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Abstract  

 

Summary: epiRomics is an R package designed to integrate multi-omics data in order to identify 

and visualize enhancer regions alongside gene expression and other epigenomic modifications. 

Regulatory network analysis can be done using combinatory approaches to infer regions of 

significance such as enhancers, when combining ChIP and histone data. Downstream analysis can 

identify co-occurrence of these regions of interest with other user-supplied data, such as chromatin 

availability or gene expression. Finally, this package allows for results to be visualized at high 

resolution in a stand-alone browser.  

 

Availability and Implementation: epiRomics is released under Artistic-2.0 License. The source 

code and documents are freely available through Github (https://github.com/Huising-

Lab/epiRomics). 

 

Contact: ammawla@ucdavis.edu or mhuising@ucdavis.edu 

 

Supplementary information: Supplementary data, and methods are available online on biorxiv 

or Github.  
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Introduction 

 

The evaluation of the transcriptional landscape between cell types grants the scientific 

community a deeper understanding of cellular identity, and helps paint the underlying mechanisms 

that drive phenotype and function (Capobianco, 2014). Bulk RNA sequencing has been a gold 

standard in the field, followed more recently with the advent of single-omics approaches (Chen, et 

al., 2019; Conesa, et al., 2016; Kolodziejczyk, et al., 2015; Kulkarni, et al., 2019). However, gene 

expression represents only a single aspect of what is a sophisticated and interlaced network of 

genetic and epigenomic regulators that drive and determine cell identity, with perturbations leading 

to dysfunction and, sometimes, disease (Karczewski and Snyder, 2018).  

Chromatin remodeling is a dynamic process that represents one of the epigenetic layers of 

cell fate maintenance and identity (Andrey and Mundlos, 2017; Muller and Leutz, 2001). 

Approaches such as DNase I hypersensitive site sequencing (DNASE-Seq) (Boyle, et al., 2008) 

and Assay for transposase-accessible chromatin using sequencing  (ATAC-Seq) (Buenrostro, et 

al., 2013; Buenrostro, et al., 2015), are commonly used to compare chromatin accessibility 

between cell types and states. Chromatin immunoprecipitation Sequencing (ChIP-Seq) is another 

approach used to assess the epigenomic regulators driven by specific transcription factors acting 

as either activators or suppressors on the genic region, or at distal-intergenic regions, associated 

with enhancer activity (Daugherty, et al., 2017; de la Torre-Ubieta, et al., 2018; Neph, et al., 2012; 

Pastor, et al., 2014; Starks, et al., 2019). Alternatively, ChIP-Seq is used in conjunction with 

antibodies that pull down specific histone modifications associated with regions of chromatin, 

whose presence can be used to infer whether the region is active, poised or repressed (Calo and 

Wysocka, 2013; Mellor, 2005). The interrogation of transcription factor binding is not enough to 

infer transcriptional behavior, as whether or not chromatin is accessible between cell types, and 
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whether the region is active, poised, or repressed, demarked by co-occurrences of histone marks, 

must be considered in order to fully evaluate the biology (Bemer, 2018; Calo and Wysocka, 2013). 

Lastly, methylation of DNA, quantifiable through whole-genome bisulfite sequencing analysis 

(BS-Methyl Seq) (Adusumalli, et al., 2015), can help determine whether accessible chromatin that 

has recruited the correct histone marks is even available for transcription factor binding and 

recruitment of co-modulators to drive or suppress gene transcription within cell types (Arand, et 

al., 2012; He, et al., 2011).  

While tools exist to compare these different layers in a pairwise manner, a gap exists to 

integrate multiple omics layers quickly, and easily to generate high resolution visuals in order to 

derive more biological meaning behind results. We developed a novel ‘epigenomics in R’, 

epiRomics, package to solve this issue. We designed epiRomics to accept either browser extensible 

data (BED) (Kent, et al., 2002) or bigwig (Kent, et al., 2010) files as input for any of the 

aforementioned types of data. Inclusion of functional annotations, i.e. FANTOM (Lizio, et al., 

2017), single nucleotide polymorphism (SNP) data from GWAS (Wang, et al., 2010; Zheng, et al., 

2015), or Ultra Conserved Non Coding Elements (UCNEs) (Dimitrieva and Bucher, 2012) is also 

possible – in order to more fully integrate many slices of the genetic and epigenetic pie. 

