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DNA methylation is a common epigenetic signaling tool and an im-
portant biological process which is widely studied in a large array
of species. The presence, level, and function of DNA methylation
varies greatly across species. In insects, DNA methylation systems
are reduced, and methylation rates are often low. Low methylation
levels probed by whole genome bisulfite sequencing require great
care with respect to data quality control and interpretation. Here we
introduce BWASP/R, a complete workflow that allows efficient, scal-
able, and entirely reproducible analyses of raw DNA methylation se-
quencing data. Consistent application of quality control filters and
analysis parameters provides fair comparisons among different stud-
ies and an integrated view of all experiments on one species. We de-
scribe the capabilities of the BWASP/R workflow by re-analyzing sev-
eral publicly available social insect WGBS data sets, comprising 70
samples and cumulatively 147 replicates from four different species.
We show that the CpG methylome comprises only about 1.5% of CpG
sites in the honeybee genome and that the cumulative data are con-
sistent with genetic signatures of site accessibility and physiological
control of methylation levels.
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DNA methylation is a heritable, reversible biological pro-1

cess and a common epigenetic signaling tool that can alter2

the activity of a gene, via regulating its expression, without3

changing its nucleotide sequence. DNA methylation is found4

across a wide array of species, including mammals, plants,5

insects, bacteria, and fungi (1, 2). However, its functions, bio-6

logical characteristics, and genomic distribution are distinct7

for different taxonomic lineages (3).8

In insects, the presence and levels of DNA methylation vary9

greatly (4). DNA methylation systems are reduced in some10

insect lineages. For example, the Drosophila melanogaster11

genome is missing most of the methylation machinery and,12

as a result, lacks any detectable DNA methylation patterns13

(5). The role of DNA methylation in social insects remains14

enigmatic, even after more than a decade of studies since15

the initial discovery of a full complement of vertebrate-like16

DNA methyltransferase genes in the genome of the honeybee17

Apis mellifera (6), including genes encoding the CpG-specific18

Dnmt1 and Dnmt3. Most strikingly, even within social insect19

species, DNA methylation is not always present. The gene20

Dnmt3 seems to have been lost in the genus Polistes, thus21

Polistes dominula and P. canadensis have greatly reduced22

genome wide methylation compared to other Hymenoptera23

species (7).24

In insect species where DNA methylation is present, DNA25

methylation is largely confined to genic regions and elevated in26

coding regions (1, 2, 8–10). Gene body methylation has been27

suggested to affect gene expression and function via alternative28

splicing (8, 9, 11–14), nucleosome stability (15), or regulation29

of transcription elongation (16–20). However, its precise func- 30

tion remains unclear(21, 22). It is nonetheless evident that 31

DNA methylation in insects is involved in a wide range of 32

biological processes, such as nutritional control of reproduc- 33

tive status (23), development (9, 24–26), embryogenesis (27), 34

alternative splicing (8, 11–14), host-parasite evolution (28), 35

memory processing (29–31), age-related changes in worker be- 36

havior (32), modulation of context-dependent gene expression 37

(33), maternal care (34), defense against territorial intrusion 38

(35), longevity(36, 37), or caste determination in social insects 39

(23, 26, 32, 38, 39). 40

In honeybee, a standard social insect model organism, the 41

methylome size is reduced and DNA methylation occurs at 42

much lower levels than in vertebrates, with fewer than 1% of 43

CpG dinucleotides methylated (9). The CpG methylation sys- 44

tem was demonstrated to be functional, and identification of an 45

active methyl-DNA binding domain encoding gene was sugges- 46

tive of pathways for molecular recognition of DNA methylation 47

marks (40). The difference of the honeybee genome-based find- 48

ings compared to the observed scant DNA methylation in the 49

model insect Drosophila melanogaster (which lacks Dnmt1 50

and Dnmt3 genes) (41) raised the possibility of involvement of 51

DNA methylation in the determination of the complex social 52

phenotypes in the honeybee. 53

DNAmethylation has been largely studied by whole-genome 54

bisulfite-sequencing (BS-seq) for different samples, probing a 55

wide variety of developmental and environmental conditions 56

(2, 9–11, 14, 32, 35, 42–52). Although all studies have reported 57

low levels of DNA methylation, restricted almost exclusively 58

to cytosines in CpG context, it has been difficult to compare 59
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Fig. 1. Schematic distribution of methylation sites. Track 1
shows a hypothetical genome annotation, displaying three
genes with one to three exons each. Transcriptional di-
rection is indicated by the arrow of the last exon for each
gene. Putative promoter regions were defined as 500 bp
upstream of the gene annotation start. Tracks 2 and 3
show methylation sites (vertical bars) and methylation-rich
and -poor regions (orange and gray horizontal bars, re-
spectively). Methylation percentages are indicated by the
relative length of the red portions of the vertical bars. La-
beled sites illustrate different classifications, depending
on depth of read coverage and the proportion of reads
indicating non-converted (presumed methylated) Cs: 1 cor-
responds to sites with coverage too low to establish methy-
lation status; 2 and 3 indicate highly supported methylation
(hsm) sites with methylation levels of 25% and 75%, re-
spectively; 4 labels not significantly methylated (nsm) sites.
Thresholds for site classification are discussed in the text.

