
Sensitivity to the slope of the amplitude spectrum is
dependent on the spectral slopes of recently viewed
environments: A visual adaptation study in modified

reality

Bruno Richarda,∗, Patrick Shaftoa,b

aDepartment of Mathematics and Computer Science, Rutgers University - Newark, 101
Warren Street, Rm 216, Newark, New Jersey, USA, 07102

bSchool of Mathematics, Institute for Advanced Study, Princeton, NJ

Abstract

Scenes contain many statistical regularities that could benefit visual processing

if accounted for by the visual system. One such statistic is the orientation-

averaged slope (α) of the amplitude spectrum of natural scenes. Human ob-

servers show different discrimination sensitivity to α: sensitivity is highest for

α values between 1.0 and 1.2 and decreases as α is steepened or shallowed. The

range of α for peak discrimination sensitivity is concordant with the average

α of natural scenes, which may indicate that visual mechanisms are optimized

to process information at α values commonly encountered in the environment.

Here we explore the association between peak discrimination sensitivity and

the most viewed αs in natural environments. Specifically, we verified whether

discrimination sensitivity depends on the recently viewed environments. Ob-

servers were immersed, using a Head-Mounted Display, in an environment that

was either unaltered or had its average α steepened or shallowed by 0.4. Dis-

crimination thresholds were affected by the average shift in α, but this effect

was most prominent following adaptation to a shallowed environment. We mod-

eled these data with a Bayesian observer and explored whether a change in the

prior or a change in the likelihood best explained the psychophysical effects.
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Change in discrimination thresholds following adaptation could be explained

by a shift in the central tendency of the prior concordant with the shift of the

environment, in addition to a change in the likelihood. Our findings suggest

that expectations on the occurrence of α that result from a lifetime of exposure

remain plastic and able to accommodate for the statistical structure of recently

viewed environments.

Keywords: Natural Scenes, Amplitude Spectrum Slope, Head-Mounted

Display, Modified Environment, Bayesian Observer

Our visual world is diverse but contains spatial regularities that span across

the various environments we encounter. There is evidence that accounting for

these spatial regularities in encoding can improve the visual system’s efficiency in

processing complex scene properties [1, 2, 3, 4]. One such regularity is the slope

of the amplitude spectrum (α) of natural scenes, which defines the association5

of amplitude to spatial frequency (f),

amplitude ∝ 1/fα, (1)

where the average α value across various natural scenes is 1.08 [5, 6, 7, 8, 9, 10,

11]. Observers are sensitive to and influenced by the value of α: they exhibit

different discrimination and recognition abilities for different α values [1, 12, 13,

14] and can adapt to α [15, 16, 17]. This bias in the discrimination ability of10

observers for α may be associated with the recent visual experience of observers

[15]. Here, we explore how the discrimination sensitivity for α is related to the

distribution of αs gathered from recent perceptual experience. We used a Head-

Mounted Display (HMD) system paired with a camera to display and modify the

natural visual environment of observers and measure discrimination thresholds15

to α. Finally, we interpret our findings according to a Bayesian observer model

[18, 19, 20] and derive the shape and malleability of the prior for the αs of

natural scenes.

Measuring the discriminability of α has been a popular method for determin-

ing the shape of the internal representation for α [9, 21, 22, 23]. For example, a20
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common finding when measured with noise stimuli — modified to have a partic-

ular α value, — is that the discriminability of α is best (thresholds are lowest)

when the reference α is between 1.0 and 1.3, and rises as the α is steepened or

shallowed [24, 13, 25, 13], a range of α near the average α of natural scenes.

Thus it appears that the human visual system is best able to discriminate the25

spatial characteristics of scenes it encounters often. However, the peak in dis-

criminability can depend on the original α value of the image. When observers

are asked to discriminate against the original α of a natural image, thresholds

are significantly higher than when observers complete the discrimination task

against an image with a modified α1 [26]. Tolerance for small deviations in the30

natural α of an image [26, 22, 23] may assist in optimizing visual processing by

facilitating the discrimination of various objects in the natural world [12, 14].

Thus, while the human visual system peak sensitivity to α is for values regularly

encountered (α ≈ 1.0), it is simultaneously tolerant for minor deviations from

the natural α of an image, which suggests some process of adaptation to the35

spatial characteristics of the environment.

