized differently.  334 

Zero-count gene transcripts can indicate either the true absence of a transcript, or that the 335 

expression level of a given transcript is very low and may not be captured by the assay, resulting in what is 336 

known as gene “dropout” events. Both true zero-count transcripts and gene dropouts account for a large 337 

proportion of the gene expression matrix and can contribute significantly to batch-effect18,19. One key 338 

difference between general normalization methods commonly used for bulk RNA-seq and those specifically 339 
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developed for scRNA-seq is the ability to cope with excessive zeros in the scRNA-seq data matrix18. Hence, 340 

we reasoned that low expression level transcripts (fewer than 5 UMI) may be susceptible to gene dropout 341 

(i.e., zero-count transcripts) and that proper normalization may minimize the effect of these low expression 342 

level genes.  343 

To identify precisely how normalization methods could improve cell-type classification, we first 344 

isolated the misclassified cells of sample 1, the individual sample with the greatest total cell-type 345 

misclassification (i.e., highest CMS score) of the PBMCS samples 1-3 (Figs. 2a, 4, and 5). We found that a 346 

specific group of cells in sample 1, the CD8+ T cells, frequently changed their initial classification when the 347 

cell-typing workflow to classify clusters (Supplementary Fig. 3) was repeated/validated after sample 348 

merging. This group of CD8+ T cells was prone to inappropriately co-cluster with NK cells, along with 349 

another group of CD8+ T cells which were co-clustered with CD4+ T cells and regulatory T cells (Fig. 6a). 350 

Notably, this observation was not exclusive to a single computational workflow (Supplementary Fig. 4) and 351 

was repeated across all normalization methods tested (Fig. 5).  352 

We next sought to identify the specific gene transcripts which can distinguish the misclustered CD8+ 353 

T cells of sample 1 from the CD8+ T cells of samples 2 and 3. We directly performed differential gene 354 

expression (DGE) analyses between the misclassified CD8+ T cells of sample 1 vs. the correctly classified 355 

CD8+ T cell cluster using a likelihood ratio test for differential expression, as implemented by Seurat 356 

“FindMarkers” function10,20, and identified a set of significant differentially-expressed genes (Fig. 6b). Next, 357 

to restrict this list to genes that could directly influence the UMAP and clusters, we retained only genes 358 

detected as “highly variable genes” (HVGs). Only HVGs are included as input to the PCA, which is used as 359 

the input for the downstream UMAP and clustering. Finally, to assess whether the genes in our list could 360 

cause batch effect, we excluded the genes that were in the HVGs of the dataset that showed the least batch 361 

effect (Fig. 5a, left panel). The final list is a limited set of genes that are differentially expressed between the 362 

CD8+ T cells of sample 1 and the samples 2/3, are capable of influencing PCA (and downstream UMAP and 363 

clustering), and are present in the HVGs of datasets which show strong batch effect. This final list of 26 364 

genes is presented in Fig. 6b. 365 
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For 23 out of 26 genes present in this final list, the median transcript count (of cells with nonzero 366 

transcripts) was two or fewer copies (i.e., ≤ 2 UMI). The more highly expressed genes were all ribosomal 367 

subunits (RPS26, RPS4Y1, RPS4X), which had median transcript counts of 8, 3, and 18 UMIs, respectively 368 

(Fig. 6b). Remarkably, we show that specific removal of these genes from the HVGs of samples 1-3 369 

resulted in a marked improvement in data integration without the need for any other optimization (Fig. 6c). 370 

iLISI scores improved from 0.861 to 0.313, and CMS scores approached the scores achieved by the best 371 

batch-correction and normalization approaches (CMS = 0.175). Therefore, our results show that the 372 

selection of normalization/scaling and sample merging workflow plays an important role to either exacerbate 373 

or minimize batch-associated systemic variation by properly controlling contributions of low-expression 374 

genes to the total variance of the sample. In conclusion, here, we experimentally demonstrated the various 375 

sources of batch-associated effects and developed a new scoring system that takes into account cell-type 376 

identity as a key biological feature in data integration efficiency. Taken together, these results can inform 377 

the optimal experimental design, and data integration approaches. 378 

 379 

  380 
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Discussion 381 

As accessibility to scRNA-seq dramatically increases, so too do the challenges of integrating and co-382 

analyzing diverse datasets. One challenge to integrating multiple scRNA-seq samples is the influence of 383 

batch-specific technical variance on UMAP visualization and clustering. Here, we apply our novel Cell 384 

Misclassification Statistic (CMS) score alongside a modified Local Inverse Simpson’s Index (iLISI) scoring to 385 

reveal previously unclarified sources of these batch-specific effects and the potential dangers of using 386 

batch-correction algorithms. We conclude that batch-effect can be partially mitigated by supervised 387 

optimization of normalization and scaling methods, which work by minimizing the influence of low-388 

expression gene transcripts. 389 

Existing batch-correction scoring metrics such as Local Inverse Simpson’s Index (LISI)8,13 or 390 