studies even on the same species due to several factors: (1)60

potential differences in data quality control; (2) use of different61

computational methods and detection thresholds; (3) mapping62

of BS-seq reads to different genome assemblies and annotation63

versions (e.g., (53)).64

Here we present a reproducible, scalable workflow for BS-65

seq data analysis, tailored to, but not exclusive to, studies of66

species with low levels of DNA methylation. The workflow67

provides turnkey computation, starting with just a few ed-68

its of configuration files. The implementation works on any69

UNIX/LINUX system and produces a complete analysis, from70

data quality control, read mapping, methylation site calling, to71

statistical analysis of methylation patterns relative to genome72

annotation. We demonstrate the power of the approach by73

re-analysis of publicly available BS-seq data for social insects,74

showing (1) the validity of the workflow by comparison with75

trusted data sets; (2) critical re-evaluation of published results;76

(3) re-analysis of published BS-seq data mapped to updated77

genome versions; (4) evaluation of published BS-seq data rel-78

ative to an only recently made available genome annotation;79

and (5) integration and comparative analysis of a large set80

of published experiments for A. mellifera. The integrative81

analysis provides a solid estimate of the size of the honeybee82

CpG methylome, and the consistent application of strict data83

quality control measures suggests alternative interpretations84

of some puzzling results in the literature.85

Materials and Methods86

The following subsections describe the essential elements of the87

data processing and analyses in this study. Technical aspects are88

given in full detail in SI Text.89

Data sets. Within the scope of this paper, we collected publicly avail-90

able BS-seq data from studies on four arthropod species: the paper91

wasp Polistes canadensis, the raider ant Ooceraea biroi, the African92

social spider Stegodyphus dumicola (one study each; Dataset S1);93

and the honeybee Apis mellifera (17 different studies; Dataset S2).94

Another large data set for Apis mellifera (nine samples and a total95

of 30 replicates) by Yagound et al. (52) became available after96

completion of our study but is being discussed as an independent97

data set to test our conclusions (see section ’Validation’).98

Read quality control, mapping, and methylation status analysis. Af-99

ter standard read quality control (see SI Text, ’Read quality control100

and trimming.’), Bismark (54) was used for BS-seq read mapping101

(using the Bowtie2 (55) option) and methylation calling. Non- 102

converted reads were filtered using an iterative process (described 103

in SI Text, ’Removal of non-converted reads’). A standard bino- 104

mial test with correction for multiple applications is used to derive 105

reliable sets of methylation sites and levels for analysis (SI Text, 106

’Determination of significant methylation sites’). Only sites that 107

have sufficient coverage of reads to be detectable as statistically 108

solid methylation sites (calls unlikely to have resulted from failed BS- 109

conversion) enter further analysis. These scd sites are distinguished 110

as highly significantly methylated (hsm) sites (with methylation levels 111

unlikely to have resulted from failed BS-conversion) or (otherwise) 112

not significantly methylated (nsm) sites (Fig. 1). 113

BWASP workflow. The entire workflow for obtaining the methylation 114

site data is defined using GNU Make (56) and requires as input 115

only the relevant genome assembly file in multi-FASTA format, 116

and the BS-seq reads, provided either as fastq files or specified 117

for download by NCBI SRA identifiers. To facilitate portability 118

along with reproducibility, the newly developed code is distributed 119

via github (https://github.com/BrendelGroup/BWASP), and the entire 120

workflow is encapsulated in a Singularity container (57) that pro- 121

duces identical results in any compatible compute environment 122

(https://BrendelGroup.org/SingularityHub/bwasp.sif). 123

BWASPR – R scripts for statistical analysis. Statistical analysis of sin- 124

gle base resolution methylation levels calculated by BWASP was done 125

using a suite of R scripts called BWASPR, described in detail in SI 126

Text. The code is available on github (https://github.com/BrendelGroup/ 127

BWASPR) and bundled with all dependencies in another Singularity 128

container (https://BrendelGroup.org/SingularityHub/bwaspr.sif). 129

Statistical assessment of overlap between different sets of sites. 130

When comparing two sets of sites from the same genome, assessment 131

of the statistical significance of their overlap amounts to determina- 132

tion whether the overlap is or is not consistent with the two sets 133

being random samples from a shared pool of sites. Comparing scd 134

CpG sets, the candidate shared pool of sites is the set of all genomic 135

CpG sites. Comparing hsm CpG sites, the candidate shared pool 136

of sites is the set of common scd sites. In each case, the size of 137

the shared pool of sites for sampling was estimated using a mark- 138

and-capture approach as described in the legend to Fig. 2. As a 139

scale-invariant measure of overlap we use ω, defined as follows. Let 140

S1, S2, and S12 be the number of sites unique to sample S1, unique 141

to sample S2, and common between both samples, respectively 142

(Fig. 2), where S1 < S2. Then 143

ω =
S12

S1 + S12 + S2
/

S1 + S12

S2 + S12
[1] 144

gives a value of 0 if S12 = 0 (no overlap between samples S1 and 145

S2) and a value of 1 if S1 = 0 (sample S1 is completely contained 146

in sample S2). 147
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Fig. 2. Estimating the number of methylated genomic CpGs. The hsmCpG rectangle
represents the set of methylated genomic CpGs that are detectable as a subset of the
sufficiently covered, detectable (scd) CpG set, which in turn is a subset of all genomic
CpGs. The overlap of two independent random samples S1 and S2 of the hsmCpG
set provides the mark-and-capture population size estimate for hsmCpG from the
identity S12/S2 = S1/hsmCpG, where S12 denotes the overlap between S1 and
S2, and italicized labels denote numbers of sites in the respective sets. Multiplying
hsmCpG by the ratio of the number of all CpGs in the genome over the number of
scd sites gives the estimated size of the CpG methylome.