Visual adaptation is the process by which exposure to a stimulus affects

visual processing for subsequent stimuli [27, 28, 29, 30]. When the adapting

stimuli are spatially complex, like a noise stimulus modified to have a natural

α value, adaptation acts to renormalize the percept of observers towards an40

internal norm; a neutral point in the responses of the detecting mechanisms

[15]. Adaptation to artificially steepened or shallowed images generates a shift

in the perceived α of a new image in the opposite direction to that of the

adapting stimulus α. No shift in the perceived α of images is measured when

the adapting stimulus has an α of 1.0, which is coincidentally the average value45

of α across all natural scenes [15]. A finding that indicates the human visual

system has developed an internal representation or an expectation for α values

1Modifying the α of a natural image will alter its perceived focus: steepened images will

appear blurred while shallowed images appear sharpened, which may aid in the discrimination

task.
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commonly encountered through visual experience.

The statistical structure of natural scenes is known to influence sensitivity to

visual features [31, 19, 20, 32]. For example, there is an orientation anisotropy50

in human vision whereby sensitivity to horizontal content embedded in natural

scenes is worse than that of obliques (i.e., the horizontal effect; [33, 34, 35]). The

horizontal effect is believed to stem from the over-representation of horizontal

content in natural scenes that is perceptually normalized by reducing sensitivity

to horizontal content [33, 11, 19, 34]. If observers are immersed in an environ-55

ment that does not contain the natural distribution of orientation content, the

strength of the horizontal effect diminishes severely [31]. This reduction in the

magnitude of the horizontal effect occurs relatively rapidly (within an hour or

two of adaptation), which is a strong indication that the expected structure

of natural scenes can be relearned with a relatively brief exposure to a novel60

environment [32, 31]. The change in sensitivity to orientation contrast was

well-explained by changing the prior of a Bayesian observer to match the novel

orientation distribution of the adapting environment [31]. If the internal repre-

sentation for α is determined by the distribution of commonly viewed αs in the

natural environment, then it may be able to adjust given a novel environment65

statistical structure, as has been demonstrated with orientation sensitivity in

natural scenes.

Here, we explore whether sensitivity to α is associated with the statistical

structure, or distribution, of α in natural scenes by measuring α discrimina-

tion thresholds prior to and following immersion in an environment that no70

longer contains the typical α distribution of scenes. Observers were immersed

in the environment with a Head-Mounted Displays (HMDs) and a camera that

recorded and displayed the visual world in near real-time (a display system

that we have named Modified Reality; [31]). All experimental conditions, the

measurement of α discrimination thresholds and the adaptation to the modi-75

fied environment were conducted in the Head-Mounted Display. This method

greatly facilitates the measurement of sensitivity to features in the natural en-

vironment of observers while maintaining sufficient experimental control on the
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presented stimuli. The environment was modified by steepening or shallowing

the distribution of αs. Finally we develop a Bayesian observer model to explore80

the possible shape of a prior for α and verify if the prior adjusts to match the

novel environmental distribution of α [31, 19, 18].

Materials and Methods

Ethics Statement

Procedures were approved by the Rutgers Arts and Sciences Institutional85

Review Board (Study ID: Pro2020002981). The experiment was completed by

three male participants who provided written informed consent.

Participants

Three male observers (age 29, 33, and 34) took part in this study including

one author (BR). All participants were experienced psychophysical observers90

with prior training on the amplitude spectrum slope discrimination task and

had normal or corrected to normal visual acuity.

Apparatus

The experiment was conducted in an Oculus Rift Development Kit 2 (DK2).

The DK2 has two 5.7 inch OLED displays, each having a monocular resolution95

of 960x1080 pixels and a refresh rate of 75Hz. The Field of View of the Oculus

Rift DK2 is 100o, resulting in a visual resolution of approximately 11 pixels

per degree of visual angle 2. The observer’s environment was captured by a

See3Cam 130 USB 3.0 camera mounted on the Oculus Rift. The camera con-

tinuously collected images of the observers’ environment at a rate of 60 fps100

during the experiment. The images recorded by the camera were sent to the

laptop computer (Dell Latitude 3470), using the MATLAB Image Acquisition

Toolbox, filtered in MATLAB and displayed back to the Oculus Rift with the

the Oculus VR library of Psychtoolbox [36, 37].

