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Abstract

Estimation of bird and bat fatalities due to collision with anthropogenic structures
(such as power lines or wind turbines) is an important ecological issue. However, search-
ing for collision victims usually only detects a proportion of the true number of collided
individuals. Various mortality estimators have previously been proposed to correct for
this incomplete detection, based on regular carcass searches and additional field exper-
iments. However, each estimator implies specific assumptions/restrictions, which may
easily be violated in practice. In this study, we extended previous approaches and de-
veloped a versatile algorithm to compute point and variance estimates for true carcass
numbers. The presented method allows for maximal flexibility in the data structure.
Using simulated data, we showed that our point and variance estimators ensured unbi-
ased estimates under various challenging data conditions. The presented method may
improve the estimation of true collision numbers, as an important pre-condition for cal-
culating collision rates and evaluating measures to reduce collision risks, and may thus
provide a basis for management decisions and/or compensation actions with regard to
planned or existing wind turbines and power lines.

Key words: bootstrap, carcass estimator, power line, Monte-Carlo simulation, resam-
pling, wildlife fatality, wind turbine, collision rate

Introduction
Anthropogenic structures, particularly those including thin or fast-moving components,
represent a potential collision risk for birds and bats. Prominent examples are wind
turbines and power lines [13]. In order to quantify and minimize the related ecological
impacts, it is important to be able to estimate the number N of fatalities attributable
to collision with a certain structure over a specific period of time. However, estimation
of N based on regular carcass searches is complicated, given that the number of car-
casses found, NF , is usually an underestimate of the true number N . This is mainly
because [20]: (1) not all collided animals die within the search area; (2) not all carcasses
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persist until the next search (due to decomposition and removal by scavengers); and (3)
not all the remaining carcasses are detected by the searchers. The situation is further
complicated by the fact that carcasses may be overlooked in one search but detected
in a subsequent search (termed ’bleed-through’ [20]).

One possible way to correct for this underestimation is to perform additional ex-
periments to estimate the corresponding rates of ”dying outside”, removal, detection,
and decomposition. Such experiments, usually involving appropriate regression mod-
els, allow the development of corresponding correction factors that can subsequently
be multiplied by raw count numbers, similar to the method of sampling weights [23] in
the context of sightability models [14, 24, 30].

Great efforts have been made during the last decade to develop methodologies for
estimating N using an appropriate estimator N̂ (for overview see for example [3, 20]).
However, although various estimators exist, each includes different assumptions and is
thus limited to some specific cases. Typical restrictions include the regularity of the
search intervals, the underlying distribution function of the carcasses, the constancy or
strength of detection/persistence rates, and the number, type, and dependence of the
covariates influencing the persistence and detection rates [21, 20]. Furthermore, the
estimators have not always taken bleed-through into consideration. As a result of these
individual limitations, each existing estimator produces bias under certain conditions
[19]. There is thus still a need for a universal estimator that can produce good-quality
estimates under general conditions [4, 3]. In addition to providing an appropriate point
estimator N̂ , variance estimates (e.g., including confidence intervals (CIs)) are also
required. However, during the calculation of N̂ (based on NF ), various uncertainties
are approximated by empirical mean values, thus inflating the variance of N̂ . Previ-
ous variance estimators have considered at least some of these uncertainties, possibly
resulting in an underestimation of CIs.

In this study, we developed a novel universal estimator of wildlife fatalities based
on regular carcass searches and additional experiments. Statistically, the estimator
consists of the combined application of different regression models to carcass raw count
and additional field-experiment data. For variance estimation, these methods were
combined with a Monte-Carlo resampling scheme in conjunction with a non-parametric
bootstrap method. The presented method allows the calculation of unbiased point and
variance estimates for true carcass numbers based on minimal assumptions regarding
the raw count and experimental data structures. We verified the functionality of the
estimator under various conditions using simulated data, with an appropriate coverage
of corresponding CIs. Finally, we developed a procedure for the use of these estimated
data within statistical tests.