Average Silhouette Width (ASW)21 quantify the mixing of merged samples in either the integrated clusters or 391 

in the final integrated UMAP. However, these and other current batch-correction approaches remain 392 

agnostic to the biology of each cell, such that potential cell-type misclassification after data integration is not 393 

considered in the analysis. Yet, as we show here, cell-type misclassification is a pervasive phenomenon in 394 

data integration and can dramatically influence data interpretation. Therefore, we contend that in addition to 395 

measuring optimal mixing of integrated samples (e.g., LISI or ASW), the potential for cell-type 396 

misclassification post sample merging must be taken into account when evaluating the fidelity of batch-397 

correction and data integration methods.  398 

In this study, we developed the CMS score to directly measure cell-type misclassification that often 399 

occurs following batch correction and data integration. CMS differs from existing approaches such as 400 

LISI8,13 or ASW21 in that CMS quantifies batch-integration based on a known biological classification of cells, 401 

rather than by simply measuring the mixing of different samples. CMS is uniquely sensitive to the incorrect 402 

merging of dissimilar cell types caused by the over-homogenization of datasets. To complement these 403 

strengths, we combine CMS with a modified LISI score, or the integration LISI (iLISI), to measure the 404 

efficiency of the UMAP integration. iLISI is uniquely sensitive to detecting the under-merging of similar 405 

samples, a phenomenon that can result in a UMAP that is segregated by sample instead of cell type. We 406 
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find that the biologically-grounded measures produced by our CMS scoring prove to be a robust indicator of 407 

cell-type fidelity post data integration, while our modified iLISI scoring is an excellent benchmark of UMAP 408 

integration. We demonstrate the ability of this combined CMS and iLISI approach to measuring the most 409 

impactful contributors to batch-effect between samples. 410 

Using CMS and iLISI, we reported the ability of common experimental variables to influence the 411 

biological interpretation of clusters. In isolation, replicating the library sequencing did not cause any 412 

significant loss in cell-type fidelity, while sequencing depth and sample donor both did. However, the effects 413 

of sequencing depth were contained entirely within a single, defined cell type while sample donor effects 414 

(which include the entangled effects of microfluidic encapsulation and library preparation) were widespread 415 

across all cells surveyed. While we identified this phenomenon on PBMCs here, we would expect similar 416 

results in other heterogeneous tissues, both with regards to sequencing depth and the effects of sample 417 

donor. Pooling PBMC libraries for sequencing together or sequencing libraries independently did not 418 

change the observed batch effect. This suggests that pooling libraries for sequencing together may not 419 

supply a significant benefit to experimental design or effectively prevent batch-associated systematic 420 

variation. We emphasize the critical role of CMS scores in quantifying cell-type fidelity, which helped us to 421 

conclude that sample donor is the major contributing variable to batch-effect in the PBMCs evaluated.  422 

While PBMC populations may subtly differ between healthy adult donors, we should be able to pool 423 

PBMCs from different donors for the purposes of constructing a reference sample (i.e., a healthy control 424 

sample or a cell atlas). To integrate PBMCs from different donors, we applied three popular and often cited 425 

batch-correction algorithms5 (Harmony8, LIGER11, and Seurat V310). Although, as expected, we find that all 426 

three methods effectively integrated UMAP embeddings, we show that explicit batch-correction may be 427 

unnecessary and, in some cases, even harmful. By selecting a suitable normalization and merging strategy 428 

through a CMS-guided approach, we produced cell-type integration results comparable to the best batch-429 

correction algorithms. We endorse a supervised approach (such as our CMS-guided optimization) over 430 

selecting a batch-correction method for the following reasons: while batch-correction methods do not 431 

directly adjust the gene expression matrix, they do affect the dimensional reduction matrix and therefore 432 
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cluster assignments, which are used to infer cell-type identity. Most significantly, each batch correction 433 

method evaluated here produced subtly different cluster assignments from the same data, which could 434 

provoke a dangerous potential to misclassify cells and misinterpret results. Therefore, we caution against 435 

the application of batch-effect correction methods as a “fix” for systemic batch-effect and place emphasis on 436 

the proper, supervised selection of appropriate normalization methods. The choice of the best approach 437 

may be aided by a measure such as CMS, or similar, which directly measures the impact of any 438 

computational approach on biologically assigned cell-type classifications. By directly quantifying the level of 439 

biological signal loss, we can reveal systemic variation that may otherwise go undetected.  440 