2This low visual resolution is a consequence of having displays with a large field of views

very close to the observers’ eyes, ∼ 5cm.

5
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Stimuli105

The environment images collected by the mounted camera were converted to

grayscale and cropped to a size of 720x1080 pixels. The 120 pixels of the Oculus

display above and below the presented environment were set to mean luminance

(RGB [128,128,128]). At baseline condition, only the RMS contrast of the envi-

ronment images was adjusted to match that of the target stimuli (RMS = 0.15).110

For the adaptation condition, images collected from the environment had their

global α changed by either +0.4 or -0.4 (see Figure 1). The environment α

was changed in an identical manner to the creation of the synthetic noise images

used to measure discrimination thresholds (Figure 1). The amplitude of each

spatial frequency coefficient was divided by the average amplitude (calculated115

across orientation for that spatial frequency) to create a flat (α = 0.0) amplitude

spectrum [22]. In this form, the α of the environment image was adjusted by

multiplying each spatial frequency’s coefficient by f−αadjust (the original image

α + 0.4 for the steeper condition or - 0.4 for the shallower condition). The RMS

contrast of αadjust images was then adjusted to 0.15.120

All test stimuli consisted of synthetic visual noise patterns constructed in the

Fourier domain using MATLAB (Mathworks, Natick, MA) and corresponding

Signal Processing and Image Processing toolboxes. We opted for noise pat-

terns with different α values as test stimuli, and not natural images, as these

were overlaid onto the modified environment when we measured discrimination125

thresholds and this greatly simplifies the identification of the test stimuli for

observers. The visual noise stimuli were created by constructing a polar matrix

for the amplitude spectrum and assigning all coordinates the same arbitrary

amplitude coefficient (except at the location of the DC component, which was

assigned a value of 0). The result is a flat isotropic broadband spectrum (i.e.,130

α = 0.0), referred to as the template amplitude spectrum [24, 22]. In this form,

the α of the template spectrum can be adjusted by multiplying each spatial fre-

quency’s amplitude coefficient by f −α. The phase spectra of test stimuli were

constructed by assigning random values from –π to π to the different coordi-

nates of a polar matrix while maintaining an odd-symmetric phase relationship135
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Figure 1: A α modification procedures: We fit a linear regression to the log orientation

averaged amplitude spectrum of the original image (Original) to measure its αoriginal. The

new amplitude spectrum slope was created by first dividing the spatial frequency coefficients

by the average amplitude to create a flat amplitude spectrum. The α of the original image

could then be adjusted by multiplying each spatial frequency coefficient by αoriginal + 0.4.

The modified spectrum was then scaled vertically to ensure that the total contrast energy in

the modified image was identical to that of the original. B The distribution of α values in

the environment of our observers. The α distribution of our laboratory was similar to that

reported by [6] for fully carpented environments with a mean α = 1.29 and standard deviation

of 0.09. The steep environment distribution has a mean of 1.69 while the shallow environment

had a mean of 0.89.

to maintain conjugate symmetry. The noise patterns were rendered into the

spatial domain by taking the inverse Fourier transform of an α-altered template

amplitude spectrum and a given random phase spectrum. The phase spectrum

for all stimuli presented within a trial was identical but randomized from trial-

to-trial. The 1/fα stimuli were 20o in size (220 pixels). RMS contrast (the140

standard deviation of all pixel luminance values divided by the mean of all pixel

luminance values) was fixed to 0.15.

Procedures

The experimental procedures measured sensitivity to α prior to and following

adaptation to a modified environment. Participants first completed an α dis-145

crimination task with 1/fα noise stimuli placed atop the unaltered environment

(RMS adjusted only; see Figure 2). Discrimination thresholds were estimated

by a temporal three-interval, two-alternative “Odd-Man-Out” forced choice task

7
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Steepened Environment

Shallowed Environment

Figure 2: A Prior to adaptation, participants completed a baseline α discrimination task in

their unaltered (gray-scaled and RMS contrast adjusted to 0.15). Participants did 2 staircases

per reference α [0.4, 0.7, 1.0, 1.3, 1.6] (see B for example reference α). Participants then

began the adaptation procedure, where they viewed the modified world (global α of the

environment were steepened by +0.4) for a period of 60 minutes. Following adaptation,

participants completed the same α discrimination task as baseline, but with the modified

environment in the background. Note that the contrast of the test pattern has been increased

for visibility.

