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ABSTRACT: The SARS-CoV-2 (SC2) virus has caused a worldwide pandemic because of the 23 

virus’s ability to transmit efficiently human-to-human. A key determinant of infection is the 24 

attachment of the viral spike protein to the host receptor angiotensin-converting enzyme 2 25 

(ACE2). Because of the presumed zoonotic origin of SC2, there is no practical way to assess 26 

every species susceptibility to SC2 by direct challenge studies. In an effort to have a better 27 

predictive model of animal host susceptibility to SC2, we expressed the ACE2 and/or 28 

transmembrane serine protease 2 (TMPRSS2) genes from humans and other animal species in 29 

the avian fibroblast cell line, DF1, that is not permissive to infection. We demonstrated that 30 

expression of both human ACE2 and TMPRSS2 genes is necessary to support SC2 infection and 31 

replication in DF1 and a non-permissive sub-lineage of MDCK cells. Titers of SC2 in these cell 32 

lines were comparable to those observed in control Vero cells. To further test the model, we 33 

developed seven additional transgenic cell lines expressing the ACE2 and TMPRSS2 derived 34 

from Felis (cat), Equus (horse), Sus (pig), Capra (goat), Mesocricetus (Golden hamster), Myotis 35 

lucifugus (Little Brown bat) and Hipposideros armiger (Great Roundleaf bat) in DF1 cells.  36 

Results demonstrate permissive replication of SC2 in cat, Golden hamster, and goat species, but 37 

not pig or horse, which correlated with the results of reported challenge studies. The 38 

development of this cell culture model allows for more efficient testing of the potential 39 

susceptibility of many different animal species for SC2 and emerging variant viruses. 40 

 41 

IMPORTANCE: SARS-CoV-2 (SC2) is believed to have originated in animal species and 42 

jumped into humans where it has produced the greatest viral pandemic of our time. Identification 43 

of animal species susceptible to SC2 infection would provide information on potential zoonotic 44 

reservoirs, and transmission potential at the human-animal interface. Our work provides a model 45 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted August 19, 2021. ; https://doi.org/10.1101/2021.08.18.456916doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.18.456916


3 
 

system to test the ability of the virus to replicate in an otherwise non-permissive cell line by 46 

transgenic insertion of the ACE2 and TMPRSS2 genes from human and other animal species.  47 

The results from our in vitro model positively correlate with animal infection studies enhancing 48 

the predicative capability of the model. Importantly, we demonstrate that both proteins are 49 

required for successful virus replication. These findings establish a framework to test other 50 

animal species for susceptibility to infection that may be critical zoonotic reservoirs for 51 

transmission, as well as to test variant viruses that arise over time. 52 

 53 

Keywords: SARS-CoV-2, ACE2, TMPRSS2, animal, replication, model  54 
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INTRODUCTION 55 

The current COVID-19 pandemic is caused by the severe acute respiratory syndrome 56 

coronavirus 2 [SARS-CoV-2 (SC2)] which was first reported in Wuhan, China in late 2019. This 57 

virus most probably has its ecological reservoir in bats, and transmission of the virus to humans 58 

has likely occurred through an intermediate animal host which has not yet been identified (1, 2). 59 

Coronaviruses (CoVs) are a large family of viruses, several of which cause respiratory diseases 60 

in humans, from the common cold to more rare and serious diseases such as the Severe Acute 61 

Respiratory Syndrome (SARS) and the Middle East Respiratory Syndrome (MERS), both of 62 

which have high case fatality rates and were detected for the first time in 2002 and 2012, 63 

respectively.  64 

CoVs are enveloped, single-stranded, positive-sense RNA viruses that belong to the 65 

subfamily Orthocoronavirinae within the family Coronaviridae, Order Nidovirales. The viruses 66 

are divided into four genera: alpha-, beta-, gamma- and delta-CoV based on phylogenetic and 67 

genomic structure (3, 4).  All CoVs currently known to cause disease in humans belong to the 68 

alpha- or beta-CoV groups (5, 6). In addition, alpha-CoV, beta-CoV and gamma-CoV induce 69 

significant disease on various domestic animal species, including porcine transmissible 70 

gastroenteritis virus, porcine enteric diarrhea virus (PEDV), swine acute diarrhea syndrome 71 

coronavirus (SADS-CoV), and infectious bronchitis virus (IBV) in poultry (5-9). Based on 72 

sequence analysis, human coronaviruses have animal origins. The SARS-CoV, MERS-CoV, 73 

HCoV-NL63 and HCoV-229E are thought to have originated in bats, whereas HCoV-OC43 and 74 

HKU1 appear to have come from rodents (10). The 2002 SARS-CoV-1 recombined in civet cats 75 

and humans whereas the 2012 MERS-CoV appeared to have spread from bats to dromedary 76 

camels and then to humans (11-13). 77 
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The main surface protein of CoVs is the spike (S) protein that facilitates receptor binding 78 

and fusion of the viral lipid envelope with the host cell membrane. Receptor binding is facilitated 79 

by the S1 subunit while the S2 subunit is involved with fusion of the viral membrane with the 80 

cell membrane (14, 15). For these two events to occur, the S protein needs to be post-81 

transitionally modified by two different host proteases to become activated.  For SC2, furin-like 82 

proteases cleave the S protein at the S1/S2 site that contains a multiple basic amino acid motif 83 

(RRAR) that is different from SARS-CoV (16).  The S protein undergoes additional cleavage at 84 

the S2’ site by the cellular type II transmembrane serine protease, TMPRSS2 (17-19). However, 85 

other proteases have been described to activate CoVs including cathepsin L, TMPRSS11A and 86 

TMPRSS11D (20-23).  87 

SARS-CoV and SC2 utilize the angiotensin-converting enzyme 2 (ACE2) as the receptor 88 

for attachment on host cells with the S protein (14). ACE-2 is a single-pass type I transmembrane 89 

protein, with its enzymatically active domain exposed on the surface of cells in lungs and other 90 

tissues. ACE2 catalyzes the conversion of angiotensin I into angiotensin 1-9 and angiotensin II 91 

into angiotensin1-7, which are involved with vasodilation effects in the cardiovascular system 92 