Distribution of methylation sites: co-occurrence with annotated148

genome annotation. To correlate methylation site occurrence with149

transcriptional activity, site density was calculated per genome150

feature type, including genic (exon and intron) and intergenic (pro-151

moter and other). For the purpose of these statistics, promoter152

simply refers to the region 500 nucleotides upstream of the anno-153

tated 5′-end of a gene, or shorter to avoid overlap with an upstream154

gene annotation. Site density was defined as number of sites within155

a feature divided by feature length and is reported as values nor-156

malized per 10kb. For exons, statistics were also calculated for157

the subcategories 5′-UTR, CDS, 3′-UTR, and Other (non-coding158

genes). Expected values were derived under the assumption of159

random positioning of sites relative to annotated genome features.160

Comparing ranked lists. The BWASPR workflow generates lists of161

genome regions (genes and promoters) ranked by extent of methyla-162

tion (density of hsm sites or overall methylation level), presented163

as tab-delimited files in output directory RNK. It is of interest to164

compare such lists between different samples to determine whether165

the same regions are relatively hypermethylated under different166

conditions. List comparisons can be made with the included script167

xcmprnks which calculates the rank-biased overlap (rbo) measure168

(58) for all pairwise comparisons of specified lists. Parameters to169

the script include the number of ranks to consider (default: 40),170

the rbo parameter p (default: 0.95), and, for statistical evaluation,171

the number of ranks to shuffle (default: 40), the number of permu-172

tations to generate (default: 100), and the significance level t for173

evaluation (default: 5%). The permutation test is performed by174

randomly shuffling the association of identifier (e.g., gene name)175

and the corresponding ranked score. Observed rbo values in the176

top t % of values generated by shuffling are starred as significant,177

indicating more than expected overlap of the ranked lists.178

Results179

The BWASP/R workflow proceeds through a large number of180

steps, from data download and quality control to read map-181

ping, statistical and visual annotation of results, and testing182

for significant methylation differences between groups of bi-183

ological samples. Our aim is to offer researchers a reliable,184

stress-free, and reproducible method to analyze whole-genome185

bisulfite sequencing data sets, especially targeting data sets186

with low methylation rates, as observed in insects. In order to187

demonstrate the many ways our workflow can be beneficial,188

short read data generated from bisulfite-treated genomes were189

obtained from NCBI SRA as referred to in the published studies 190

listed in Datasets S1 and S2. In total, we re-analyzed publicly 191

available BS-seq read sets of 70 samples and cumulatively 192

147 replicates from four different species and 20 studies (SI 193

Text, Table S1). These re-analyses illustrate how the BWASP/R 194

workflow can be used to rapidly re-evaluate published results, 195

easily re-analyze data in the context of a new genome assembly 196

and/or genome annotation, and, perhaps most importantly, 197

compare and integrate multiple studies in an efficient, consis- 198

tent manner. 199

Description and validation of workflow. To demonstrate and 200

validate the functionality of the BWASP/R workflows, we chose 201

a medium-sized study with multiple samples and biological 202

replicates. The study compared queen and worker samples 203

(three biological replicates each) from Polistes canadensis (59). 204

Our goal was to provide scripts that download the published 205

BS-seq data sets from NCBI SRA and, with minimal initial 206

setup configuration by the user, execute a complete analysis 207

of the data for comparison with the published results. Our 208

implementation is accessible as described in the Materials 209

and Methods section. 210

For the BWASP workflow, three configuration files are needed. 211

In the first file, parameters for the different programs are 212

set to values appropriate for the available computational re- 213

sources (mostly, number of cores and amount of memory to 214

use; examples are provided in https://github.com/BrendelGroup/ 215

BWASP/data/machines.cfgdir/). The second file specifies the 216

genome assembly and annotation files. For Polistes, this 217

amounts to specifying the NCBI download site for the FASTA 218

genome sequence file and the GFF annotation file (see https: 219

//github.com/BrendelGroup/BWASP/data/species.cfgdir/). The 220

third configuration file specifies the design and data source of 221

the study: 222

SPECIES=Pcan 223

GENOME=Pcan.gdna 224

STUDY=Patalano2015 225

SAMPLES=( Queen Worker ) 226

NREPS=( 3 3 ) 227

PORS=( p p ) 228

SRAID=( SRR1519132 SRR1519133 SRR1519134 \ 229

SRR1519135 SRR1519136 SRR1519137 \ 230

) 231

Here, SAMPLES provides labels for the two samples, NREPS 232

indicates that each sample has three replicates, PORS says that 233

the sequence data are paired-end, and SRAID gives the NCBI 234

accession numbers for the data sets. After these preparatory 235

steps, 236

xsetup -m mycpu -s Pcan Patalano2015 237

will generate a complete directory structure populated with the 238

data files and workflow makefiles, ready for execution (mycpu, 239

Pcan, and Patalano2015 refer to the three configuration files, 240

respectively). In general, the user can of course alternatively 241

specify local files instead of download sites, for example in 242

case pre-publication genome, annotation, or BS-seq data are 243

to be analyzed. 244

A complete script for running the BWASP workflow for this 245

example is given in SI Text, ’BWASP workflow: design and 246

output.’ The entire process, including download of all required 247

code (bundled as a Singularity image), involves fewer than 248

a dozen lines of commands and creates 266 Gb of output 249

files (in about 12h on our old 32-processor Linux server). 250
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Obviously, running times will vary with available resource251