Experimental design and derivation of the estima-
tor

General notation
M represents the total set of carcasses collided with a certain structure in a certain
period of time, and N = sum(M) represents its sum, approximated by the estimator
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N̂ (derived below).

As noted in the Introduction, only a subsetMF ⊂M of carcasses is found during
J different regular searches. MF is again composed of various single carcasses Mi with
the associated covariate vector ~Xi, where i is a consecutive index. The covariate vector
~Xi = (x1, x2, ...) can comprise information about e.g., the date (or search number) and
location of carcass discovery, or further covariates related to the detection probability,
such as vegetation coverage (c.f., following sections). As mentioned above, additional
field experiments are necessary to estimate the persistence probability s(), searcher
efficiency f(), decomposition time td(), and the average number of collided birds/bats
falling into the search area, Ain(), all of which enter the final estimator. These approx-
imations are given in terms of appropriate statistical models ŝ(), f̂(), t̂d(), and Âin(),
respectively.

We define these models below, and subsequently derive the estimator N̂ , as the sum
of pointwise estimates {θ̂( ~X1), θ̂( ~X2), ...} = M̂.

Proper and improper uses of N̂
Importantly, N̂ is only valid for estimating carcass numbers N of animals that col-
lided with the specific structure/component located within the search area, and for
collisions occurring during the investigated time period. In contrast, N̂ cannot be
used for temporal or spatial extrapolation, e.g., to estimate numbers of collisions with
structures located outside the search area or occurring before/after the period of time
comprising the regular searches. This restriction is based on the fact that bird or bat
migration/appearance may differ between different sites or periods [25, 22]. Errors as-
sociated with extrapolation therefore cannot be controlled.

However, the potential search area or time interval may be too large to allow reg-
ular searches across the entire area or period of time. In this case, the presented
approach should be embedded into an appropriate sampling design (e.g., a stratified
design [30, 23]), rather than extrapolating values. It is also possible that some sites
within the search area cannot be monitored at some time points (e.g., due to flooding
events or agricultural use). However, this situation is qualitatively different, because
corresponding missing values can be interpolated from existing data, e.g., using the
methods of multiple imputation [36].

Especially in the context of impact studies, the average difference in carcass numbers
per search between two different sites/structures may be the issue of interest, rather
than the total sum N [32]. In the simplest form, such a comparison can be made via a t-
test [16]. However, neither raw counts nor pointwise estimates provide a valid data basis
for such a test, and the spread of pointwise estimates among themselves, as well as the
individual accuracy of the estimates, should be taken into account. The corresponding
statistical methods are presented below (”Carcass estimates within statistical tests”).

Persistence probability
Persistence probability is frequently assessed experimentally by laying out a number of
fresh carcasses within an appropriate area and observing their persistence over at least
several days. This allows an estimation of the time of removal after exposure for each
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individual carcass. Carcasses can be checked every day or more frequently (e.g., using
camera traps [26]), given by a scaling factor αt relative to the number of days. E.g.,
αt = 24 indicates that data were collected hourly. Time spans (e.g., denoted by D(k,l))
are given below in units of αt · days.

To use a general model for such repeated measurements over time, we used a re-
gression framework of ”survival analysis”, which allowed consideration of an arbitrary
additional number and type of covariates [6, 7, 20], and in which not only exponen-
tial decay, but various types of decay functions could be compared. The best model
(with respect to decay function and covariate combination), ŝ(), could then be selected
based on the Akaike’s Information Criterion (AIC) [1]. Finally, all underlying model
assumptions need to be proven before using ŝ() within a corresponding correction factor.

ŝ() thus finally depends on a time point a (measured from the time of carcass
exposure) and an additional number and type of covariates ~Xs. Hence, ŝ(a, ~Xs) ap-
proximates the probability P pers that a carcass (with a set of certain covariates) still
remains after the time interval [0, a], thus ŝ(a, ~Xs) ≈ P pers([0, a], ~Xs). In the follow-
ing, we were also interested in the persistence probability for later time intervals [a, b],
i.e., with a > 0. Numerous previous studies have approximated this probability via
P pers([a, b]) ≈ P pers([0, b − a]) [3, 19]; however, this relationship is only valid if we
assume that P pers([a, b]) decreases exponentially over time, i.e., has a constant removal
rate. This assumption is easily violated, e.g., if the removal rate depends on carcass
age. Non-constant removal rates thus produce bias using previous estimators [19].