(24, 25). Due to conservations of the ACE2 gene among animal species, the potential host range 93 

of SC2 is thought to be extensive.  94 

The ACE2 and TMPRSS2 genes have homologues in many animal species (1, 22). 95 

Several species, including house cats, ferrets, and golden hamsters, have been shown to be 96 

naturally and/or experimentally infected with SC2 (26).  These three species have >80% 97 

sequence similarity in their ACE2 and TMPRSS2 genes when compared to the human genes. 98 

The chicken, which does not appear to be a susceptible host, has an ACE2 homology of less than 99 

70% to the human gene (27). However other species like pigs have a sequence similarity of 100 
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>80%, but are poorly susceptible to infection.  Based on previous work with SARS-CoV, the 101 

binding of S1 to ACE2 can be defined by the interaction of relatively few amino acids, and 102 

predictions of host susceptibility based on these interactions have been made (1, 28).  Despite the 103 

clear importance of the binding of the spike protein to ACE2, the prediction of host susceptibility 104 

does involve other factors including the level and tissue distribution of ACE2 expression and the 105 

requirement for protease activation. 106 

Because chickens are not susceptible to SC2 virus, and their ACE2 and TMPRSS2 107 

protease are distinctly different from the human equivalents, we developed an avian cell line to 108 

screen the potential host range of infection of the virus through the expression the ACE2 and 109 

TMPRSS2 genes from human and animal species to provide novel insights into the receptor 110 

usage, replication and potential host range of SC2 These studies were designed to determine if 111 

the host restriction is strictly from the difference in the receptor and/or protease.  One long-term 112 

goal of this work is to develop a predictive framework for improved epidemic surveillance to 113 

include protection of agriculturally relevant species and animal species that are hard to test 114 

experimentally.  115 

 116 

MATERIALS AND METHODS 117 

Viruses. The USA-WA1/2020 (BEI NR-58221, original material was provided by the US 118 

Centers for Disease Control and Prevention) isolate of SARS-CoV-2 (SC2) was obtained from 119 

BEI Research Resources Repository, National Institute of Allergy and Infectious Diseases, 120 

National Institutes of Health (29).  The virus was propagated and titrated in ATCC-CCL-81 Vero 121 

cells and was utilized at 6 or 7 total passages in Vero cells. Experiments with SC2 were 122 
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performed in a biosafety level-3 enhanced facility with procedures approved by the U.S. 123 

National Poultry Research Center Institutional Biosafety Committee.  124 

Cell lines. DF1 (avian fibroblast), Madin-Darby Canine Kidney (MDCK) and Vero (African 125 

Green monkey kidney, CCL-81) cells were seeded and propagated with standard procedures for 126 

adherent cells in flasks containing Dulbecco’s Modified Eagle Medium (DMEM) (ThermoFisher 127 

Scientific, Waltham, MA) with 10% Fetal Bovine Serum (Sigma Chemical Company, St. Louis, 128 

MO) and 1% Antimicrobial-Antimycotic (GeminiBio, Sacramento, CA). At each passage 129 

adherent cells were disassociated with trypsin (GIBCO) when at 95-100% confluence and 130 

passaged. Cells were incubated (ThermoFisher Scientific) at 37°C with 5% CO2. Vero cells were 131 

obtained from the International Reagent Resource (FR-243).  MDCK cells were obtained from 132 

ATCC and were included because this sub-lineage was not able to support SC2 replication, 133 

therefore could serve as an additional cell line to evaluate results (14). 134 

Construction of transgenic cell lines using lentivirus vectors expressing human ACE2 and 135 

TMPRSS2. DF1 and MDCK cells were seeded at a density of 0.5 X 10
5 

in 500µl DMEM 136 

containing 10% Fetal Bovine Serum and 1% Antimicrobial-Antimycotic (Sigma),
 
in one well 137 

each of a 12 well plate, and left overnight as above. Once cells reached 50-75% confluence, the 138 

media was removed and lentivirus particles were added, according to the manufacturer’s 139 

recommendations. The lentivirus contained the human ACE2 gene under control of the CMV 140 

promoter along with green fluorescent protein (GFP) also under control of a separate CMV 141 

promoter (Origene Technologies, Rockville, MD). A MOI of 20 was used for lentivirus 142 

transduction. For TMPRSS2 transduction, lentivirus particles containing the human TMPRSS2 143 

gene under control of the CMV promoter and red fluorescent protein (RFP) gene under control 144 
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of a separate CMV promoter (Gentarget, San Diego, CA), were added to achieve a MOI of 20. 145 

Polybrene (8µg/ml) was added to each transduction reaction, supplied from the manufacturers, to 146 

aid with membrane charge. Cells were incubated at 39°C for 72 hours after which media was 147 

removed and replaced with fresh media containing 10% FBS. Transduction was confirmed using 148 

an EVOS 5000 (Invitrogen, Carlsbad, CA), equipped with GFP, RFP, DAPI and transmitted light 149 

cubes, to visualize cells expressing GFP or RFP, or both. Production of DF1 or MDCK cells 150 

expressing only human ACE2 (defined as +-) or only human TMPRSS2 (defined -+), or both 151 

(defined as ++), was confirmed by RT-PCR and purification by FACS cell sorting for either 152 

green or red fluorescence. For construction of cells expressing both, the human ACE2 was first 153 

inserted and purified for GFP (99% GFP-positive) followed by human TMPRSS2 insertion and 154 

cell sorting for both RFP- and GFP-positive cells (See Supplemental figure 1). Confirmation of 155 

human ACE2 and human TMPRSS2 expression was performed by RT-PCR and western blot. 156 

Construction of transgenic DF1 cell lines expressing different animal ACE2 and TMPRSS2 157 

genes using the PiggyBac transposon vector. GenBank accession numbers used to construct all 158 

species plasmids can be found in Supplemental Table 1. The ACE2 and TMPRSS2 genes from 159 

cat (Felis catus), horse (Equus ferus), domestic pig (Sus domesticus), goat (Capra aegagrus), 160 

Golden hamster (Mesocricetus auratus), Little Brown bat (Myotis lucifugus) and Great 161 