[24, 13, 25]. The trial-to-trial change in the image’s α was controlled by a 1-

up, 2-down staircase procedure targeting 70.71% correct [38, 39]. The staircase150

began with a difference between the odd and reference stimulus of 0.5, which

decreased in linear steps (step size = 0.02) towards the reference α when the

observer made two consecutive correct responses. The difference was increased

by 0.02 when observers made an incorrect response (1-Up / 2-Down Rule).

Each trial began with a black (RGB [0, 0, 0]) fixation point (0.5o) presented155

for 1000ms at the center of the display, followed by three stimulus presenta-

tion intervals (250ms each) interlaced by a blank screen (environment only) for

500ms. The second interval always contained the reference α while either the

first or third contained the odd stimulus (the other being identical to the ref-

erence α interval). Participants indicated which interval, either the first or the160
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third, they perceived as being the “Odd-Man-Out” via keyboard press. The

staircase continued until 12 reversals occurred and thresholds were estimated

by averaging the α values of the odd stimulus for the last 5 reversals. Observers

completed two staircases per reference α value [0.4, 0.7, 1.0, 1.3, 1.6, 1.9]; the

discrimination thresholds of each were averaged for data analysis.165

Immediately following baseline, participants completed a 60 minute adapta-

tion period immersed in the modified environment (either α shifted by +0.4 or

-0.4) in the HMD. Participants were instructed to look around their environment

and interact with objects and individuals present around them but to remain

seated or standing in place. Observers then repeated the α discrimination task170

with the modified environment presented in the background. Participants re-

peated the experiment with the other modified environment (either α shifted by

+0.4 or -0.4) no less than 24 hours following the first experimental session. Each

experimental session took approximately 2.5 hours to complete (45 minutes per

α discrimination task and 60 minutes of adaptation).175

Results

Average α discrimination thresholds measured at baseline, following the

adaptation conditions (+0.4 and -0.4), and resulting model fits are shown in

Figure 3. Discrimination thresholds measured in the Oculus Rift DK2 follow

the typical peak and trough commonly observed with traditional displays (i.e.,180

CRTs) [24, 13, 25, 22, 21]. While the overall effects of adaptation on discrimina-

tion thresholds are small, we observe some meaningful changes in discrimination

according to the adaptation condition. Adaptation to a steepened environment

lead to a reduction in discrimination thresholds to very steep reference α (1.9),

t(2) = -3.48, p = .037, g = -0.57 [-1.17, 0.05]. Adaptation to a shallowed envi-185

ronment reduced discrimination thresholds for a reference α of 0.7, and while

this decrease was very large, it was not statistically significant, t(2) = -1.84, p

= .104, g = -1.58 [-3.08, 0.72]. Given the small number of participants in this

study, it is difficult to interpret our findings using traditional null hypothesis

9
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Figure 3: Average discrimination thresholds (points) and environmental priors model fit

(lines) for the six reference αs used in this study. A. Discrimination thresholds measured

at baseline (green) and following steep adaptation (orange). B. Discrimination thresholds

measured at baseline (green) and following shallow adaptation (blue).Adaptation conditions

are drawn on separate charts for clarity. Error bars represent ± 1 standard error of the

mean. The environmental priors model captured observer discrimination thresholds very well

at baseline (r2 = 0.966) and following adaptation to a shallow environment (r2 = 0.911) while

it struggled with the steep adaptation condition (r2 = 0.669).

significance testing and thus we opt for a descriptive approach with effect size190

measures (Hedge’s g) and their exact 95% confidence intervals [40], with values

reported in Table 1. We find steep adaptation to generate a small decrease

in discrimination thresholds for reference α values below 1.3 and a moderate

decrease in discrimination thresholds at steep reference α values (α = 1.9).