In the present study, we corrected for this bias approximating P pers([a, b]) via

P pers([a, b], ~Xs) = 1− P pers(a, ~Xs)− P pers(b, ~Xs)

P pers(a, ~Xs)

≈ ŝ(b, ~Xs)

ŝ(a, ~Xs)
=: ŝ([a, b], ~Xs), (1)

setting ŝ(0, ~Xs) := 1 (a carcass always persists in the moment of exposure/falling
down). We thus directly calculated the relative change in P pers between time points a
and b, which is not necessarily equal to the change between 0 and (b − a) as assumed
in previous models. Notably, the right hand side of equation (1) reduces (only) in the
exponential case to ŝ(b− a, ~Xs) and is thus a generalization of previous approaches.

Searcher efficiency
Searcher efficiency f() can be assessed experimentally by performing ”artificial carcass
searches”, where the true number and location of carcasses is known to persons other
than the searchers. Here, we fitted a generalized linear mixed model (GLMM) [8] (in
particular a logistic GLMM) to the data, modelling the binary outcome ”detected/not
detected” and allowing for an arbitrary number and type of covariates influencing f().
Individual observers are usually treated as a random effect to avoid bias connected to
stochasticity of the experimental data [20].

We also tested various possible covariates influencing f() simultaneously, and sub-
sequently selected the best regression model f̂( ~Xf ) (with appropriate covariates ~Xf )
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based on the AIC value [1]. As for ŝ(), all assumptions necessary for a generalization
(e.g., described by [16]) should be proven before using f̂() in the context of a correction
factor. f̂() thus represents the probability that a carcass with a certain set of covariates
~Xf is detected during a search.

Decomposition time
The decomposition time td() represents the number of days until a carcass is undiscov-
erable by a searcher due to its progressive decomposition. Under certain circumstances,
td() can be estimated together with persistence probability s(), leading to a more gen-
eral persistence probability s̃(a, ~Xs), representing the probability that a carcass with
certain covariates ~Xs is neither removed nor decomposed after time a. However, the
time scale and/or temporal dependency may differ between both processes, such that
separate experiments assessing td() are recommended. One possible experimental de-
sign would involve the long-term exposure of carcasses protected by cages prior to
removal.

However, due to differences in the time scales corresponding to removal and decay,
decomposition time often plays a subordinate role compared with removal by scav-
engers, and the experimental effort should thus be adapted accordingly. Thus, consid-
ering the empirical mean t̂d() := td() as the simplest possible regression model may be
sufficient in many cases, though more sophisticated regression models and additional
covariates ~Xt may also be used.

Proportion of carcasses falling into the search area
It is important to estimate and consider the proportion of collided birds/bats that falls
into the search area, Ain(), which may be only a minority of individuals under some cir-
cumstances [2]. However, experimental estimation of Ain() is difficult, because it would
also require estimating the number of carcasses within the unsearched area, which is an
arbitrarily large area. Furthermore, attributing carcasses to the structure of interest
becomes more difficult with increasing distance from the structure. Nevertheless, there
are some direct and indirect methods that can be used to experimentally assess Ain().