Roundleaf bat (Hipposideros armiger) were de novo synthesized into the PiggyBac® transposon 162 

expression plasmids under control of the CMV promoter (VectorBuilder Inc., Chicago, IL). As 163 

with the human genes, GFP was included for ACE2 detection and purification, and RFP was 164 

included for TMPRSS2 detection and purification. Frozen E. coli plasmid glycerol stocks, 165 

containing either ACE2 or TMPRSS2, were streaked onto LB agar plates (Invitrogen) containing 166 

100 µg/mL of Carbenicillin (Sigma). Plates were incubated overnight at 34°C in an 167 
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incubator/shaker (Amerex Instruments, Concord, CA).  Single colonies were selected and 168 

incubated in 50 mL LB Broth, containing 100 µg/mL of Carbenicillin, with gentle agitation 169 

overnight in an incubator/shaker at 34°C (Amerex Instruments). 170 

Plasmid DNA Isolation. E. coli plasmid colonies, from overnight LB broth culture, were 171 

pelleted, by centrifugation at 4,000 x g for 10 minutes at room temperature in a tabletop 172 

centrifuge (Beckman Coulter, Pasadena, CA).  Plasmid DNA was isolated from each cell pellet 173 

using the Purelink®HiPure Plasmid Maxiprep DNA Purification Kit (Invitrogen) according to 174 

manufacturer’s instructions. Purified DNA was eluted in 50 µl TE buffer. DNA was quantified 175 

using the DeNovix DS-11FX spectrophotometer/fluorometer with a Qubit™ dsDNA HS Assay 176 

Kit (Invitrogen), and stored at -20°C. 177 

PiggyBac Transfection with animal ACE2 or TMPRSS2. DF1 cells were seeded, at a density 178 

of 0.5 X 10
5 

in 500 µl DMEM, containing 10% Fetal Bovine Serum (FBS) and 1% 179 

Antimicrobial-Antimycotic, in one well of a 12 well plate.  Cells were incubated overnight at 180 

39°C to reach 75-90% confluence. Once cells reached desired confluence, the media was 181 

removed, and cells were washed twice with DMEM. Cells were transfected using Lipofectamine 182 

3000 (Invitrogen) according to the manufacturer’s protocol. Transposase and Transposon DNA 183 

were added at 1:1 ratio in 10% FBS.  Cells were incubated for 72 hours at 39°C, after which 184 

expression was confirmed using an EVOS 5000 as above.  185 

Fluorescent-activation cell sorting (FACS). Transgenic cells expressing ACE2, TMPRSS2 or 186 

both, were grown to 90% confluence in T125 flasks. Adherent cells were trypsinized and 187 

pelleted by centrifugation at 1500 x g for 10 minutes at room temperature. Cell pellet was 188 

resuspended in phenol red free DMEM (GIBCO) containing 20% FBS, and 1% Antimicrobial-189 
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Antimycotic. The cell suspension was then strained through a 50µm cell strainer (Fisher 190 

Scientific). Cells were sorted for GFP or RFP, or both, at the University of Georgia (Athens, 191 

Georgia), Flow Cytometry Core Center, using a Beckman Coulter Moflo Astrios EQ (Beckman 192 

Coulter). 193 

RNA extraction and RT-PCR for human ACE2 and TMPRSS2. Total RNA was extracted 194 

from 2.5 x 10
5
 cells in one well of a 6 well plate from Vero, DF1, DF1 +-, DF1 -+, DF1 ++, 195 

MDCK, MDCK +-, MDCK -+ and MDCK ++. Once cells were 75% confluent, media was 196 

removed and 500 µl of Trizol Reagent (Invitrogen) was added to the wells then placed into 1.5 197 

mL microcentrifuge tubes. Tubes were centrifuged at 10,000 x g for ten minutes at 4°C to 198 

remove any solids. One hundred µl of chloroform (Sigma) was added to supernatant, mixed by 199 

rapid inversion for 30 seconds, allowed to sit for 3 minutes, and centrifuged at 10,000 x g for 15 200 

minutes at 4°C. The aqueous phase was then removed and added to an equal amount of 100% 201 

Ethanol (Sigma). Final RNA extraction was carried out using the ZYMO Direct-zol Mini-Prep 202 

Plus Kit (Zymo Research, Irvine, CA) per manufactures instructions.  203 

Superscript 4 Reverse Transcriptase (Invitrogen) was used according to manufacturer’s 204 

instructions. One µl of 2 µm gene specific primer and 11 µl of RNA were used for all reactions. 205 

Gene specific first strand primers used were:  human ACE2 5’ GGA TCC TAA AAG GAG GTC 206 

TGA ACA TCA TCA 3’ and human TMPRSS2 5’ GAA TCG ACG TTC CCC TGC AG 3’.  207 

Two µl of cDNA template was used for all cell lines. Reactions were conducted using NEB 208 

Phusion Hi Fi Polymerase (New England Biolabs, Ipswich, MA). Reactions were comprised of 4 209 

µl 5X Phusion Buffer, 0.4 µl 10 mM DNTPs, 1 µl of Forward and Reverse Primer, 2 µl of 210 

cDNA, 0.6 µl of DMSO, 0.2µl of DNA polymerase, and 11 µl of ultrapure water (Invitrogen).  211 
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Primers used for human ACE2 PCR were Forward 5’ CTA GCT GTC AAG CTCTTC CTG 212 

GCT C 3’ and Reverse 5’ GGA TCC TAA AAG GAG GTC TGA ACA TCA TCA 3’. Reaction 213 

conditions were 98°C for thirty seconds, followed by 35 cycles of 98° for ten seconds, 68°C for 214 

thirty seconds and 72°C for one minute, after which a final extension of ten minutes at 72° was 215 

added. 216 

Primers for human TMPRSS2 were Forward 5’ GGA AAA CCC CTA TCC CGC AC3’ and 217 

Reverse 5’ GAA TCG ACG TTC CCC TGC AG 3’. Annealing temperature for reactions was 218 

66°C and all other conditions were identical to human ACE2. PCR products were visualized on 219 