To complete our study, we investigated the most symptoms of such systemic variations on the gene 441 

expression matrix. We identified the cells most sensitive to misclassification and highlighted a pattern of 442 

gene expression which distinguished them from the similar cell type, but correctly classified cells, of the 443 

other samples. The differentially expressed genes between the misclassified and correctly classified cells 444 

reveal a broad pattern of expression with a low total expression level. We find that, depending on the 445 

normalization/merging strategy chosen, these genes may be excluded from the highly variable gene (HVG) 446 

list. Strikingly, we show that simple exclusion of these genes significantly improves batch-effect but is 447 

insufficient to eliminate all batch-effect in an improperly normalized/merged sample. This suggests that 448 

more sources of variation may be present, which cannot be corrected by gene curation alone. We conclude 449 

that removing problematic genes post-hoc is insufficient and that optimizing the normalization/merging 450 

strategy is the best approach to consistently reduce sample-specific variance and highlight biologically 451 

relevant signals. 452 

Together, our experiments describe the variables which contribute most to batch-effect (sample 453 

donor, sequencing depth) and those which do not significantly contribute (sequencing replicate, sequencing 454 

pool). We apply a combined approach of CMS and iLISI scoring to reveal that batch correction algorithms 455 

pose a risk to over-merge diverse cell types if not properly supervised, while data normalization offers a 456 

simple strategy for minimizing the influence of batch-specific, low expression gene transcripts to the sample. 457 

We recognize that while we identify the best strategy to minimize batch-effect in the PBMC samples tested, 458 
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the optimal strategy may vary by tissue or even by dataset. Rather than endorse a single approach to 459 

remove batch-effect, we offer a novel tool, CMS scoring, that, in combination with iLISI can assess cell 460 

mismatching and UMAP integration and aid in choosing the correct computational methods for any dataset. 461 
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Materials and Methods 462 

Sample preparation and single-cell encapsulation 463 

Peripheral venous blood was collected from healthy volunteer donors through Emory University’s 464 

Children’s Clinical and Translational Discovery Core. Peripheral Blood Mononuclear Cells (PBMCs) were 465 

isolated using the Direct Human PBMC Isolation Kit (StemCell Technologies) according to the 466 

manufacturer’s protocol and washed/resuspended in custom RPMI-1640 deficient in biotin, L-glutamine, 467 

phenol red, riboflavin, and sodium bicarbonate (defRPMI), and containing 3% newborn calf serum and 468 

Benzonase. Cell number and viability were assessed using ViaStainTM Acridine Orange/Propidium Iodide 469 

(AOPI, Nexcelom) on a Cellometer K2 cell counter (Nexcelom), following manufacturer recommendations. A 470 

maximum of 1x106 cells/donor were stained by oligo-barcoded antibodies (TotalSeq-A or TotalSeq-C; 471 

Biolegend, Expedeon) for 30 min on ice, followed by two washes in defRPMI + 0.04% BSA. Cells were 472 

resuspended at 1200-1500 cells/ul in defRPMI + 0.04% BSA, passed through a 20uM filter, and counted 473 

prior to loading onto a Chromium Controller (10X Genomics). For generating single-cell RNA-seq libraries, 474 

cells were loaded to target encapsulation of six thousand cells.  475 

 476 

Library generation and sequencing 477 

Single-cell RNA-seq gene expression and ADT libraries were generated following the 478 

manufacturer’s instructions using Chromium Single Cell 3′Library & Gel Bead Kit v2, with ADT library 479 

generation according to (Nat Methods 14, 865–868 (2017) for PBMC samples 1-3 and Chromium Single 480 

Cell 5′Library & Gel Bead Kit v1 with feature barcoding (10X Genomics) for PBMC samples 4 and 5. Gene 481 

expression libraries were sequenced to an average depth of 84,098 reads per cell using the Novaseq 6000 482 

platform (Illumina). ADT libraries were sequenced to a target depth of one hundred reads per antibody, per 483 

cell, on the Next-seq platform (Illumina). A separate aliquot of cells for each donor was stained with a 484 

fluorescent antibody cocktail (Supplementary Table 3) for 30 minutes on ice, followed by washing with 485 

defRPMI/3%NBCS + Benzonase (Sigma). Cells were fixed for 30 minutes at RT with FACS lysis solution 486 
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(BD Biosciences), followed by a final wash and analysis on a BD LSRII or FACSymphony A5 cytometer. 487 

Data were analyzed with FlowJo V10. The gating strategy for excluding debris, doublets, and non-viable 488 

cells is shown in Supplementary Fig. 3. 489 

 490 

Gene expression (GEX) data processing 491 

Raw sequence data (FASTQ files) was processed in a Linux environment using CellRanger V3 (10X 492 