allocation. For comparison, we also ran the worker samples252

on the Indiana University Carbonate cluster (https://kb.iu.edu/253

d/aolp), allocating one node with 16 threads, which produced254

identical results in five hours.255

The point we wish to make here is that the user time256

to set up the workflow is marginal, while the computational257

execution is roughly overnight without any additional user258

intervention. Moreover, the workflow takes advantage of the259

GNU Make environment (56) that allows seamless integration260

of different parts of the computation run separately. For261

example, downloading the raw data from NCBI SRA can be run262

independently first to make sure that there is no interference263

by network problems. For large data sets, each replicate can264

be run separately, followed by the cumulative sample analysis.265

Depending on available resources and queuing times on a266

computing resource, such strategies can enhance real-time267

performance. It is these workflow design features that enable268

the large-scale, multi-study integration of experimental data269

being presented here.270

The dependencies of the workflow are depicted in Figs. S1-271

S3, and details are discussed in SI Text, ’BWASP workflow:272

design and output.’ Briefly, the workflow takes the raw BS-seq273

input data, subjects the data to several quality filtering steps,274

and ultimately derives *.mcalls files that for each C context275

record position, read coverage, and percent methylation for276

every sufficiently covered (scd) site in the genome. Data are277

derived initially for each replicate and then cumulated for each278

sample. Given sufficient coverage, between-replicate compar-279

isons can probe the robustness of between-sample comparisons.280

Per sample mapping statistics for the Polistes canadensis study281

are shown in Dataset S3. Cumulative read numbers are seen to282

be in excess of 90 million per sample, with a mapping efficiency283

of about 83%. Two to three million of the mapped reads per284

sample were identified as PCR duplicates and removed.285

While the starting point of the analysis presented here is the286

same as what is presented in (59) and in each case the Bismark287

(54) software was used to make methylation calls, different288

quality control setting choices may impact result details. Here,289

our mapping efficiency is about 10% higher than reported in290

(59) due to our slightly more error-tolerant bowtie2 min_score291

setting. More importantly, inclusion of removal of low quality292

reads, PCR duplicates, and likely unconverted reads as done293

in the BWASP workflow is not discussed in (59) (although a294

procedure for elimination of false positive methylation regions295

is described). Our point here is not to argue for particular296

choices of quality control but to emphasize that the workflow-297

enabled approach allows transparent re-analysis, either with298

original or with modified workflow steps and parameter sets.299

The final genome coverage was estimated as 35.8 for the300

queen sample and as 31.7 for the worker sample (Dataset-S3).301

Five to eleven 5′-positions and one to three 3′-positions of the302

mapped reads were significantly biased for methylation calls303

and conservatively ignored for summary results (see SI Text,304

’BWASP workflow: design and output.’) Overall, more than 80%305

of CpG sites were covered by at least one read, and 21.32%306

and 24.73% of CpG sites were covered by at least 20 reads307

in queen and worker, respectively (Dataset S5). There were308

13,840 and 12,036 hsm CpG sites identified in the queen and309

worker samples, respectively, corresponding to the fractions310

0.16% and 0.15% of scd CpG sites (Dataset S7). Overall311

CpG methylation levels were calculated as 0.99% for queen 312

and 0.98% for worker (Dataset S9). Patalano et al. (59) 313

report the global CpG methylation level as 2.79%. Beside 314