1% agarose gel (Bio-Rad Laboratories, Hercules, CA) containing SYBR Safe (Invitrogen) using 220 

a documentation system (Syngene International Ltd, Bengaluru, India). 221 

RNA extraction and RT-PCR for animal species ACE2 and TMPRSS2. Total RNA was 222 

extracted as above. Superscript 4 Reverse Transcriptase (Invitrogen) was used according to 223 

manufacturer’s instructions. One µl of 2 µm gene specific primer and 11 µl of RNA were used 224 

for all reactions. Gene specific first strand primers used were:  universal (except chicken) ACE2  225 

5’ TCC AAG AGC TGA TTT TAG GCT TAT CC 3’ and universal (except bat and chicken) 226 

TMPRSS2 5’ CTG TTT GCC CTC ATT TGT CGA TA3 ’.  Bat TMPRSS2 first strand primers 227 

were: 5’ CAA AGT GAC CAG AGG ACC G 3’. Chicken ACE2 first strand primer 5’AGC 228 

CAA TGG ATC TGC CAG AA 3’ and chicken TMPRSS2 first strand primers 5’ TCT GCC 229 

AGG CCA CAA GTA GG 3’. Two µl of cDNA template was used for all cell lines. Reactions 230 

were conducted using NEB Phusion Hi Fi Polymerase (New England Biolabs, Ipswich, MA). 231 

Reactions were comprised of 4 µl 5X Phusion Buffer, 0.4 µl 10 mM DNTPs, 1 µl of Forward 232 

and Reverse Primer, 2 µl of cDNA, 0.6 µl of DMSO, 0.2µl of DNA polymerase, and 11 µl of 233 
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ultrapure water (Invitrogen).  Primers used for animal (except chicken) ACE2 PCR were 234 

Forward 5’ CTC TTT CTG GCT CCT TCT CAG CTT 3’ and Reverse 5’ TCC AAG AGC TGA 235 

TTT TAG GCT TAT CC 3’. Chicken ACE2 primers were Forward 5’ACG CTA GCC GCT 236 

TCT CAC TAG C 3’ and Reverse 5’AGC CAA TGG ATC TGC CAG AA 3’. Reaction 237 

conditions were 98°C for thirty seconds, followed by 35 cycles of 98° for ten seconds, 68°C for 238 

thirty seconds and 72°C for one minute, after which a final extension of ten minutes at 72° was 239 

added.  240 

Universal primers for animal TMPRSS2 (except bat and chicken) were Forward 5’ ATG GCT 241 

TTG AAC TCA GGG TC 3’ and Reverse 5’ CTG TTT GCC CTC ATT TGT CGA TA 3’. Bat 242 

TMPRSS2 primers were Forward 5’ CAG GGA TTT TGA GAC AAT CTT TCA T 3’ and 243 

Reverse 5’ CAA AGT GAC CAG AGG ACC G 3’. Chicken specific TMPRSS2 primers were 244 

Forward 5’TGT TAC CAG AGG ACC TCC GC 3’ and Reverse 5’ TCT GCC AGG CCA CAA 245 

GTA GG 3’. Annealing temperature for reactions was 66°C and all other conditions were 246 

identical to animal ACE2. PCR products were visualized on 1% agarose gel (Bio-Rad 247 

Laboratories, Hercules, CA) containing SYBR Safe (Invitrogen) using a documentation system 248 

(Syngene International Ltd, Bengaluru, India). All primers used in these studies are listed in 249 

Supplemental Table 2. 250 

Detection of human ACE2 and TMPRSS2 protein expression by western blot, and 251 

immunohistochemistry to detect SC2. Total cellular protein was extracted from cells seeded 252 

into one well of a six well plate in 10% FBS as above. Once cells reached 75% confluence media 253 

was removed and cells were washed twice with 1X PBS. One hundred µl of 2X Laemmli buffer, 254 

containing 2-mercaptoethanol, was added to the cells and collected into 1.5 ml microcentrifuge 255 
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tubes. The cells were then boiled for 7 minutes and vortexed. Fifteen µg of each protein sample 256 

and 5 µl of Page Ruler Plus (Invitrogen) was loaded onto a Bio Rad Mini-Protean Precast TGX 257 

gel and separated for one hour at 100 Volts. The separated proteins were transferred to a 0.2 µM 258 

nitrocellulose membrane (Bio Rad) at 100V for 1 hour as previously described (30). Unbound 259 

proteins binding sites were blocked with 3% non-fat milk in 1X PBS for 1 hour at room 260 

temperature with gentle rocking. The blot was washed 3 times, for five minutes, with 1 X Tris 261 

Buffered Saline (TBS), pH 7.4, containing 0.05% tween-20 (TBST). The blot was then incubated 262 

overnight at 4°C in primary antibody diluted 1:1500 in TBS.  Primary monoclonal antibodies 263 

included mouse anti-human ACE2 (Origen), rabbit anti-human TMPRSS2 (Abcam, Cambridge, 264 

UK) and mouse anti-beta actin (Invitrogen).  The blot was washed as before, incubated for 1 265 

hour, at room temperature, in secondary antibody diluted 1:20,000 in TBS with gentle rocking. 266 

Secondary antibodies included rat anti-mouse IgG1 HRP (Southern Biotech, Birmingham, AL), 267 

and mouse anti-rabbit IgG1 HRP (Southern Biotech). After incubation, the blot was washed 3 268 

times as above in TBST. Pierce ECL substrate (Fisher) was added to the blot for 1 minute and 269 

excess was removed by gentle wicking.  The blot was placed into an x-ray cassette and exposed 270 

to x-ray film (Fisher) for 1 minute, developed and fixed (Kodak). 271 

For immunohistochemistry of SC2 replication, cells were seeded into an I-Bidi 8-well 272 

chambered slide (Fisher) at a density of 4 X 10
4 
in 500 ul DMEM containing 10% FBS and 273 

grown overnight as above. When cells reached 75% confluence the media was removed, and 274 

virus was added at MOI of 1 as above. After 48 hours, the media was removed and cells were 275 

fixed for 5 minutes at 4C in 1:1 ice cold ethanol:methanol. Cells were then washed twice with 276 

cold PBS as above. Cells were blocked as above for one hour at room temperature then washed 3 277 

time with TBS. Primary antibodies against SC2 included rabbit anti-Nucleoprotein MAb 278 
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(Origene) and rabbit anti-Spike MAb (Origene), diluted as above, were added for 1 hour at room 279 

temperature.  Cells were washed 3 times with PBS and incubated in the secondary antibody, goat 280 

anti-rabbit IgG H&L (Alexa Fluor
®

 555) (ABCAM) diluted 1:20,000 in TBS, for one hour at 281 

room temperature. Cells were then washed 3 times with PBS and counterstained with DAPI 282 