Shallow adaptation effects were concentrated at shallow reference αs, with a195

moderate decrease in discrimination thresholds values of 0.4 and 0.7. While the

adaptation effects are moderate in magnitude, they nevertheless suggest some

influence of environmental α on human sensitivity to α, whereby sensitivity

improved for α values near those of the adapter [41, 15, 42, 43].

In both adaptation conditions, we find a facilitation in discrimination to-200

wards the average α of the adapting environment. Under a Bayesian observer

framework, this change in discrimination thresholds could be attributed to an

10

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 13, 2022. ; https://doi.org/10.1101/2021.08.19.456985doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.19.456985


Positive Adaptation Negative Adaptation

Reference α g 95% CI g 95% CI

0.4 -0.23 [-0.56 0.20] -0.30 [-0.66, 0.01]

0.7 -0.20 [-0.80, 0.53] -1.58 [-3.08, 0.72]

1.0 -0.01 [-0.84, 0.98] -0.29 [-0.67, 0.26]

1.3 -0.62 [-1.69, 1.02] -1.07 [-1.52, 0.92]

1.6 0.34 [-0.73, 1.46] -0.12 [-1.06, 0.93]

1.9 -0.57 [-1.17, 0.05] -0.49 [-0.88, 0.17]

Table 1: The effect size (Hedge’s g) and exact 95% confidence intervals [40] for dif-

ferences in the average discrimination following either the positive (+0.4) or negative

(-0.4) adaptation conditions.

improvement in measurement reliability: a change in the likelihood [42, 44, 43]

or in the prior [31] to match the novel environment distribution. In this con-

text, adaption increases the signal-to-noise ratio near the adapter - a change in205

the likelihood of the Bayesian observer - which increases sensitivity to similar

stimulus values. Our results could also be attributed to a change in expectation

on the occurrence of α values following adaptation - a change in the prior of

the Bayesian observer. A change in the prior for α may not be far-fetched. An

interesting factor to consider is that the mode of α distributions varies according210

to the type of environment they represent (e.g., human-made versus natural)

[6]. Different α values will thus vary in occurrence when observers are in entirely

man-made, natural, or hybrid environments. Previous work has shown that the

shape of the prior for statistical regularities in natural scenes (i.e., orientation

contrast) matches the distribution of the statistical regularity [19] and if the215

distribution is changed [31], a similar change in the prior can be observed. We

built a Bayesian observer model to determine whether a change in experience

(i.e., prior) or an improvement in measurement (i.e., likelihood) accounts for

the change in discrimination thresholds we observed here.

The probability of observing a particular stimulus, α, given a measurement,220
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m, is defined as the product of the likelihood, p(m|α), and prior probability

distribution p(α)

p(α|m) =
p(m|α)p(α)

p(m)
. (2)

We explored five priors probability distributions to determine if a change in

the prior or a change in the likelihood best captured the observed change in

discrimination thresholds. The priors were all defined as Gaussian distributions,225

p(α) = N (µα, σ
2
α) (3)

with their means µα set to one of the following conditions. In the first condi-

tion, the mean value of the priors matched those of the adaptation environment

(the envrionmental priors model; baseline: µα = 1.29, steep adaptation: µα

= 1.69, shallow adaptation: µα = 0.89), the second to the fourth alternatives

were models with a prior fixed at one of the environmental distributions, (base-230

line, steep or shallow models) while the fifth alternative had a prior mean that

matched that the distribution of αs recorded from a variety of environments

(the natural environment prior; α = 1.08). The standard deviation (σα) of all

priors was fixed to 0.15, slightly broader than the recorded environmental prior

but a better approximation of the width of α distributions recorded in various235

environments [5].

The observer likelihood p(m|αi) was defined as a Gaussian centered on the

current αi,

p(m|αi) = N (αi, σ
2
αi
) (4)

with a variance term, σ2
αi

defined as a sine wave,

σα = A sin(2πfα+ ϕ) + Z (5)

scaled to range between 0 and 1. The free parameters A, f , and ϕ to control the240

amplitude, frequency, and phase, respectively, while the value Z prevented the

sine wave from reaching a value of 0. We selected a sine wave to operationalize

the variance of the likelihoods for α as it is a simple model with few parameters

that approximated observer changes in variance across α well.
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The expected α (α̂) for any given trial was taken as the mean of the posterior245

distribution with variance σ̂2. Model accuracy (percent correct) between the

trial α̂i and the reference (α̂ref ) was defined as the probability returned by a

cumulative normal distribution [45],

pcorrect = Φ
(d′
2

)
(6)

where

d′ =
α̂i − α̂ref√
σ̂2
αi

+σ̂2
αref

2

(7)