Genomics, version details in Supplementary Table 1) to generate a digital expression matrix. Specifically, 493 

splicing-aware aligner STAR was used for sequence alignment to GRCh38 (Ensembl 93). Viable cell 494 

barcodes were found automatically by CellRanger. Digital expression matrices were exported for further 495 

analyses. Further data analysis was performed in an R environment (Version 3.6.1, CRAN) using the Seurat 496 

toolkit (Version 3.2.2, Satija Lab) following previously published workflows 22. Following Seurat standard 497 

recommendations, data were first filtered for quality using specific QC criteria (maximum mitochondrial 498 

content) to limit the analysis to cells with transcriptomes that were not apoptotic. Cell barcodes with 499 

mitochondrial transcripts (>5 standard deviations above the median level of mitochondrial transcripts) were 500 

suspected to be dying cells and excluded. On average, 99.3% of putative cells met QC criteria and were 501 

included in the analysis (range = 99.2 - 99.4).  502 

From the five human PBMC donors (seven libraries), we included a total of 37,442 cells, with a 503 

range of 3,758-6,374 cells per donor and a median of 5,729 cells per sample. Genes were selected for 504 

differential expression across the sample using Seurat’s highly variable gene selection tool, 505 

“FindVariableFeatures.” A setting was chosen to select the 2,000 most variable features identified per 506 

sample. Principle Components Analysis (PCA) was used to reduce the dimensionality of the gene 507 

expression matrix. A singular value decomposition (SVD) PCA was performed on the subset of highly 508 

variable genes. To identify an appropriate number of PCs, we employed a z-scoring method. We run a 509 

complete PCA reduction and z-score the contribution of each PC to the total variance. PCs with z�>�1 510 

were considered significant and used further in the analysis. The SVD PCA returns the right singular values, 511 
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representing the embeddings of each cell in PC space, and left singular values, representing the loadings 512 

(weights) of each gene in the PC space. Cell embeddings (right singular values) were weighted by the 513 

variance of each PC. 514 

 515 

Antibody-derived tag (ADT) data processing 516 

ADT data was co-analyzed with GEX data as raw sequence data (FASTQ files) in a Linux 517 

environment using Cell Ranger V3 (10X Genomics, version details in Supplementary Table 1). ADT data 518 

was aligned directly to a feature reference file containing the sequence of each barcode mapped to the 519 

corresponding antibody. Digital expression matrices for ADT protein expression were exported for further 520 

analyses. ADT count matrices were normalized and denoised using the R package “dsb” version 0.1.023. 521 

 522 

Data embedding and cell clustering 523 

For 2-dimensional visualization, Uniform Manifold Approximation and Projection (UMAP) reduction 524 

was performed on the PCA matrix (https://github.com/lmcinnes/umap). In parallel, independent of the 525 

UMAP coordinates, Louvain–Jaccard clustering was performed on the PC-space. This “bottom-up” 526 

clustering method employs a stochastic shared-nearest-neighbor (SNN) approach, in which cells are 527 

grouped according to their neighbors in PC space. The nearness of two cells is weighted by the Jaccard 528 

index or the degree of sharing between the lists of each cell’s nearest neighbors. The algorithm will build 529 

small groups of cells and attempt to iteratively merge them into clusters until the modularity is maximized. 530 

We found that a resolution of 0.8 was most proper for building biologically meaningful clusters. 531 

 532 

Cell-type identification and classification 533 

Following PCA (performed on the GEX matrix of highly variable genes), we generated clusters by 534 

Louvain-Jaccard clustering with a resolution of 0.8, as implemented by the Seurat function “FindClusters”. 535 

Using detection of lineage-specific ADT and GEX markers, we assigned each cluster to a single major 536 
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lineage (markers and representative data depicted in Supplementary Fig. 2). When indicated in the text, 537 

differentially expressed genes were determined using the likelihood-ratio test for single-cell gene 538 

expression, as implemented in the “bimod” method of the Seurat function “FindMarkers”10,20. 539 

 540 

Cell Misclassification Statistic 541 

To generate the Cell Misclassification Statistic (CMS) score, we first assign cell type labels to 542 

clusters in a merged, multi-sample dataset. This can be carried out either by following a gating strategy and 543 

assigning cell types to entire clusters which fall within each gate or by transferring cluster labels from a 544 

previously gated dataset containing shared cells. The transferred labels can be used to aid cell-type 545 

identification but should always be confirmed by marker expression following the overall gating strategy. 546 