 

Functions 

 epiRomics takes in a user-submitted comma-separated values (csv) file containing hard 

paths to all BED or bigwig formatted files, optional hexadecimal (hex) color code associations for 

each file and a user-defined label to group each input data set (e.g., ChIP, ATAC, RNA, functional, 

etc.). The epiRomics_build_dB command quickly generates a comprehensive and easily accessible 

variable of the class “epiRomics-class” containing a GenomicRanges (GRanges) object 
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(Lawrence, et al., 2013) that tracks each of these submitted data, along with all other data related 

to the species, pulled automatically from the UCSC genome database (Kent, et al., 2002). The 

epiRomics-class variable can easily be integrated with other packages, and the user can also save 

these data in a csv format for further manual exploration in excel, or other comparable third-party 

tools.  

 Putative enhancers can efficiently be called, and then categorized separately – active, 

poised, repressed, etc., through the epiRomics_putative_enhancers function, which will consider 

user provided histone data. For example, the histone marks H3K27ac and H3K4me1 are commonly 

used to demark active enhancer regions (Calo and Wysocka, 2013; Creyghton, et al., 2010; 

Spicuglia and Vanhille, 2012; Spitz and Furlong, 2012) outputting an epiRomics-class variable for 

downstream use within the package, or outside. This variable can be used further to identify key 

enhanceosome regions with evidence of co-binding of multiple user-selected transcription factors 

by implementing the epiRomics_putative_enhanceosome command. These data can also be 

filtered against functional data annotations, such as methylation calls, FANTOM, SNP regions, or 

UCNEs, through the use of epiRomics_putative_enhancers_filtered. A side function is provided 

within the package making use of decision trees (Kingsford and Salzberg, 2008)  in order to 

classify which transcription factors were most meaningfully associated with different enhancer 

types, through the use of epiRomics_predictors.  

 For visualization of these differently classified regions, and integration with bigwig data 

such as gene expression or chromatin availability between cell types, the tool 

epiRomics_track_layer can be used. This makes use of the package GViz (Hahne and Ivanek, 

2016) to generate resolution, publication-quality encapsulated postscript (eps) files. Specific calls 

for enhancer regions provided by epiRomics_putative_enhanceosome can be visualized. 
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Conversely, if users have specific regions or genes of interest they wish to evaluate, they can do 

so using epiRomics_region_of_interest.  

These tools were designed to allow biological relevance to be determined from the 

integrated multi-omics data that is available for a particular tissue or cell type. For example, a 

common enhancer region may be present between cell types of a common progenitor, with 

chromatin accessible across all cell types, methylation may block activity in one cell type, but not 

the other. Drug treatment, or healthy versus diseased comparisons can quickly be made, and the 

multitude of SNPs amassed via GWAS can be seamlessly connected to narrow in on deleterious 

variants that may contribute to disease.  

 

Results 

 epiRomics is developed as an R package to be made available through Bioconductor 

(Gentleman, et al., 2004), and is available under Artistic-2.0 License. epiRomics is designed to 

integrate a multitude of -omics data – in either BED or bigwig format – in order to identify regions 

of regulatory interest, such as enhancers, and provide sophisticated, high quality resolution visuals 

in EPS format for use in publications. Users with little programming experience can use epiRomics 

to encode colors for individual tracks, cross-reference diverse types of -omics data – such as 

ATAC- and RNA- Seq, and produce strong candidate lists for putative enhancers common or 

unique to cell types. Finally, epiRomics is easy to use, with a full walkthrough with sample data 

available through its companion vignette.  
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