the aforementioned differences in data quality control, their 315

estimate was based on averaging over values in 1-kb windows 316

that excluded regions with fewer than 20 methylation calls 317

and thus should be higher than BWASP reported overall level. 318

Further analyses of the methylation calls (*.mcalls output 319

files from BWASP) were done via the BWASPR workflow, again 320

facilitated by user-supplied configuration parameters. Settings 321

and output for the Polistes study are shown in Dataset S15. 322

The workflow compiles a large number of statistics concerning 323

the extent and distribution of methylation (for details, see SI 324

Text, ’BWASPR – R scripts for statistical analysis.’). Here we 325

highlight the design aspects of the analysis that are tailored to 326

the problem of producing reliable estimates in view of very low 327

overall methylation rates (and, typically, less than statistically 328

desirable read coverage for replicate samples). 329

Key to our strategy is to discard all methylation call data 330

at sites that are covered by fewer than t reads, where t is 331

calculated as the minimal coverage required for a binomial test 332

to detect statistically significant methylation at the site (as 333

opposed to chance events due to incomplete BS-conversion). 334

For the Polistes study, t = 4 (SI Text, ’Determination of signif- 335

icant methylation sites’). Thus, low coverage sites (examples 336

labeled "1" in Fig. 1) are ignored in subsequent analyses. 337

About 70% of the hsm CpG sites are in annotated genes, 338

with about 3.5-fold over-representation of within-exon sites 339

(Dataset S11). Dataset S13 provides more detail and shows 340

that more than 90% of these exonic sites occur in coding 341

sequences. These data would seem to nuance the Patalano 342

et al. (59) observation of “relatively little gene body-specific 343

methylation targeting,” which was based on overlap with 344

highly methylated regions rather than analysis of methylation 345

sites. BWASPR combines site-based and region-based analyses 346

as shown in Fig. 1. In particular, methylation-rich and -poor 347

regions are determined as clustering or overdispersion of sites 348

(SI Text, ’Methylation-rich and -poor regions (MRPR)’) as 349

an empirical proxy for statistical r-scan analysis (following 350

ideas reviewed in (60)). For the Polistes data, it is clear that 351

there is great variation in the dispersion of methylation sites, 352

ranging from tight clustering to stretches of multiple hundred 353

kb devoid of any sites (see Dataset S15, pp. 170-187). 354

Fig. 3 illustrates the complementarity of the site density 355

versus regional methylation measures. Genes of lengths 500 to 356

5000 bp with at least five hsm sites were measured by overall 357

percent methylation and hsm site density. A wide scatter is 358

seen, indicating both genes with relatively high density of sites 359

but relatively low overall methylation level, and vice versa. 360

In summary, this case study demonstrates the validity and 361

capabilities of the BWASP/R workflow as well as the difficulty 362

of detailed comparison with previous computational results 363

for which precise reproduction is rendered impractical or even 364

impossible without the original analysis scripts. The latter 365

theme is taken up also in the next case study, which shows that 366

an easy-to-use workflow enables individualized re-evaluation 367

of published results - and thereby scientific discussion beyond 368

the point of initial peer review. For practical considerations of 369

how to adapt the workflow to analysis of very large genomes 370

with limited computing resources please see SI Text, ’Case 371

study of a large genome.’ 372
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Fig. 3. Correlation of two methylation measures for genes. The y-axis score is the
overall methylation percentage for a gene. The x-axis score is the number of hsm
sites in the gene, normalized to 10kb length.