After cell types have been recorded for the merged samples (target dataset), we match a vector of cell 547 

identities from the same sample, processed by a different workflow (reference dataset). We then compare 548 

the target cell IDs to a vector of the reference cell type IDs. The CMS score generated is the sum of 549 

matching values (total number of cell type ID matches) between the two cell-typing replicates, divided by the 550 

total number of cells. We then invert the score by subtracting it from one so that the result is a measure of 551 

the fraction of cells that change cell type ID between data analysis workflows. CMS can be directly 552 

interpreted as the percentage (expressed as a decimal) of cells which have been misclassified by one of the 553 

workflows. Where reported, the CMS is the mean score of all samples present.  554 

 555 

Modified Local Inverse Simpson’s Index (LISI): 556 

Our modified LISI score, the integration LISI or iLISI, is an effective indicator of sample mixing in the 557 

UMAP. A LISI score represents, for a given cell, the number of neighboring cells which need to be sampled 558 

before the same identity class is sampled (in this case, sample ID). In other words, LISI effectively counts 559 

how many identity classes are represented in the local neighborhood of each cell13. If we merge three 560 

samples, then the maximum LISI score will be close to three, and the minimum close to one. However, the 561 

actual maximum score may differ by UMAP. To account for differing numbers of samples and to place LISI 562 
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on a similar scale as CMS, we first take the median LISI score for a merged set of samples using the r 563 

package “LISI”13 with sample ID used as the cell label. We subtract the minimum LISI score (one) from the 564 

median LISI and divide the result by the maximum LISI (the number of samples). The result is an iLISI score 565 

on a scale of zero to one, where a score of one is ideal integration and zero is a perfectly segregated 566 

sample. We then inverted these scores by subtracting them from 1, such that the best integrated UMAP will 567 

achieve a score approaching 0. This was done to align the values with CMS so that higher scores mean 568 

better integration across both measurements. iLISI = 1 – (LISI – 1) / (maximum score – 1). Where reported, 569 

the iLISI is the mean score of all samples present. 570 

 571 

Data availability 572 

Gene expression and Antibody Derived Tag matrices have been deposited on the Gene Expression 573 

Omnibus (GEO). 574 

 575 

Code availability 576 

Full data analysis workflow and R scripts are made available at github.com/Ghosn-Lab/BBabcock 577 

 578 

  579 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 19, 2021. ; https://doi.org/10.1101/2021.08.18.456898doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.18.456898


 

 26

References 580 

1 Yu, P. & Lin, W. Single-cell Transcriptome Study as Big Data. Genomics Proteomics Bioinformatics 14, 581 

21-30, doi:10.1016/j.gpb.2016.01.005 (2016). 582 

2 Luecken, M. D. & Theis, F. J. Current best practices in single-cell RNA-seq analysis: a tutorial. Mol 583 

Syst Biol 15, e8746, doi:10.15252/msb.20188746 (2019). 584 

3 Aliverti, E. et al. Projected t-SNE for batch correction. Bioinformatics 36, 3522-3527, 585 

doi:10.1093/bioinformatics/btaa189 (2020). 586 

4 Chen, W. et al. A multicenter study benchmarking single-cell RNA sequencing technologies using 587 

reference samples. Nat Biotechnol, doi:10.1038/s41587-020-00748-9 (2020). 588 

5 Tran, H. T. N. et al. A benchmark of batch-effect correction methods for single-cell RNA sequencing 589 

data. Genome Biol 21, 12, doi:10.1186/s13059-019-1850-9 (2020). 590 

6 Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data 591 

using regularized negative binomial regression. Genome Biol 20, 296, doi:10.1186/s13059-019-592 

1874-1 (2019). 593 

7 Hie, B., Bryson, B. & Berger, B. Efficient integration of heterogeneous single-cell transcriptomes 594 

using Scanorama. Nat Biotechnol 37, 685-691, doi:10.1038/s41587-019-0113-3 (2019). 595 

8 Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat 596 

Methods 16, 1289-1296, doi:10.1038/s41592-019-0619-0 (2019). 597 

9 Stein-O'Brien, G. L. et al. Decomposing Cell Identity for Transfer Learning across Cellular 598 

Measurements, Platforms, Tissues, and Species. Cell Syst 8, 395-411 e398, 599 

doi:10.1016/j.cels.2019.04.004 (2019). 600 

10 Stuart, T. et al. Comprehensive Integration of Single-Cell Data. Cell 177, 1888-1902 e1821, 601 

doi:10.1016/j.cell.2019.05.031 (2019). 602 

11 Welch, J. D. et al. Single-Cell Multi-omic Integration Compares and Contrasts Features of Brain Cell 603 

Identity. Cell 177, 1873-1887 e1817, doi:10.1016/j.cell.2019.05.006 (2019). 604 

12 Xu, C. et al. Comprehensive multi-omics single-cell data integration reveals greater heterogeneity in 605 

the human immune system. bioRxiv (2021). 606 

13 Korsunsky, I. LISI, <https://github.com/immunogenomics/LISI> (2019). 607 

14 Korsunsky, I. How to use Harmony with Seurat V3, 608 

<https://github.com/immunogenomics/harmony/blob/master/docs/SeuratV3> (2019). 609 