(Invitrogen) for 5 minutes. Cells were washed 3 times with PBS then allowed to air dry. Once 283 

dry, cells were mounted with ProLong™ Gold Antifade Mountant (Fisher) and sealed with glass 284 

coverslips after 24 hours. Immunofluorescence was visualized with an EVOS 5000 (Invitrogen).  285 

Comparison of SARS-CoV-2 replication dynamics among cell lines. Cell lines were tested for 286 

virus replication by inoculating them with SC2 at an MOI of 1 added directly when cells were 287 

approximately 70-90% confluent in 6 well plates. For each cell line, media was removed from 288 

three wells and 0.4 ml of virus was added. The same volume of sterile medium was added to 289 

wells on each plate to serve as a sham inoculated control. The plates were incubated for 1 hr at 290 

37C, 5% CO2 to allow virus to adsorb to the cells. Each well was washed 3-times with sterile 291 

PBS prewarmed at 37C to remove unbound virus. Finally, 3 ml growth medium was added to 292 

each well and the cells were incubated at 37C with 5% CO2. Supernatant (0.2mL) was collected 293 

from each well individually at 6, 12, 24, 36, 48 and 72 hours post inoculation (hpi) for detection 294 

of replicating virus by RT-PCR, and detection of cytopathic effect. After 72 hpi, plates were 295 

frozen and thawed at -80C (3x total) and 400 ul of cell culture supernatant was transferred onto 296 

fresh cell cultures as above for a pass 2.  297 

Quantitative real-time RT-PCR to detect SARS-CoV-2. Quantitative RT-PCR was utilized to 298 

detect and determine virus titers in cell culture supernatants. RNA was extracted with the 299 

Ambion Magmax kit (ThermoFisher). The US Centers for Disease Control N1 primers and probe 300 
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for SARS-CoV-2 were used with the AgPath ID one-step RT-PCR kit (31). The cycling 301 

conditions for the RT step were modified to accommodate the recommended kit conditions. A 302 

standard curve of RNA from titrated SARS-CoV-2 virus stock was run in duplicate to establish 303 

titer equivalents of virus. 304 

TMPRSS2 genetic analysis. TMPRSS2 gene sequences from animal species were obtained 305 

from GenBank. Sequences were aligned with Clustal V (Lasergene 10.0, DNAStar, Madison, 306 

WI), and protein architecture derived from The National Center for Biotechnology 307 

(www.ncbi.nih.gov). 308 

Statistical analysis. Viral titers at 48 hpi were compared with the two-way ANOVA with Tukey 309 

multiple comparison (Prism 9.1.0 GraphPad Software, San Diego, CA). Different lower case 310 

letters indicate statistical significance between compared groups. All statistical tests used P < 311 

0.05 as being statistically significant. 312 

RESULTS 313 

Development of DF1 and MDCK cell lines expressing human ACE2 and TMPRSS2.  These 314 

studies were designed to transgenically introduce the human receptor and protease used by SC2 315 

into the avian non-permissive cell line, DF1, and MDCK, to test requirements for replication 316 

competence and establish a model for infection potential. A lentivirus approach was used to 317 

deliver the human ACE2 and human TMPRSS2 genes, under control of the CMV promoter. The 318 

lentivirus constructs co-expressed GFP (ACE2) and/or RFP (TMPRSS2) to allow FACS sorting 319 

for purification of cells containing each target gene or both genes (Supplemental Figure 1A, B, 320 

C). Positive DF1 and MDCK cells were demonstrated expressing either the human ACE2 gene 321 

or human TMPRSS2 gene alone, or both, based on microscopy and two-color cell sorting (Figure 322 
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1, Supplemental Figure 2).  Detection of the inserted genes was confirmed with RT-PCR using 323 

primers specific for the human and chicken genes (Figure 2A and B). Expression of human 324 

ACE2 and human TMPRSS2 protein in DF1 ++ and MDCK ++ cells was confirmed via western 325 

blot (Figure 2C).  326 

 327 

Comparison of SARS-CoV-2 replication dynamics in DF1 and MDCK cell lines expressing 328 

human ACE2 and/or TMPRSS2. Growth curves for all three cell lines (Vero, DF1, and 329 

MDCK) expressing only human ACE2 (+-), only human TMPRSS2 (-+), or both (++) are shown 330 

in Figure 3. No increase in virus titer was demonstrated in wild type DF1 or MDCK, or the DF1 331 

and MDCK cells expressing singe gene constructs with human ACE2 or human TMPRSS2 332 

(Figure 3A). In contrast, virus replication was observed in Vero (positive control), and the 333 

DF1++ and MDCK ++ cells. Virus growth was exponential until approximately 36 hours post 334 

infection and was statistically higher in these cells than others tested.  Virus titers reached similar 335 

levels of approximately 10
5.6

 TCID50 in these three cell lines, and demonstrated a requirement for 336 

expression of both the receptor and the protease. We next passaged the 72 hour sample from 337 

each cell line after a freeze thaw cycle onto a subsequent plate of the same cells (Figure 3B). No 338 

evidence of increased replication was seen in cell lines that did not demonstrate signs of virus 339 

replication during the first passage. In contrast, the Vero, DF1++, and MDCK ++ passage 1 340 

samples contained enough virus to induce infection and replication on passage 2, although the 341 

growth curves displayed a more linear increase in virus titer over time compared to passage 1 342 

inoculated cells.  343 

 344 
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Comparison of cytopathic effects and detection of virus in cell lines expressing human 345 

ACE2 and TMPRSS2. The appearance of CPE and confirmation of virus protein inside of the 346 

cell lines was performed via light microscopy and immunohistochemistry with antibodies against 347 

the SC2 spike and nucleoprotein. Neither CPE nor virus could be detected in cells without virus 348 

(Figure 4) or in the DF1 and MDCK inoculated cells. Likewise, cell lines containing the singular 349 

insertion of either the human ACE2 or TMPRSS2 did not exhibit CPE or positive viral staining 350 