Using workflow-enabled re-analysis to evaluate published re-373

sults. One motivation for our work was to significantly lower374

the burden of computational reproducibility. A frequently375

encountered problem is that a computational analysis depends376

on a large number of software and parameter choices. If the377

analysis yields surprising results, one has to evaluate whether378

the findings reflect biologically significant features or whether379

differences in software and parameter choices provide the ex-380

planation. If the analysis can easily be re-run with changed381

parameters, for example, then this would provide more robust382

evaluation. In current practice, publications rarely provide383

enough details to completely reproduce a genome-wide com-384

putational analysis, and even if one succeeded in such effort,385

it would likely be a highly time-consuming task.386

For DNA methylation studies, BWASP/R offers a solution387

that allows authors and readers to easily re-evaluate and fairly388

compare results. For illustration, we discuss BWASP/R results389

for the data reported in (45). The paper analyzed differential390

DNA methylation patterns in Apis mellifera capensis female391

embryos produced either sexually by fertilization of eggs with392

sperm or asexually from two maternal genomes via a process393

called thelytokous parthenogenesis. The central goal of the394

study was to probe parent-of-origin effects on DNA methy-395

lation, and the authors’ thorough analysis showed patterns396

of differential methylation between the two types of embryos,397

consistent with genomic imprinting. However, effects of cis-398

mediated allele-specific methylation were also demonstrated399

and shown to confound interpretation of the genome-wide400

analysis.401

As a surprising collateral result of the study, the authors re-402

ported a high level of non-CpG methylation at over 50,000 sites,403

compared to the 114,156 and 99,923 methylated cytosines in404

the CG context detected in fertilized and thelytokous embryos,405

respectively. Only few studies on honeybees have revealed406

significant non-CpG methylation (11, 42). For a consistency 407

check, we set up a BWASP/R re-analysis of the deposited BS- 408

seq data, following the analogous procedure described in the 409

previous section. Our analysis gave consistent results with 410

previous studies, tallying only 13 and 30 CHG and 54 and 104 411

CHH sites in fertilized and thelytokous embryos, respectively 412

(Dataset S8). It would seem, therefore, that the surprising 413

numbers of non-CpG methylation sites reported in (45) reflect 414

software and parameter choices. 415

Our concern here is not to investigate all possible causes for 416

the widely discrepant results but rather to demonstrate how 417

BWASP/R allows nearly effortless re-analysis of published BS-seq 418

studies, with complete documentation and reproducibility, as 419

well as the flexibility to change parameter settings for robust- 420

ness of results analyses. For this example, several differences 421

in the respective methods stand out: 1) Mapping efficiency 422

and quality control. BWASP yields mapping efficiencies of 39.3% 423

and 32.9% for the two data sets; after mapping, 1.76% and 424

2.31% of the reads were identified as PCR duplicates and 425

removed (Dataset S4). No mapping efficiencies nor PCR du- 426

plicate removal are discussed in (45). It is likely that the 427

more stringent quality control choices in BWASP (including also 428

removal of non-converted reads; see SI Text) explain the lower 429

coverage reported in Dataset S6 relative to (45). 2) Correction 430

for potential incomplete BS-conversion by a binomial test with 431

false discovery rate adjustment (SI Text, ’Determination of 432

significant methylation sites’) yielded a minimum per site read 433

coverage of four for reliable methylation site detection in our 434

workflow, compared to a coverage of two in (45). The very 435

low number of common non-CpG methylation sites detected 436

by the authors (only 561, compared to about 75,000 postu- 437

lated common CpG sites) suggests to us that their threshold 438

setting is too liberal and that our more conservative approach 439

correctly shows lack of significant non-CpG methylation, con- 440

sistent with other studies (discussed in more detail below in 441

the section ’Non-CpG methylation’). 442

Workflow-enabled exploration of grouping and aggregation 443

statistics. Replication and aggregation statistics are essential 444

to any typical large-scale multi-sample data analysis, and 445

BS-Seq studies are no exception. Clearly, the per site methy- 446

lation percentages are aggregate statistics over multiple DNA 447

molecules in the respective sample. In some studies, it may not 448

be clear a priori how the input data should be partitioned into 449

homogeneous samples when several biological criteria can be 450

used to group samples before comparing methylation patterns. 451

For example, pooling different cell types may be acceptable 452

for some questions about DNA methylation status but not 453

when cell type specific methylation is being probed. A random 454

partitioning of data may be the most desirable option to serve 455

as a control for differences between biologically motivated 456

groupings of samples. 457

Here, we illustrate how the BWASPR workflow can easily 458

be run to provide the requisite analyses for different data 459

partitionings, with only minimal editing of the workflow con- 460

figuration files. We chose to replicate a study by Libbrecht 461

et al. (13), in which the authors compared reproductive (R 462

phase) and brood care (BC phase) samples from the the clonal 463

raider ant Ooceraea biroi (known as Cerapachys biroi at the 464

time). 465

The authors discussed analysis of three data partitionings: 466

(1) R phase versus BC phase with four replicates each, derived 467
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from two clonal lineages (A and B) and two batches of library468