(1) If detected carcass numbers within the search area are sufficiently high, a model
density function g(x) can be fitted to the data, representing the relative decay in carcass
numbers with increasing distance x from the structure. In some cases, a normal den-
sity function may be appropriate (e.g., considering collision with power lines), while in
other cases (e.g., if additional ballistic effects of wind turbines are taken into account),
more sophisticated models are recommended [18]. Before fitting g() to the data, the
latter should be corrected for persistence probability, searcher efficiency, and decom-
position time. Finally, an integration of g() over the entire area compared with the
integral truncated to the search area leads to the desired estimate Âin(). Ideally, this is
carried out separately for the data for each search (or, because the data are usually too
sparse, for data pooled over several longer time intervals), in order to also assess the
variance of Ain(). However, this approach may underestimate the number of injured
birds flying longer distances before dying from the consequences of the collision (known
as ”crippling bias” [2]).
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(2) Regular and systematic visual observations of flying animals within the imme-
diate surroundings of the structure (including direct observation of collisions) may help
to estimate the number of collided birds that do not fall into the search area. However,
this approach is associated with several potential problems: such observations are bi-
ased in favour of larger birds, and it is almost impossible to decide if a collided bird that
continues to fly has been mortally injured. Finally, direct observations of collisions are
rare and thus require a relatively large experimental effort to obtain meaningful num-
bers.

(3) The use of radio-tagged animals and molecular tracking methods / forensic ap-
proaches has also been used/proposed to improve estimates of crippling bias [2, 5].
However, these methods can only be applied to relatively small numbers of animals
and involve extensive experimental effort.

Deducing the estimator
Be ~Xi the covariate vector associated with a certain carcass with index i, found at search
number j ∈ {1, 2, ..., J}. ~Xi should include all covariates appearing in the ”best regres-
sion models" ŝ(), f̂(), t̂d(), and Âin() (c.f., previous sections). Furthermore, D(j,k)

represents the number of days between the current search and search number k, scaled
by the factor αt (c.f., section ”Persistence probability”). In the following, we developed
a correction term θ̂( ~Xi), approximating, for each detected carcass i, the total number
of similar carcasses (i.e., with similar covariate values) that collided with the structure
of interest, correcting for carcasses that had been removed by scavengers, overlooked,
fallen outside the search area, or decomposed.

The formula for N̂ estimating the true carcass number N was based on the com-
bined application of different regression models applied to raw counts and additional
experimental data. N̂ was defined as the sum of corrected raw counts θ̂(j)( ~Xi) and
possibly additional imputed missing data θ̂imput

k by

N̂ =

I∑
i=1

θ̂( ~Xi) +

K∑
k=1

θ̂imput
k . (2)

Especially, each value θ̂(j)( ~Xi) is given by

θ̂(j)( ~Xi) =
1

ŝM (D(j,j−1), ~Xi) · f̂( ~Xi) · Âin( ~Xi)

−
(
1− f̂( ~Xi)

)
f̂( ~Xi) ·

∑J

n=j+1
θ̂(n)( ~Xi)L

(n)
j ( ~Xi)Âin( ~Xi)

, (3)

where the index j indicates that the carcass was found during the j-th search. This
equation has to be solved iteratively to obtain θ̂(j)( ~Xi): Starting with θ̂(J)( ~Xi) (which
is well defined, c.f. Supporting Information), θ̂(J−1)( ~Xi) is uniquely determined, which
again yields θ̂(J−2)( ~Xi),..., up to θ̂(j)( ~Xi).
Furthermore, within Eq. 3 we need the following definitions:

ŝM (D(j,j−1), ~Xi) = {ŝ(t, ~Xi)|t = 1, ..., D(j,j−1)}
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and

L
(j+m)
j ( ~Xi) =

(
1− f̂( ~Xi)

)m−1 · f̂( ~Xi) · ŝM ([D(j,j−1), D(j,j+m)], ~Xi),

which are again based on Eq. 1. Please see the Supporting Information for more details
on the successive derivation of this formula.

Variance estimation

General approach
Calculating the variance of N̂ is challenging, and analytical methods quickly reach their
limits, especially if the models include a high degree of complexity [27]. Available ana-
lytical estimators (e.g., Ref. [30]) consider much simpler sightability models compared
with the present model. Some parts of these estimators have been shown to be biased,
and additional implementation errors in standard evaluation software have increased
the variance bias in several publications [14].