(data not shown). Vero, DF1++, and MDCK++ demonstrated syncytia formation with loss of cell 351 

confluence. The monolayer also deteriorated by 72 hpi and CPE correlated with detection of high 352 

levels of expression of the viral spike and nucleoprotein by immunostaining at 48 hpi.  353 

 354 

Development of cell lines expressing ACE2 and TMPRSS2 from different animal species. 355 

Having demonstrated a model of virus replication in the non-permissive avian DF1 cell line with 356 

insertion of the human ACE2 and TMPRSS2 genes, we next developed cells lines expressing 357 

other species ACE2 and TMPRSS2 to screen for potential animal hosts that could support 358 

replication. The ACE2 and TMPRSS2 genes from house cat, goat, golden hamster, horse, pig, 359 

Little Brown bat, and Great Roundleaf bat were de novo constructed in the PiggyBac transposon 360 

system and transfected into DF1 cells. Purification of cells with green/red fluorescence was used 361 

as with the lentivirus system. As demonstrated in Figure 5, RT-PCR confirmed expression of 362 

animal ACE2 and TMPRSS2 in DF1 cells from FACS-sorted cells.   363 

  364 

SARS-CoV-2 replication in cells expressing animal ACE2 or TMPRSS2.  365 

The replication kinetics of SC2 virus in DF1 cell lines expressing the ACE2 and TMPRSS2 366 

genes from the different animal species was determined. Results demonstrate that the SC2 virus 367 
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could replicate to high levels in DF1 cell lines expressing the ACE2 and TMPRSS2 genes from 368 

cat, goat and golden hamster (Figure 6A). Virus titers reached similar levels of approximately 369 

10
5.1 

to 10
5.8 

TCID50 at 36 hours post infection in these lines, which was similar to that observed 370 

in the Vero control cells. No virus replication was observed in the cells expressing the receptor 371 

and protease from pig or horse species. Both bat species demonstrated initial gains in virus titers, 372 

between 10
3.3 

and 10
3.9

 TCID50 at 12 hours post infection that did not increase after this time. The 373 

72 hpi sample from all cell lines were passaged onto a subsequent plate of cells. Passage 2 results 374 

indicate viral infection and replication from plates containing the cat, goat and golden hamster 375 

animal cell lines (Figure 6B).  As observed previously, a linear shaped curve in virus replication 376 

was observed in passage 2. Neither the pig nor the horse cell lines had evidence of virus 377 

replication in passage 2.  The samples from the two bat species cell lines also had no evidence of 378 

replication on passage 2. 379 

 380 

Sequence analysis of available TMPRSS2 sequence data for human and animal species 381 

demonstrated a truncation at the 5’ end of the bat protein compared to human or other animals 382 

(Supplemental Figure 3). The human protein has 492 amino acids (AA), whereas the Little 383 

Brown bat contains 243 AA and Great Roundleaf bat has 384 AA. It is not clear if the bat 384 

sequences available in GenBank were incorrectly annotated and are not representative of the 385 

complete protein, and that the bat species TMPRSS2 tested here may not be functional due to the 386 

missing the N-terminal portion of the protein. The Little Brown bat open reading frame begins at 387 

human amino acid position 255, and the Great Roundleaf bat begins at human position 113.  388 

Interestingly, Brandts bat (Myotis brandtii) contained a protease similar to human and other 389 

animals.  390 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted August 19, 2021. ; https://doi.org/10.1101/2021.08.18.456916doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.18.456916


19 
 

 391 

Comparison of cytopathic effects and detection of virus in cell lines expressing animal 392 

ACE2 and TMPRSS2. As before, detection of virus was observed via CPE and immunostaining 393 

of transgenic cell lines. As demonstrated in Figure 7, we detected cytopathic effects in cell lines 394 

that supported growth of the virus, including the ones expressing the cat, goat and golden 395 

hamster genes. We also observed CPE in both the cell lines expressing the bat genes which 396 

appeared more rapidly in the Great Roundleaf bat cell line compared to the Little Brown bat cell 397 

line. Staining for viral proteins was greatest in cells expressing cat, goat or golden hamster 398 

transgenes. Interestingly, we did observe positive staining in the bat species cells, however, it 399 

was visibly reduced compared to the other positive cell lines. We did not observe either CPE or 400 

viral staining in the cell lines expressing pig and horse genes.  401 

 402 

DISCUSSION 403 

  Several cell lines and organoids are currently in use or have been developed to study 404 

SC2 replication. Besides Vero cells, Caco-2, Calu-2, and Hek293T cells, human lung, kidney, 405 

liver and blood vessel organoids have been demonstrated to be permissive for virus growth (37-406 

45). However, because these systems can naturally be infected, they are not useful for testing 407 

host susceptibility to the virus. Previous research done in our laboratory and by others clearly 408 

demonstrate that poultry and other bird species cannot support replication of the virus (27, 46, 409 

47). We hypothesized that avian cell lines could become permissible to infection if they 410 

expressed a suitable ACE2 receptor and produced high enough levels of a protease that could 411 

activate SC-2.   It is worth mentioning that proteolytic cleavage of the S protein at the S1/S2 412 
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interface was assumed to be provided by furin-like enzymes naturally present in the DF1 or 413 

MDCK cell lines.   414 

 The SC2 utilizes the ACE2 protein as the primary receptor for entry into host cells and 415 

the TMPRSS2 protease has been shown to be critical for cleavage/activation of the spike protein 416 

(32, 33). In these studies, the transgenic insertion of the human ACE2 and TMPRSS2 genes 417 

conferred virus attachment and replication ability in the non-permissive avian DF1 cell lines and 418 