preparation and sequencing (1 and 2); (2) Four separate com-469

parisons of R phase versus BC phase with two replicates each470

(i.e., A1 samples of R phase versus A1 samples of BC phase;471

and the same for A2, B1, and B2 samples); (3) Comparison of472

the eight individual samples.473

Any of these partitionings (and more, e.g., grouping by line474

or batch) are easily analyzed with the BWASPR workflow. All475

that is required to change the data partitioning are minor,476

intuitive edits to the configuration file, specifying the design477

and data source of the study. Samples to be compared are478

indicated in the samplelist variable. For example, compar-479

ing the phases with four replicates each, samples are specified480

as BCphase and Rphase (Dataset S17, page 1), whereas the481

global comparisons of the eight individual samples is indicated482

by labels BCphaseA1, BCphaseA2, etc. (Dataset S18, page483

1). The corresponding .dat file includes columns with the484

species name, the name of the study, the samples to compare485

(matching the labels in the configuration file), the replicate486

number detailing whether the samples should be aggregated487

or analyzed individually, and the locations of the respective488

*.mcalls files (Dataset S17, pages 4-6). After these prepara-489

tory steps, BWASPR can be executed with the generic script as490

before (SI Text, ’BWASPR – R scripts for statistical analysis’).491

Similarity of DNA methylation patterns. Similarity of DNA methy-492

lation patterns across individuals, or groups of individuals,493

can be assessed on different levels. The BWASPR package im-494

plements functions and scripts to calculate all of the following495

measures.496

(1) To what extent do two sets of methylation sites overlap,497

i.e., are the two corresponding samples methylated at the498

same sites? The output directory PWC shows common and499

unique sites comparing two samples (or groups of samples)500

and calculates an overlap index indicating the degree of con-501

gruence between them (see Methods, ’Statistical assessment of502

overlap between different sets of sites’). The overlap index is503

normalized to a value between 0 and 1, with 1 indicating that504

one set is contained in the other, and 0 indicating absence of505

any overlap. Results for the 28 pairwise sample comparisons506

are shown in Table S2. Values range between 0.75 and 0.91,507

indicative of high pairwise overlap of hsm CpG sites.508

The overlap index measure is easily extended to multiple509

sample comparisons: How large are the sets of methylation510

sites shared between biologically motivated groups of samples511

relative to groups of samples generated by random assort-512

ment? BWASP includes the script hsmsetcmp.pl which counts513

the hsm CpG sites shared between particular subsets of a set of514

*CpGhsm.mcalls files. This script is a generalization of a clever515

approach by Libbrecht et al. (13) who analyzed the separation516

of two sets of four samples by a simple criterion: how many517

sites are consistently methylated in one set versus consistently518

unmethylated in the complementary set? For their data, one519

would hypothesize that if differential DNA methylation were520

associated with behavioral phase, then the set of brood care521

phase samples compared to reproductive phase samples should522

be significantly more consistent then other partitions of the523

eight samples, including partitions by line or by sequencing524

batch. Their data (figure S3 of (13)) did not support that525

hypothesis and in fact showed a surprising outlier point for526

the partitioning by sequencing batch. The generalized BWASP527

results are available as Dataset S19, showing results for all528

28 = 256 partitionings of the eight samples. The homogeneity 529

of the samples is indeed striking. The second largest site count 530

occurs for the partitioning of all samples sharing hsm status 531

(following the expected, overwhelming count of all samples 532

being nsm), tallying a count of 136,608 sites. Fig. S5 shows the 533

equivalent of figure S3 of (13), based on BWASP determined hsm 534

and nsm sites. While our data are consistent in not showing 535

any evidence of differential DNA methylation by phase, there 536

is no outlier behavior for the partitioning by sequencing batch. 537

It is conceivable that the corresponding data point reported 538

by (13) is an artifact of their data processing, in particular 539

the apparent lack of PCR duplicate removal (their data pro- 540

cessing was done using a protocol for reduced representation 541

bisulfite sequencing, which relies on PCR quantification, while 542

their experimental protocol was BS-seq, which relies on PCR 543

duplicate removal); according to Dataset S7, sequencing batch 544

2 had on average 29.3% PCR duplicates, much higher than 545

the 19.3% for batch 1. 546

(2) How well do the methylation percentages at the sites 547

common to the two samples correlate? Groups or individuals 548

may show similar methylome size and location, but perhaps 549

may differ largely in the level of methylation present at these 550

sites. BWASPR calculates the correlation in methylation per- 551

centage across all common sites between groups or individuals. 552

The correlations are shown in the output directory CRL (deter- 553

mined as described in SI Text, ’Correlations between aggregate 554

samples’) and summarized here in Table S2. The high values 555

ranging between 0.90 and 0.93 show that not only are the 556

methylation sites highly conserved between the samples but so 557

are the methylation levels at the common sites. These results 558

are in accord with the observation by Libbrecht et al. (13) 559

that DNA methylation was not associated with reproduction 560

and behavior in the context of colony cycles in O. biroi. 561

(3) How similar are respective lists of genome features 562

(genes, promoters) ranked by degree of methylation? Ranked 563

lists of genes and promoters are given in output directory 564

RNK and compared by the rank-biased overlap measure (58) 565

implemented via the BWASPR script xcmprnks (see Materials 566

and Methods). Results for the comparison of the sample 567

gene lists ranked by site density are shown in Table S3. Six 568

of the 28 pairwise comparisons show significant congruence of 569

the ranked lists, however there is no pattern of similarity by 570

grouping, neither by phase, nor line, nor batch. 571

Re-analysis by read mapping to a novel genome assembly and anno- 572

tation. As sequencing technologies advance or new resources 573

become available, the reference genome and annotation of a 574

species of interest may have been updated for a current BS- 575

seq study relative to previously published work. In order for 576

the current work to be comparable to the previous work, one 577

would ideally have the analyses done with respect to the same 578

reference genome and annotation. Thus, one option would 579

be to re-run the previous analyses as published, but now on 580

the new genome. This is not a small task, and ultimately it 581

would be nearly impossible for any reader to repeat the au- 582

thors’ steps with the new genome - unless that work was done 583

with a reproducible workflow. A second option is to apply the 584

current workflow to all data sets and, potentially, to both the 585

previous and current reference genome and annotation. This 586

can be done very easily with BWASP/R, as reviewed in SI Text, 587

’Re-analysis by read mapping to a novel genome assembly and 588

annotation’. 589
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Integrative analysis of multiple Apis mellifera BS-seq studies.590