The current study applied several different correction terms in a nonlinear manner,
allowing the use of a bootstrap method as a possible alternative to an analytical esti-
mation of CIs [23, 27, 15]. We thus developed a corresponding resampling scheme based
on Monte-Carlo-simulations in conjunction with a non-parametric bootstrap method.

Factors inflating the variance of N̂
During calculation of the estimate N̂ , various uncertainties/random processes are ap-
proximated by empirical means, thus inflating the final variance:

1. a carcass may or may not fall into the search area;

2. a carcass may or may not be removed by scavengers;

3. the exact time point of dying is unknown for a carcass, leading to additional
uncertainties regarding the persistence probability;

4. a remaining carcass may or may not be detected by a searcher (after one or more
searches);

5. the predicted values of the statistical models entering the estimator (and deduced
from additional experiments) are associated with uncertainties;

6. imputation of missing values is also associated with uncertainties.

All these points are incorporated within the following bootstrap algorithm and inflate
the variance estimate.

Resampling scheme
We were interested in the average spread of N̂ around the true value N . Because only
one realization of N̂ = sum(M̂) was available, a corresponding bootstrap estimate was
based on resamples of M̂, virtually imitating and integrating all six above-mentioned
sources of uncertainty. For each resample, this leads to a newly generated ”virtual set of
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detected carcasses” NF
i , from which the estimate N̂i can be calculated. Repeating these

steps nboot times produces a set of estimates N̂1, ..., N̂nboot spread around N̂ , imitating
the spread of N̂ around the true value N . Variance bias due to N̂ 6= N (non-pivotality)
and corresponding corrections is considered below. Please see the Supporting Informa-
tion for more details regarding this non-standard resampling scheme.

Calculation of CIs and bias correction
The N̂i values appeared to be significantly non-normally distributed in all our studies
(e.g., induced by the fact that N̂i ≥ 0 holds), and standard non-parametric bootstrap
methods would thus lead to bias, since N̂ is a non-pivotal quantity: the standard error
of N̂ varies with the size of the estimate and it usually holds that N̂ 6= N . Appropriate
correction procedures should thus be applied to prevent poor coverage probability. To
account for both the non-normality of the data and non-pivotality, we applied non-
parametric bias-corrected and accelerated (BCa) bootstrap methods [12] to calculate
CIs based on the population of N̂i values.

Computation and performance

Software and packages
The estimator N̂ and corresponding CIs were calculated using the open-source software
R version 3.1.0 [29]. We used the packages survival [33] for survival regression in the
context of persistence probability, mgcv [35] for the GLMMs and generalized additive
models (the latter realizing data imputation), and ggplot2 [34] for visualizations. BCa
CIs were calculated using the package simpleboot [28].

Simulation studies
To prove the functionality of the developed point and variance estimators, we tested
our algorithms using simulated data, with a known true number of collided individuals
N . We investigated estimator bias under various conditions, as well as the coverage
probability depending on sample size. We used virtual data reflecting highly heteroge-
neous/difficult data conditions.

Virtual carcass search data: We prescribed a search area divided into two sites,
and a highly variable mortality rate (on average increasing) over time and between the
two sites. Furthermore, if not stated otherwise, we assumed that 10 different searches
were conducted, with time intervals between searches of 1 to 4 days. Covariate values
for each individual carcass were generated randomly leading to persistence and detec-
tion rates ranging between 0.2 and 0.8.

Virtual field experiments: We also created artificial experimental data to
calculate ŝ(), f̂(), t̂d(), and Âin(), as described above. Here, f̂() showed non-constant
dependence on the covariate, ŝ() decayed non-exponentially over time (i.e., having a
highly variable removal rate) with a half-life of 6 days, td() was set to 10 days, and
Âin() was based on randomly generated values from the normal distribution N(mean =
0.8, sd = 0.1). For the sake of simplicity, the pseudo-experimental data did not consider
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Figure 1: Relative bias of the estimator (N̂) and respective raw counts (RC) (both compared to
the true number N) of simulated datasets under various challenging data conditions. Small grey
dots: single data values (randomly scattered in x-direction); large red dots: empirical mean values;
dashed line: zero bias. Detailed parameters: (A) ŝ() = 0.9, search interval 1 day. (B) ŝ() = 0.1,
search interval 14 days. (C) Search intervals varied between 1 and 20 days. (D) Maximal ’bleed-
through’ due to ŝ() = 0.5, f̂() ≡ 1.0. (E) Search intervals increased continuously from 1 to 20 days.
(F) f̂() decreased continuously from 0.9 to 0.1.

individual searchers or carcasses, and standard logistic regression models (generalized
linear models) rather than GLMMs were therefore applied.