MDCK cell lines. The results also demonstrated that single expression of either the human 419 

receptor or the protease was not sufficient to allow for virus replication in these cell lines, either 420 

through a lack of attachment or spike protein activation.  These studies also demonstrate DF1 421 

cells expressing the ACE2 and TMPRSS2 genes from different animal species can be used as an 422 

in vitro predictive model for virus replication. Wild type DF1 cells are normally incapable of 423 

supporting SC2 replication; however, expression of the receptor and protease genes from human, 424 

cat, goat and golden hamster allowed virus replication. This in vitro model correlates with the 425 

known natural or experimental susceptibility of three of these species and supports its use as a 426 

predictive model.  The surprising result is the potential susceptibility of goats. Goats have not 427 

been known to be naturally or experimentally infected at this time, but one study has previously 428 

suggested that SC2 can infect HEK cells that are expressing goat ACE2 (53). 429 

Multiple studies have looked at experimental inoculation in pigs, swine cell lines, and in 430 

cell lines where the swine ACE2 gene has been expressed with mixed results.  Three different 431 

experimental challenge studies with swine were conducted with 2 studies showing no infection 432 

and a third showing only a small number of pigs infected after challenge (46, 47, 50-52). Two 433 

swine cell lines, swine testicular and porcine kidney cells, were also found to develop CPE after 434 

several passages of virus.  Multiple studies have also used different mammalian cell lines and 435 
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transfected them with the swine ACE2 gene to allow for transient expression of the gene, and 436 

most found that SC2 or a SC2 pseudovirus could attach to and express protein in the cell as 437 

measured by several different methods (2, 4, 44, 53). This predictive data based on ACE2 data 438 

from some species, such as swine, suggest susceptibility to infection, although our results in DF1 439 

cells did not show evidence of virus replication.  One possible explanation for the discrepancy in 440 

animal studies and in vitro studies is that the ACE2 protein in swine is not efficiently expressed 441 

in the respiratory tract, which is the most likely route of exposure, and the virus cannot 442 

efficiently attach and infect the exposed pig (54). Although results in swine are discordant, our 443 

studies using an avian cell line correlates closer with the swine challenge studies as we did not 444 

measure any virus in the cell supernatant that would be evidence of the virus completing the 445 

replication cycle, despite the possibility that the virus could attach to the modified cell line based 446 

on these previous studies. 447 

The results with the horse ACE2 and TMPRSS2 genes showed no evidence of infection 448 

despite the relatively high sequence conservation of the horse ACE2 protein to human ACE2 at 449 

over 86%, which is higher than cats and Golden hamsters.  Although the sequence similarity of 450 

human and horse ACE2 is high, the difficulty in challenging horses in a Biosafety level 3 animal 451 

facility has likely prevented the research from being performed.  Our results provide additional 452 

support that horses are not susceptible to infection and do not need to be experimentally 453 

challenged. 454 

Bats have been identified as likely reservoirs of both SARS-CoV-1 and MERS-CoV to 455 

humans through intermediate hosts including civet cats and dromedary camels, respectively (34-456 

36). The SC2 virus appears capable to bind to Little Brown bat and Great Roundleaf Bat ACE2 457 

as observed by positive immunostaining and transient virus replication. However, the TMPRSS2 458 
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protease found in these species may not be functional as it lacks the 5’ terminus found in human 459 

and other animals, including other bat species.  Analysis of the GenBank record suggests that 460 

only partial sequence is available and that the gene was not properly annotated and thus the gene 461 

sequences used in these studies may not represent the true open reading frame. Further research 462 

is required to determine whether the anomaly is a sequence artifact.  However, at least one report 463 

predicts low level fusion from Little Brown bat ACE2 compared to human ACE2, similar to the 464 

results described here (2). Further research is also underway to determine the contribution of 465 

different bat species ACE2 and TMPRSS2 as a barrier to SC2 infection. 466 

 As noted, SC2 appears to have a broad host range among mammals, however the full host 467 

range is unknown. Predictive in silico studies based on ACE2 analysis have described potential 468 

broad host tropism of the virus to numerous species including cat, goat and hamster (1, 2, 48, 469 

49). These studies also predict many aquatic species including whales and dolphins to have high 470 

likelihood of binding to SC2 spike protein. In silico analysis of the TMPRSS2 protein is less 471 

predictive, but the protease activation of the SC2 spike protein is necessary for replication to 472 

occur.  As noted earlier, proteases other than TMPRSS2 have been demonstrated to have the 473 

ability to cleave the spike protein.  In vivo testing of many large domestic animals and wild 474 

animal species would be difficult, if not impossible, because of the requirement for work in a 475 

secure biocontainment facility. Therefore we propose this model could be utilized to screen 476 

many species for susceptibility to SC2 infection. Understanding the host range of SC2 is crucial 477 

to understanding the ecology of the virus and the role different species may play as reservoirs or 478 

bridge-species into humans. Species that can be infected also may be affected by disease. Our in 479 

vitro testing in DF1 ++ cells positively correlated with available in vivo challenge data.   Taken 480 

together, the integration and expression of the ACE2 and TMPRRS2 from a target species in the 481 
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otherwise non-permissive avian cell line provides a rapid and economical method to screen 482 

species for susceptibility to SC2.   483 

 484 
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Figure Legend 746 

Figure 1. DF1 and MDCK cells expressing the human ACE2 (with GFP marker) and 747 

TMPRSS2 (with RFP marker) genes. DF1 and MDCK cells were transduced with lentivirus 748 

containing the human ACE2 gene and cells were FACS purified based on GFP expression. 749 

Lentivirus containing the humanTMPRSS2 gene was then transduced into the human-ACE2 750 

expressing DF1 and MDCK cells. Following two-color FACS for GFP and RFP expressing cells, 751 

dual positive cells were grown for 48 hours in an 8-chamber glass slide. Fluorescence was 752 

captured on an EVOS M5000 with added DAPI nuclear stain (blue) GFP and RFP.  753 

 754 

Figure 2. Detection of human ACE2 and human TMPRSS2 expression in DF1 ++ and 755 

MDCK ++ cells.  (A) DF1, DF1 ++, MDCK, MDCK ++ and Vero cells were grown at 37C in 756 

5% CO2. After 72 hours, RNA was extracted and primers specific for human ACE2 and human 757 

TMPRSS2 were used with RT-PCR to confirm expression in DF1 ++ and MDCK ++ cell lines. 758 

(B) Differential expression of human and chicken ACE2 in DF1, DF1 ++, MDCK, and MDCK 759 