15 Welch, J. D. LIGER, <https://github.com/welch-lab/liger> (2021). 610 

16 Butler, A. Integrating Seurat objects using LIGER, <https://github.com/satijalab/seurat-611 

wrappers/blob/master/docs/liger.md> (2021). 612 

17 Satija, R. Integration and Label Transfer: SCTransform Vignette, 613 

<https://satijalab.org/seurat/archive/v3.0/integration.html> (2019). 614 

18 Lytal, N., Ran, D. & An, L. Normalization Methods on Single-Cell RNA-seq Data: An Empirical Survey. 615 

Front Genet 11, 41, doi:10.3389/fgene.2020.00041 (2020). 616 

19 Hou, W., Ji, Z., Ji, H. & Hicks, S. C. A systematic evaluation of single-cell RNA-sequencing imputation 617 

methods. Genome Biol 21, 218, doi:10.1186/s13059-020-02132-x (2020). 618 

20 McDavid, A. et al. Data exploration, quality control and testing in single-cell qPCR-based gene 619 

expression experiments. Bioinformatics 29, 461-467, doi:10.1093/bioinformatics/bts714 (2013). 620 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 19, 2021. ; https://doi.org/10.1101/2021.08.18.456898doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.18.456898


 

 27

21 Rousseeuw, P. J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. 621 

Journal of Computational and Applied Mathematics 20, 53-65, doi:10.1016/0377-0427(87)90125-7 622 

(1987). 623 

22 Ocasio, J. et al. scRNA-seq in medulloblastoma shows cellular heterogeneity and lineage expansion 624 

support resistance to SHH inhibitor therapy. Nat Commun 10, 5829, doi:10.1038/s41467-019-625 

13657-6 (2019). 626 

23 Mulè, M. P., Martins, A. J. & Tsang, J. S. Normalizing and denoising protein expression data from 627 

droplet-based single cell profiling. bioRxiv, doi:https://doi.org/10.1101/2020.02.24.963603 (2021). 628 

  629 

  630 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 19, 2021. ; https://doi.org/10.1101/2021.08.18.456898doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.18.456898


 

 28

Acknowledgments 631 

This study was supported in part by Georgia Clinical and Translational Science Alliance (CTSA) 632 

through the National Center for Advancing Translational Sciences of the National Institutes of Health under 633 

Award number NIH UL1TR002378; Pediatric Research Alliance, Center for Transplantation, and Immune-634 

Mediated Disorders (Children’s Healthcare of Atlanta); and Lowance Center for Human Immunology. We 635 

thank Sachin Kumar (Emory University) for helpful conversations. We thank Emory University’s Children’s 636 

Clinical and Translational Discovery Core (CCTDC) for providing peripheral blood samples from healthy 637 

donors. Flow cytometry data were collected at the Emory’s Pediatrics/Winship Flow Cytometry Core 638 

(access supported in part by Children’s Healthcare of Atlanta). Single-cell libraries were sequenced at the 639 

Emory Integrated Genomics Core (EIGC), which is subsidized by the Emory University School of Medicine 640 

and is one of the Emory Integrated Core Facilities, and at PerkinElmer Genomics Inc.  641 

 642 

Author Contributions 643 

EEBG and BRB conceived the study. BRB performed all computational analyses and developed 644 

the CMS scoring method under the supervision of EEBG. BRB, EEBG and AK wrote, reviewed and 645 

edited the manuscript. AK performed all tissue processing and flow cytometry, and generated the 646 

scRNA-seq libraries. JY performed all data pre-processing workflows, including GEX and ADT 647 

alignment. MLW performed flow cytometry analyses. All authors read and approved the final 648 

manuscript. 649 

 650 

Competing Interest 651 

The authors declare no competing interests. 652 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 19, 2021. ; https://doi.org/10.1101/2021.08.18.456898doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.18.456898


 

 29 

 
 