Discrimination thresholds were the ∆α value (difference between the test α and250

the reference α) that elicited 70.71% correct performance, as in our behavioral

task. Model parameters (A, f , and phi) were optimized for each prior condition

with fminsearch in MATLAB, minimizing the sums of square error between the

model output and observer α discrimination thresholds, prior to and following

adaptation.255

Figure 4: A. The environmental prior probability distributions of the best fitting model.

B. Some of the resulting likelihoods from the model fitting procedure p(mi|αi) comparing

the adaptation likelihoods to those of the baseline condition. We observed a narrowing of

likelihoods for αs in the range of 0.4 to 1.3 following steep adaptation (with the narrowing

being largest or most prominent for reference αs between 1.0 and 1.3). Only shallow αs (∼

0.4-0.7) showed a indication of narrowing following shallow adaptation.

Of the prior variants explored here, the best performing model had prior

probability distributions that matched the adapting environment of observers

(Figure 4A). The other model variants captured observer performance for their
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respective conditions well but were unable fit thresholds for other experimen-

tal conditions (see table 2 for the model RMSerrors and Appendix A for the260

resulting model fits). Given these results, it appears that adaptation in mod-

Model R2 RMSe AIC

Environmental Priors 0.88 0.007 -32.59

Baseline Prior - 0.051 -1.55

Steep Prior 0.59 0.014 -32.62

Shallow Prior - 0.065 0.43

Natural Prior - 0.056 -24.27

Table 2: The R2, Root Mean Square error (RMSe) and the Akaike Information Cri-

terion (AIC) calculated across all experimental conditions for each model investigated

in this study. Only the environmental priors model and Steep prior had average devia-

tions small enough to calculate R2 values for the model fits. Both models have similar

AIC values, but the environmental priors model captured more of the variability in

our data and returned a smaller average deviation than the steep prior model and is

elected the best performing model.

ified environments, where the distribution of α has shifted towards steeper or

shallower α can exert a change in the observer’s prior for α and reduce dis-

crimination thresholds (Figure 4A). As would be expected from an adaptation

paradigm, we also observe a systematic change in the likelihood variance across265

adaptation conditions (Figure 4B). To simplify visualization, Figure 5 draws

the envrionmental prior model standard deviation of the likelihoods for each

environments. At baseline, the standard deviation of the likelihood peaks at an

α of 0.7. It decreases as α steepens, with a trough around α of 1.6. Adapta-

tion to a shallow environment reduced the width of the likelihoods for shallow270

α values while seemingly leaving steeper α values unaffected. Adaptation to a

steep environment reduced the width of the likelihoods for α values between

1.0 and 1.3, mirroring the standard deviation of the likelihoods in the shallow

adaptation condition.
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Figure 5: The standard deviation of the environmental priors model likelihoods across α. The

standard deviation of the likelihoods was defined as a sine wave with amplitude, frequency

and phase as free parameters.

Discussion275

We measured discrimination thresholds to the slope of the amplitude spec-

trum of noise patches before and following immersion in a modified environment,

all within an HMD. We found baseline α discrimination thresholds to have the

same pattern across reference αs as is typically measured in more traditional

laboratory equipment. Adaptation reduced α discrimination thresholds for ref-280

erence α values near the average α of the modified environment. Specifically,

immersion in a steepened world decreased thresholds for very steep reference α

(i.e., 1.9), while immersion in the shallowed environment decreased thresholds

for a reference α of 0.7. Behaviorally, our findings are similar to other visual

paradigms (e.g., speed and color perception), which found improved sensitivity285

at values near the adapter [42, 43, 27]. These types of adaptation effects are
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thought to indicate an improvement in sensory encoding (an increase in the sig-

nal to noise ratio or a narrowing of the likelihood [42, 44, 43]. However, there is

accumulating evidence that prolonged or repeated exposure to particular stimuli

(i.e., adaptation) can have a meaningful effect on the prior probability distri-290

bution of observers, shifting them toward the values of the adapting stimuli

[32, 31, 46, 47]. In order to determine whether an improvement in sensory en-

coding or a change in the expectation of the stimulus properties best explains

our findings, we modeled our psychophysical results with a Bayesian observer

similar to previous studies investigating the statistics of natural scenes [19, 31].295

We built five model variants that differed in their prior probability distribution.