++ cell lines with primers specific for both. (C) Fifteen micrograms of protein were extracted 760 

from each cell line and separated by SDS-PAGE. Following transfer to nitrocellulose, 761 

membranes were probed by western blot using rabbit monoclonal antibodies to the human ACE2 762 

and TMPRSS2 proteins. 763 

 764 

Figure 3. Growth of SARS-CoV-2 on DF1 and MDCK cells expressing either human 765 

ACE2, human TMPRSS2, or both (++). (A) DF1, DF1 expressing human ACE2, DF1 766 

expressing human TMPRSS2, DF1 expressing both human ACE2 and TMPRSS2 (++), MDCK, 767 
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MDCK expressing human ACE2, MDCK expressing human TMPRSS2, MDCK expressing both 768 

human ACE2 and TMPRSS2 (++), and Vero cells were inoculated with SC2 at multiplicity of 769 

infection (MOI) of 1. At time points indicated, supernatant samples were taken for RNA 770 

extraction and determination of viral titers by RT-PCR. The values shown are mean +/- standard 771 

deviation of triplicate samples. Two-way analysis of variance with Tukeys multiple comparison 772 

test was performed on titers at 48 hours post inoculation to determine the statistical difference in 773 

virus titer between the cell lines. Lines with different lowercase letters indicate differences 774 

(p<0.05). (B) Pass 2 of virus from cell culture lines expressing human ACE2, TMPRSS2, or 775 

both. After 72 hours of growth, supernatants of pass 1 were transferred onto fresh monolayers of 776 

cells, allowed to absorb for 1 hour and removed. Fresh media was added and samples were taken 777 

at time points indicated to determine virus titer by RT-PCR. Statistical analysis was performed at 778 

48 hours post inoculation. ND=Not detected. 779 

 780 

Figure 4. SARS-CoV-2-induced cytopathic effect and viral detection by 781 

immunohistochemistry in cells expressing human ACE2 and TMPRSS2.   Vero, DF1, DF1 782 

expressing both human ACE2 and TMPRSS2 (++), MDCK, and MDCK expressing both human 783 

ACE2 and TMPRSS2 (++) were grown at 37C in 5% CO2 on glass chamber slides. Cells were 784 

inoculated with SC2 at MOI of 1. At 48 hours post inoculation monolayers were examined for 785 

cytopathic effect and detection of virus with rabbit monoclonal antibodies against SC2 spike and 786 

nucleoprotein. Cells were washed 3 times with PBS and incubated in the secondary antibody, 787 

goat anti-rabbit IgG H&L (Alexa Fluor® 555) for one hour at room temperature. Cells were then 788 

washed counterstained with DAPI. Immunofluorescence was visualized with an EVOS 5000. 789 
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 790 

Figure 5. Transgenic DF1 cells expressing different animal species ACE2 and TMPRSS2 791 

genes. (A) DF1 cells were transfected with PiggyBac® plasmid containing the ACE2 and 792 

TMPRSS2 genes from house cat (Felis catus), horse (Equus ferus), domestic pig (Sus 793 

domesticus), goat (Capra aegagrus), Golden hamster (Mesocricetus auratus), Little Brown bat 794 

(Myotis lucifugus) and Great Roundleaf bat (Hipposideros armiger). Cells were first created with 795 

the animal ACE2 gene and FACS purified based on GFP expression. The animal TMPRSS2 796 

gene was then transfected into the DF1 cells expressing the animal ACE2 gene. Two-color 797 

FACS was performed based on GFP and RFP expression. Transgenic cells expressing animal 798 

ACE2 and TMPRSS2 were grown at 37C in 5% CO2. After 72 hours, RNA was extracted and 799 

primers specific for the animals ACE2 and animal TMPRSS2 were used with RT-PCR to 800 

confirm animal species ACE2 and TMPRSS2 expression in DF1 cells. 801 

 802 

Figure 6. Growth of SARS-CoV-2 in DF1 cells expressing ACE2 and TMPRSS2 from 803 

different animal species. (A) DF1 cells expressing cat, horse, pig, goat, Golden hamster, Little 804 

Brown bat, and Great Roundleaf bat were inoculated with SC2 at multiplicity of infection (MOI) 805 

of 1. At time points indicated, supernatant samples were taken for RNA extraction and 806 

determination of viral titers with RT-PCR. The values shown are mean +/- standard deviation of 807 

triplicate samples. Two-way analysis of variance with Tukeys multiple comparison test was 808 

performed on titers at 48 hours post inoculation to determine the statistical difference in virus 809 

titer between the cell lines. Lines with different lowercase letters indicate differences (p<0.05). 810 

(B) Pass 2 of virus from cell culture lines animal species ACE2 and TMPRSS2. After 72 hours 811 
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of growth, supernatants of pass 1 were transferred onto fresh monolayers of cells, allowed to 812 

absorb for 1 hour and removed. Fresh media was added and samples were taken at time points 813 

indicated to determine virus titer with RT-PCR. Statistical analysis was performed at 48 hours 814 

post inoculation. ND=Not detected. 815 

 816 

Figure 7. SARS-CoV-2 induced cytopathic effect and viral detection by 817 

immunohistochemistry in DF1 cells expressing animal species ACE2 and TMPRSS2.   DF1 818 

cells expressing animal ACE2 and TMPRSS2 were grown at 37C in 5% CO2 on glass chamber 819 

slides. Cells were inoculated with SC2 at MOI of 1. At 48 hours post inoculation monolayers 820 

were examined for cytopathic effect and detection of virus with rabbit monoclonal antibodies 821 

against SC2 spike and nucleoprotein. Cells were washed 3 times with PBS and incubated in the 822 

secondary antibody, goat anti-rabbit IgG H&L (Alexa Fluor® 555) for one hour at room 823 

temperature. Cells were then washed counterstained with DAPI. Immunofluorescence was 824 

visualized with an EVOS 5000. 825 
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Figure 5.  853 
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Figure 6.  857 
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Figure 7.  861 

Cell line CPE Spike NP 

 

DF1-Cat ++ 

   

DF1-Goat ++ 

   

DF1-Golden Hamster 

++ 

   

DF1-Great Roundleaf 

Bat ++ 

   

DF1-Little Brown 

Bat ++ 

   

DF1-Horse++ 

   

DF1-Pig ++ 

   
 862 

863 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted August 19, 2021. ; https://doi.org/10.1101/2021.08.18.456916doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.18.456916