Point estimator performance under various conditions

In order to validate the performance of the estimator under non-standard conditions,
we created and investigated different challenging/non-standard datasets by modifying
the above simulated data, always considering N = 20 carcasses (for the specific modifi-
cations/challenges, c.f., Fig. 1). We repeated the following steps 10.000 times for each
modified set of data:

1. allocation of a random covariate value and a random time point of dying (between
two prescribed searches) for each individual carcass;
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2. randomly replacing the data of one date/site combination by missing values (re-
sulting in 5% missing values);

3. performing ”virtual detection/removal/falling outside” using Monte-Carlo meth-
ods based on ŝ(), f̂(), and Âin() applied to corresponding covariates and persis-
tence times. Here, we used resamples of experimental data reflecting the fact that
the true functions were unknown. If a carcass was not removed or detected, or
fell outside or exceeded the decomposition time given by a resample of td(), it
was shifted to the following search;

4. based on the resulting virtual raw count data, N̂ was estimated as described
above.

Thus, for each dataset we created a population of estimates that could be examined
with regard to bias, considering the relative errors of the estimate, (N̂ −N)/N = N̂rel

compared with those of the corresponding raw count, (NF −N)/N = NF
rel. All results

are shown in Figure 1. Here, relative errors associated with single estimates (small grey
points) were scattered randomly along the x-axis to increase their visibility. Respective
empirical mean values of N̂rel N

F
rel are shown as large red dots.

We first investigated the performance under favourable conditions, i.e., a high (non-
constant) detection rate with mean value ŝ() = 0.9 and constant search intervals of 1
day. In this case, the estimates N̂rel were scattered relatively closely and symmet-
rically around N (Fig. 1 A). In contrast, N̂rel values were spread widely and non-
symmetrically around zero-bias if we prescribed very poor detection and persistence
conditions setting ŝ() = 0.1 and search intervals of 14 days (Fig. 1 B). In contrast to
other presented simulation studies, some of the raw count data did not contain any
carcasses, leading to a population of N̂rel = −1 values within the corresponding figure.
Furthermore, this example demonstrated that, especially for such poor conditions, N̂
was strongly non-normally distributed around N , suggesting non-parametric methods
of estimating CIs. In the dataset corresponding to Figure 1, we strongly varied the
persistence probabilities by randomly generating search intervals between 1 and 20
days. Here, as in the following examples, N̂rel values were relatively symmetrically
distributed. In the dataset corresponding to Figure 1 D, we provoked a maximal rate
of carcasses found at later searches (’bleed-through’) by setting ŝ() = 0.5 and f̂() ≡ 1.0.
Finally, we continuously increased the search interval from 1 to 20 days (c.f., Fig. 1 E)
and continuously decreased the detection probability f̂() from 0.9 to 0.1 (c.f., Fig. 1 F).

All these conditions showed qualitative and quantitative differences regarding the
spread of single estimates around a relative error of zero, but all appeared to be unbi-
ased. In contrast, raw count numbers always underestimated the true number N , as
expected.