Fig. 1: Schematic of analysis workflow to quantify data integration and batch-correction fidelity.  
a, Tissue (blood) is extracted from the sample donor, washed, and PBMCs isolated. PBMCs are 
encapsulated in microfluidic droplets, along with a barcode-bearing bead. Cells are lysed in the droplets, 
and mRNA is captured on the bead, resulting in a barcoded cDNA library. Libraries are sequenced to 
generate a GEX matrix (cells x genes) containing transcript counts. Cells are analyzed and plotted by 
UMAP and clustered according to transcript similarity, after which cell types are classified. b, Cell 
Misclassification Statistic (CMS) and modified integration LISI (iLISI) metrics provide measures of cell-type 
fidelity and UMAP mixing, respectively. CMS and iLISI can assist in optimizing a workflow for the best-
mixed UMAP while preserving the cell-type-specific signals in the data. 
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Fig. 2: Batch effects are generated by sample donor and sequencing depth, but not sequencing 
replicates alone. a, PBMCs from three different donors, processed and sequenced simultaneously and 
mixed for co-analysis, produce a favorable cell-type classification fidelity (CMS = 0.099) but an unfavorable 
(i.e., poorly mixed) UMAP (iLISI = 0.861). b, A schematic of sample sequencing strategy. Libraries from two 
donors (samples 4 and 5) were sequenced twice. c, A library generated from a single PBMC sample, 
divided and sequenced twice to similar read depth (average reads per cell), produces a well-integrated 
UMAP and high-fidelity cell classifications (iLISI = 0.030, CMS = 0.032). d, A library generated from a single 
PBMC sample, divided and sequenced twice with a three-fold difference in read depth produces favorable 
UMAP and cell-type fidelity metrics (iLISI = 0.028, CMS = 0.044). However, there are local sample-specific 
UMAP islands (black arrow) and misclassified cell types that reveal sequencing-depth-specific batch effects. 
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Fig. 3: Pooling samples for sequencing does not appreciably improve the measured batch effect. a, 
A schematic of pooling and comparison strategy between samples 4 and 5, sequenced across two 
independent pools (-A and -B). The same sample (5-A) was co-analyzed with either a sample from the 
same sequencing pool (4-A) or a different pool (4-B). b, Analysis of two PBMC samples from different 
sequencing pools results in a poorly mixed UMAP and the misclassification of 7% of cells (iLISI = 0.295, 
CMS = 0.070). c, Pooling libraries to sequence PBMC samples in a single pool, followed by mixing data for 
co-analysis, does not improve batch effects and, similarly, results in a poorly mixed UMAP and an 
equivalent 7% cell misclassification rate (iLISI = 0.279, CMS = 0.070). 
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Fig. 4: Common batch-effect correction methods imperfectly resolve batch effect. a, Harmony 
correction merges samples to produce an integrated UMAP, but at 15.4% loss in cell-type classification 
fidelity (iLISI = 0.183, CMS = 0.154). b, LIGER correction produces an integrated UMAP, but at a 25.7% 
loss in cell-type classification fidelity (iLISI = 0.132, CMS = 0.257). c, Seurat V3 correction results in an 
integrated UMAP but at a cost of an 18.2% loss in cell-type classification fidelity (iLISI = 0.191, CMS = 
0.182). 
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Fig. 5: Data normalization and merging strategies differentially impact the measured batch effect. a, 
UMAPs, colored by sample, when the same normalization methods (log-normalization and data scaling) are 
performed on each sample either prior to sample merging (i.e., normalized separately) or after sample 
merging (normalized together). b, UMAPs, colored by sample, when the SCTransform normalization 
method is performed before or after sample merging. For this data set, log-normalization/scaling performed 
on each sample separately, prior to sample merging, generated the best combination of both integration 
scores, CMS and iLISI (panel a, left). 
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Fig. 6: Low expression levels of highly-variable genes can play a role in batch effect, which can be 
amplified by the data normalization and merging strategies. a, Misclassified cells are not distributed at 
random, and specific analysis of PBMC sample 1 reveals a loss of cell-type identity resulting from the over-
merging of T cell subsets into clusters containing a majority of a different subset (misclassified T cells 
highlighted by arrows and red points). b, Selected genes identified as differentially expressed between the 
incorrectly classified CD8+ T-cells of sample 1, marked by an arrow in (a), compared to the correctly 
classified CD8+ T-cell cluster. Genes were restricted to those contained within the HVGs of sample 1, but 
not the HVGs of samples 2 or 3. Note that genes showing low expression levels (low median count) and 
broad expression (higher fraction of cells) are susceptible to gene dropout. c, Removal of selected genes 
(b) lessens but does not completely remove the batch effect from the sample (iLISI changes from 0.861 to 
0.313, CMS changes from 0.099 to 0.175). 
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Supplementary Figure 1. PubMed results for “Single Cell RNA” by year. Increasing trend of 

publications citing single-cell RNA-seq data in recent decades. 
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Supplementary Figure 2. High-dimensional flow cytometry gating strategy to identify major immune 

lineages in the PBMC samples. Representative gating strategy generated from sample 3, showing 

markers and gates used to identify major immune cell lineages using an 18-parameter flow cytometry panel. 
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Supplementary Figure 3. Gating strategy to identify major immune lineages using multi-omics 

single-cell sequencing data. Representative gating strategy generated from sample 4-A, showing markers 

and gates used to assign entire clusters to major immune cell lineages based on gene expression (GEX 

matrix) and cell-surface proteins (ADT matrix). 
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Supplementary Figure 4. Distribution of misclassified cells after data merging. Red points represent 

cells that change classification after data merging, as generated by the CMS scoring method. UMAPs and 

data generated for Figs. 2, 4, and 5. 
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Supplementary Figure 5. Comparison of sample 5 high- and low-depth sequencing replicates. 