We found the environmental prior model, with prior probability distributions

representing the current distribution of αs, best-captured observer thresholds.

Additionally, observer likelihoods were also affected by the adaptation paradigm.

Shallow adaptation narrowed the width of the likelihoods near α values of 0.7,300

and a steep adaptation narrowed the likelihood for α values between 1.0 and

1.3. We find both a change in the likelihood and the prior explain the change

in psychophysical responses. Our findings support that sensitivity to α is asso-

ciated with the statistical structure or distribution of α in natural scenes and is

sufficiently malleable to adapt in environments with novel α distributions.305

Sensitivity to visual features is dependent on the probability of occurrence

of these features in the environment of observers [32]. For example, the typ-

ical anisotropic sensitivity to orientation (i.e., the oblique effect) is not solely

attributed to inhomogeneity in sensory noise for oblique orientations but also

from their relatively lower occurrence in the environment compared to cardinal310

orientations [19]. Our modeling results suggest a similar phenomenon concern-

ing α discrimination, which can—in part—be attributed to the occurrence of α

values in natural environments. Following exposure to an environment with a

modified α distribution increased sensitivity to α at reference values near the

peak of the modified α distribution. To capture this effect in observer discrim-315

ination thresholds, the peak probability of the prior distributions had to match

those of the distribution of αs in the environment. Changes in the prior prob-
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ability distribution in the direction of the environment distributions have been

reported for other visual paradigms [47, 31, 46, 32]. Exposure to higher speed

stimuli over multiple days changed the speed prior of observers from one with320

high probabilities for low speeds (the low speed prior) to a prior probability

distribution with a peak at higher speeds [47]. This change in the prior is also

similar to effects shown by [31] where immersion in an isotropic world (in an

HMD) flattened the prior for orientation [19].

However, changes to the prior alone do not appear to be sufficient to charac-325

terize the change in discrimination thresholds following adaptation fully, which

was particularly evident in the shallow adaptation condition. The likelihood

variance narrowed for α values near the mean α of the adapting environment,

a reduction in measurement noise that is expected following visual adaptation.

Previous Bayesian observer models have found the increased sensitivity follow-330

ing adaptation to stem from a narrowing of the likelihood distributions at the

value of the adapter and not a change in the prior [42, 43]. It is plausible

that the change in the likelihood following shallow adaptation contributed to

reducing discrimination thresholds at a reference α of 0.7. Still, a change in the

likelihood alone cannot adequately capture the discrimination thresholds across335

all three adaptation conditions. Model variants clamped to a single prior (i.e.,

baseline, steep, shallow, or the natural [5] priors - shown in Appendix A), while

able to fit their respective experimental condition were unable to capture all

experimental conditions.

In selecting a parameterization for the variance of our likelihoods, we opted340

for a sine wave function as it approximated the observer variance well in the

current study and previous works [25]. The sine wave had the additional benefit

of being defined by relatively few parameters (amplitude, frequency, and phase).

A similar approach was used to determine the width of the likelihood when de-

veloping a Bayesian observer model for orientation content in natural scenes345

[19]. We had no explicit motivation in selecting this function to determine the

variance of our likelihoods. A variety of simpler or more complex functions could

also capture the change in likelihood variance across stimulus α. Our predom-
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inant interest in this study was to determine whether adaptation in modified

environments could generate a shift in the prior of observers. Consequently, we350

did not explicitly design our experiment to accurately determine the shape of

the function that defines measurement noise. Another paradigm better suited

to determine measurement noise would likely aid in parameterizing the shape

of said function across α. Given our current data, we opted to define the width

of the likelihoods with a simple function that appeared to represent observer355

data well and sufficiently flexible to accommodate for changes in the likelihoods

following either adaptation condition [42, 43].