Assessing coverage probability

We investigated the experimental coverage probability of the calculated CIs, i.e., we
verified if the predicted CIs contained in theory the true value N with the prescribed
nominal value of 0.95. Based on the heterogeneous virtual data introduced above, we
generated 11 different datasets M comprising N carcasses ranging between N = 20
and N = 70. From each of these sets, we first generated 200 different virtual sets of
field dataMF

N,i (i = 1, ..., 200) by simulating all different random processes (removal,
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Figure 2: Assessing the true coverage probability for the presented point and variance estimation
method. For various simulated datasets M containing different total carcass numbers N we gen-
erated 200 different virtual sets of field dataMF

N,i using Monte-Carlo simulations for each dataset
(i = 1, ..., 200). Based on each setMF

(N,i), we subsequently calculated 95% CIs based on nboot = 200
resamples and finally checked if the CIs contained the true value N . Experimental coverage values
are denoted by black dots; red line indicates the regression curve f(N) = 5.41 + 86.36/N .

detection, falling outside,...) based on Monte-Carlo simulations. Based on each set
MF

(N,i), we subsequently calculated 95% CIs based on nboot = 200 resamples, as de-
scribed above. Finally, we determined if the calculated CIs contained the true value N .

The results are shown in Figure 2. The experimental coverage (black dots) deviated
from the nominal coverage, especially for small numbers of N (coverage of about 0.91
for N ≈ 20), but distinctly converged towards the nominal value for higher values of
N : Regression analysis of type f(N) = b0 + b1/N (red line in Fig. 2) yielded highly
significant values b0 = 5.41 and b1 = 86.36. This observation fit well with the previous
studies of Ref. [11, 10], which showed that BCa intervals could significantly exceed the
nominal error rate when the sample size was of the order of 10, but converged towards
the nominal rate for larger samples.

The small difference between the experimentally approached value b0 = 5.41 and
the nominal value of 5.0 could be due to the relatively small resample size of nboot = 200
used in our simulation study. In contrast, resample sizes of nboot = 2000 are recom-
mended when CIs are bootstrapped [16]. However, assessing coverage probabilities for
much larger sample or resample sizes is beyond the scope of the present study, given
that 400 estimates each with 200 resamples already resulted, especially for higher val-
ues of N , in computation times of more than 1 week on a single core, using the virtual
data presented above, due to the computationally intense iterative nature of the N̂
calculations.
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Carcass estimates within statistical tests
Especially in the context of impact studies, the total number of carcasses N of an-
imals that collided with a certain structure within a certain period may not be the
matter of interest. In contrast, the average difference in carcass numbers between two
sites/structure types A and B can be considered, and may be assessed by performing
various simultaneous searches within these two sites, leading to a set of carcass num-
bers NA

i , NB
i , i = 1, ..., J . The question is thus if the ”means of the carcass-producing

processes” [17, 32] differ between these two sites (the latter represented by the two sets
MA = {NA

1 , N
A
2 , ...} and MB = {NB

1 , N
B
2 , ...}). Appropriate statistical tests can be

applied to address such questions, ranging from simple t-tests to more sophisticated
ANOVA- or regression-based before-after control-impact designs [32, 31]. We describe
below how to apply statistical tests appropriately to such estimates by propagating all
uncertainties to final p-values/standard errors, as an approach rarely applied in previ-
ous studies.

Q is a scalar empirical statistic (e.g., mean or regression coefficient) that should
be calculated based on a set of carcassesM to estimate the ”true underlying expected
value” Qreal. Here, we assumed that all carcasses were found, and Q was thus one
possible realization dispersing around Qreal (c.f., Ref. [32]). In order to assess infor-
mation about the range possibly comprising Qreal, we approximated the variance of
Qreal using the sample size and variance of Q, the latter based on the dispersion of the
individual values M = {M1,M2, ...}, termed ”extrinsic variance”. This is the normal
practice by which CIs are calculated.

However, in the current case, additional complexity was introduced becauseM was
itself unknown, and our analysis was thus based on the set M̂ = {θ̂( ~X1), θ̂( ~X2), ...},
comprising estimates instead of sharp values. This issue is frequently neglected and
these estimates are treated as sharp values. However, these uncertainties (”intrinsic
variance”) should be added to the extrinsic variance to obtain an unbiased estimate of
Q.