Comparison of key metrics (number of UMI and number of unique genes) distinguishing high and low read-

depth (reads per cell) sequencing replicates of sample 5. Also shown are the number of UMI for sample 5 

erythrocytes, as compared to all non-erythrocyte cells. ***p < 1x10-9, Wilcoxon rank-sum test. 
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Supplementary Table 1. Donor demographics and library sequencing details 
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Supplementary Table 2. Cell-type and cluster composition (fraction of total sample) 
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Supplementary Table 3. Key reagents and resources 

Antigen Clone Vendor Cat. no. 10X Chemistry compatibility 

CD34 (gp105-120) 581 Biolegend 343537 3' 

CD24 (Ly-52) ML5 Biolegend 311137 3' 

CD138 (Syndecan-1) MI15 Biolegend 356533 3' 

CD3 (T3, CD3ε) UCHT1 Biolegend 300475 3' 

Annexin V Annexin Biolegend 94700 3' 

CD16 (FcγRIII) 3G8 Biolegend 302061 3' 

IgD IA6-2 Biolegend 348243 3' 

IgM MHM-88 Biolegend 314541 3' 

CD56 (NCAM-1) 5.1H11 Biolegend 362557 3' 

CD127 (IL-7Ra) A019D5 Biolegend 351352 3' 

CD38 (T10) HIT2 Biolegend 303541 3' 

CD20 (B1) 2H7 Biolegend 302359 3' 

CD27 (S152) O323 Biolegend 302847 3' 

CD14 (LPS receptor) 63D3 Biolegend 367131 3' 

CD19 (B4) HIB19 Biolegend 302259 3' 

CD5 (Ly-1) UCHT2 Biolegend 300635 3' 

CD43 (Ly-48) CD43-10G7 Biolegend 343209 3' 

CD25 BC96 Biolegend 302643 3' 

CD4 SK3 Biolegend 344649 3' 

CD8 SK1 Biolegend 344751 3' 

CCR7 (CD197) G043H7 Biolegend 353251 5' 

CD11b ICRF44 Biolegend 301359 5' 

CD127 (IL-7Ra) A019D5 Biolegend 351356 5' 

CD14 (LPS receptor) M5E2 Biolegend 301859 5' 

CD16 (FcγRIII) 3G8 Biolegend 302065 5' 

CD19 (B4) HIB19 Biolegend 302265 5' 

CD20 (B1) 2H7 Biolegend 302363 5' 

CD21 (C3dR) Bu32 Biolegend 354923 5' 

CD25 BC96 Biolegend 302649 5' 

CD27 (S152) O323 Biolegend 302853 5' 

CD3 (T3, CD3ε) UCHT1 Biolegend 300479 5' 

CD38 (T10) HIT2 Biolegend 303543 5' 

CD4 RPA-T4 Biolegend 300567 5' 

CD45 2D1 Biolegend 368545 5' 

CD45RA HI100 Biolegend 304163 5' 

CD56 QA17A16 Biolegend 392425 5' 
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CD69 FN50 Biolegend 310951 5' 

CD80 2D10 Biolegend 305243 5' 

CD86 IT2.2 Biolegend 305447 5' 

CD8a RPA-T8 Biolegend 301071 5' 

CD95 (APO-1) DX2 Biolegend 305651 5' 

HLA-DR L243 Biolegend 307663 5' 

PDL1 (CD274) 29E.2A3 Biolegend 329751 5' 

IgM MHM-88 Biolegend 314547 5' 

Custom oligo-conjgated in house   

Antigen Clone Vendor Cat. no.   

CD11c (αX integrin) S-HCL-3 Biolegend 371502 5' 

CD133 (Prominin-1) clone 7 Biolegend 372802 5' 

CD138 (Syndecan-1) MI15 Biolegend 356502 5' 

CD24 (Ly-52) ML5 Biolegend 311102 5' 

CD34 (gp105-120) 581 Biolegend 343602 5' 

CD41 (gpIIb) HIP8 Biolegend 303702 5' 

CD43 (Ly-48) CD43-10G7 Biolegend 343202 5' 

CD45R (B220) RA3-6B2 Biolegend 103202 5' 

CD5 (Ly-1) UCHT2 Biolegend 300602 5' 

IgD IA6-2 Biolegend 348212 5' 

CD20 (B1) 2H7 Biolegend 302302 5' 
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