Additionally, while we find evidence that a change in the likelihood con-

tributes to the change in discrimination thresholds following adaptation, it is

insufficient to characterize the change fully we observe following immersion in360

the modified environment. Our modified reality procedure subjects observers

to the adaptation environment for an extended period (1 hour + 45 minutes

of subsequent testing), which is significantly longer than traditional adaptation

studies that adapt for periods of seconds or minutes. More extended adaptation

periods are have been shown to target different visual mechanisms, which oper-365

ate on longer-term visual representations than a short-term adaptation that al-

ters mechanisms responsible for moment-to-moment fluctuations [48, 49]. Short

adaptations periods are therefore unlikely to generate any meaningful change

in the prior of observers. At the same time, a prolonged immersion in modified

reality [31] or repeated exposure to certain stimuli over days [47] will stimulate370

the learning of novel stimulus properties / environmental statistics and effect a

change in the prior probability distribution.

Finally, it is worth noting that psychophysical measurements of α discrimi-

nation thresholds are traditionally completed in laboratory environments with

monitors (e.g., CRTs) that are large and of a sufficiently high resolution to dis-375

play a wide range of spatial frequencies [24, 13, 25, 9]. Traditional CRTs appear

not to be necessary when measuring sensitivity to the slope of the amplitude

spectrum of natural scenes. While implementing psychophysical paradigms in

HMDs is not novel [50, 31], the measurement of α discrimination threshold,
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which is dependent on the spatial frequency resolution of the display, is novel.380

We have demonstrated that discrimination thresholds to α can be measured

accurately with the smaller screens of HMDs limited in the range of spatial fre-

quencies they can display. The spatial frequency resolution of the Oculus Rift

DK2 only reaches 5.5 cycles/o of visual angle. Still, α discrimination thresh-

olds measured in the Oculus Rift DK2 showed the expected peak and trough385

for reference αs of 0.7 and 1-1.3, respectively. The peak and trough were also

of similar magnitude to thresholds measured in other studies (using the same

staircase methodology) [24, 25]. Human observers do not need a wide range

of spatial frequencies to discriminate α and complete the task with relatively

limited spatial frequency content.390

Conclusion

Discrimination thresholds to the slope of the amplitude spectrum (α) are

subject to the recently viewed environment of observers. Spending a prolonged

amount of time in a modified environment where the typical α values are steeper

or shallower than the normal visual world of the observer will decrease discrim-395

ination thresholds to steep or shallow α, respectively. These effects were well-

described by a Bayesian observer model, which showed a systematic shift in

its prior probability distribution as a function of adaptation. The priors were

shifted in the same direction as the adaptation condition. Our findings demon-

strate that expectations on the occurrence of α values that result from a lifetime400

of exposure remain plastic, accommodating for the statistical structure of the

recently viewed environment.
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Baseline Steep Adaptation Shallow Adaptation

Model r2 RMSe r2 RMSe r2 RMSe

Environmental Priors 0.966 0.004 0.669 0.012 0.911 0.004

Baseline Prior 0.966 0.004 - 0.087 0.817 0.005

Steep Prior 0.321 0.019 0.669 0.012 0.530 0.008

Shallow Prior - 0.111 0. 729 0.011 0.911 0.004

Natural Prior 0.947 0.005 - 0.096 0.291 0.010

Table 3: Goodness of fit measures for each model explored in this study for all exper-

imental conditions presented separately. Some models generated errors too large to

calculate an r2, in these scenarios a - is used.

Appendix A. Fits of the other models investigated in this study585
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Figure 6: A The resulting fits and likelihoods of a Bayesian observer model with a prior

probability distribution fixed to the baseline environmental distribution of α (α = 1.29). B

The resulting fits and likelihoods of a Bayesian observer model with a prior probability dis-

tribution fixed to the steepened environmental distribution of α (α = 1.69). textbfC The

resulting fits and likelihoods of a Bayesian observer model with a prior probability distribu-

tion fixed to the shallowed environmental distribution of α (α = 0.89). The resulting fits

and likelihoods of a Bayesian observer model with a prior probability distribution fixed to

the natural environmental distribution [5] of α (α = 1.08). Models A - C captured the dis-

crimination thresholds of their respective experimental condition well, but failed when fitting

other experimental conditions. The natural prior performed well with baseline discrimination

thresholds but could not fit the other experimental conditions.
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