This can easily be realized within the presented bootstrap framework: as described
above, we can generate several Monte-Carlo-based resamples M̂k

i (i = 1, ..., nboot and
k = A,B), reflecting (only) uncertainties appearing during estimation (the intrinsic
variance). To additionally incorporate the extrinsic variance (reflecting the spread of Q
around Qreal), we subsequently applied the classical bootstrap approach to each of the
above resamples and created a resample, termed as M̂k

(i,resamp), from each M̂k
i . In the

simplest case, this would be a common random resample with replacement. However,
because count data were considered and additional temporal and/or spatial correlation
may exist, more sophisticated resampling models could be appropriate, e.g., including
the identification of relevant strata for resampling [9]. Finally, we applied the statistic
Q to all these ”double-resamples”, leading to two classes of resamples QA

1 , Q
A
2 , ..., Q

A
nboot

and QB
1 , Q

B
2 , ..., Q

B
nboot

, which can be further assessed using appropriate statistical tests
(such as a t-test or regression analysis).
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Summary and discussion
The presented approach offers a flexible and universal method for assessing point and
variance estimates for true carcass numbers resulting from collisions with anthropogenic
structures, based on regular carcass searches, the latter being prone to observation
bias (not all carcasses are usually detected). In contrast to previous approaches, this
novel method does not rely on specific assumptions e.g., regarding the nature of detec-
tion/persistence rates, search interval, covariates influencing detection/removal rates,
or a specific probability distribution for detected carcasses. Using simulated data, we
showed that our estimator was unbiased, even under extreme data situations, e.g., with
respect to strongly inhomogeneous search intervals or non-constant detection/removal
probabilities. However, a possible shortcoming of this novel method could be its rela-
tively high computational effort: the presented equations contained different iterative
elements, meaning that the computation time increased exponentially in line with the
number of carcass searches. However, our R-implementation may not have been pro-
grammed in the optimal time-efficient manner due to a lack of corresponding skills, and
efficient programming in conjunction with a parallelized code could greatly reduce the
required computation times. Furthermore, the iterative nature and high complexity
meant that the estimator could not be presented in the form of a ”easy-to-implement
one line-formula”, as for previous approaches [3, 20].

Standardized and unbiased statistical methods are an important prerequisite for
estimating and comparing the ecological impacts of different anthropogenic structures
(or locations) on bird and bat fatalities, e.g., by guaranteeing comparability. The
present model may provide a basis for this process, by offering a universal and unbiased
method for estimating point and variance estimates of carcass numbers. Furthermore,
the presented bootstrap approach can be easily embedded within various statistical
tests, thus allowing the appropriate use of carcass estimates in the context of impact
studies.
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Appendix

1. Notation

Parameter Definition

S Empirical mean of a set S.
{x|P (x)} Mathematical set with elements x showing properties P (x)

:= Defined as

M Total set of carcasses of animals killed by collision with a certain
anthropogenic structure within a certain period of time

N Corresponding total number of birds/bats; N = sum(M)

N̂ ,M̂ Estimators for N ,M
NF ,MF Total number/set of carcasses found by the searcher
~Xi Covariate vector regarding carcass number i

s() Persistance probabililty

ŝ() Longitudinal logistic regression model estimating s()

f() Detection probability

f̂() Logistic regression model estimating f()

td() Decomposition time

t̂d() Mean / regression model estimating td()

Ain() Probability of falling outside the search area

Âin() Mean / regression model estimating Ain()

J Total number of carcass searches within a certain area
and period of time

Table 1: Definitions and notation part I
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αt Temporal scaling factor for persistence experiments

D(k,l) Time between search numbers k and l (given in
units of αt · day)

θ̂( ~Xi) Estimate for total number of carcasses comparable to
detected carcass number i.

θ̂imput Imputed carcass number for a date-area combination with missing value

N̂F
i Bootstrap resample of the sum of field data NF

N̂i Bootstrap resample of N̂

nboot Total number of bootstrap resamples

Q Scalar empirical statistic

Qreal True value approximated by Q

E(X) Expected value of X

Table 2: Definitions and notation part II
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