Of all arthropod species, DNA methylation has been studied591

the most in the honeybee Apis mellifera, going back to the592

initial demonstration of a functional CpG methylation system593

(40) that accompanied the genome paper (6). However, 15594

years of research have not clarified the precise role of DNA595

methylation in diverse processes like development, caste dif-596

ferentiation, or gene regulation. An integrated picture of the597

various experimental studies has been difficult to obtain be-598

cause of a number of complicating factors. First, since the599

initial genome release, multiple updates to the genome as-600

sembly and annotation make comparisons between older and601

more current studies cumbersome. Second, studies are highly602

variable in terms of computational data processing, relying on603

distinct data quality control, software, and parameter choices,604

thus obscuring differences in reported results due to technical605

rather than biological factors. Third, documentation of com-606

putational details and interim results (rather than interpreted607

summaries) has been lacking, making precise comparisons608

across studies impossible.609

Our re-analysis of published BS-seq data sets overcomes610

the aforementioned problems. First, all data were mapped611

to the most current NCBI Apis mellifera reference genome as-612

sembly (63), deposited as version HAv3.1 (64) and annotation613

release 104 (65). Second, all data sets were analyzed with614

the same BWASP/R approach, ensuring consistent data quality615

control. Third, the BWASP/R workflow guarantees complete616

reproducibility as all required software is available with this617

publication, together with all interim and final results.618

Our integration over multiple studies addresses the follow-619

ing questions: To what extent are the same genomic CpG620

sites methylated in different samples? Conversely, what sites621

have rarely or never been seen methylated? The answers to622

the first two questions describes the observed and estimated623

CpG methylome as a subset of all CpG sites in the genome.624

Another question addresses the evidence for differential methy-625

lation between biologically distinct samples, evaluated not only626

within each study but also across different studies. Lastly, we627

probe the extent of non-CpG methylation, based on consistent628

computational assessment of all available data sets.629

Summary statistics. At the time of completion of this work, we630

analyzed 17 BS-seq studies on Apis mellifera (Dataset S2),631

comprising 58 samples, a total of 126 replicates, and overall632

more than 13.7 billion processed reads (SI Text, Table S1). We633

observed a wide range of mapping efficiency, PCR duplicates,634

and genome coverage, but on average 94% and 38% of CpG635

sites were covered by at least one read and by 20 or more reads,636

respectively (Datasets S4 and S6; SI Text, Table S1). Thus, in637

aggregate, a large part of the CpG methylome has been probed638

under some conditions, supporting our goal of providing an639

integrated view of DNA methylation of the honeybee genome.640

Determination of the CpG methylome. Coverage of the 19, 687, 378641

genomic CpG sites in the 58 samples range such that between642

4.79% and 98.53% of sites were sufficiently covered for hsm643

detection (Dataset S8). Numbers of hsm sites detected in each644

sample range from 8, 540 to 187, 243 (Dataset S8), totaling645

6, 634, 422 identifications. The hsm fraction of scd sites ranges646

between 0.18% and 1.15%. Overall CpG methylation rates647

were determined in the range 0.38% − 1.98%, with an average648

of 0.99% (Dataset S10).649

Fig. 4. Novel hsm CpG site identification by successive experiments. The row labels
refer to the Apis mellifera studies listed in Dataset 2, from earliest (bottom) to latest
(top). The horizontal bars show the cumulative number of sites discovered from
earliest to current study.

Dataset S12 data show that on average 94.5% of all hsm 650

CpG sites are found in annotated genic regions, which however 651

is only 1.15 times more than expected if genomic sites were 652

picked randomly irrespective of annotation (Dataset S12). Fur- 653

ther inspection shows that on average 83.78% of all hsm CpG 654

sites are in exons, which is 4.83 times higher than expected. 655

But note that on average only 3.98% of exonic scd sites are 656

identified as hsm. Within exons, the vast majority of the hsm 657

CpG sites are within protein coding sequences, about 2-fold 658

higher than expected based on random selection of sites any- 659

where in the exon regions, the balance being in untranslated 660

mRNA regions and non-coding RNAs (Dataset S14). 661

Fig. 4 shows the cumulative number of Apis mellifera CpG 662

sites identified as hsm in any of the 17 analyzed studies, ordered 663

by time of publication. The total number of sites discovered 664

stands at 287,455 (calculated over all 58 samples). The graphic 665

shows that rapid initial discovery of sites has slowed to appar- 666

ently asymptotic increases now. 667

Fig. 5. The graph shows the number of novel hsm CpG sites discovered in each of
the 58 Apis mellifera studies shown in Dataset S4, ordered by genome coverage of
the respective BS-seq data set.
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To probe whether the increases in number of sites (or lack668

thereof) is entirely explained by the genome coverage values669

of the respective BS-Seq experiments, we plotted the number670

of sites that are unique to each sample relative to the genome671

coverage of the sample (Fig. 5). It is seen that there is no clear672

correlation, with some high coverage samples contributing673

few novel sites and some low coverage sites contributing large674

numbers. The two outlier samples with more than 6000 unique675

sites each are from the YA (49) study on sperm. As sperm676

has been relatively under-sampled compared to other tissues677

(Dataset S2), this result may reflect caste- and tissue-specific678

DNA methylation.679

The relative lack of unique sites in high-coverage samples680

could result from high-coverage studies on multiple similar681

samples, thus with few sites that are unique to a single sample.682

To explore this possibility further, Fig. 6 shows a Venn diagram683

of site overlap between all previous studies and the two most684

recent data sets available at NCBI SRA. It is seen that these685

two large experiments contribute 22,022 novel sites (16,979686

unique to YI; 2,940 unique to HA; and 2,103 observed in both687

but not in earlier studies).688

Lastly, Fig. 7 records the numbers of hsm CpG sites shared689

by several samples in the set of experiments analyzed. The690

figures gives further evidence to considerable overlap between691

sets of sites shown as methylated in different samples. We692

cannot exclude the possibility that others sites are going to be693

found methylated under different physiological conditions from694

those that have been used in current experiments. However,695

a consistent, straightforward interpretation of the integrative696

analysis over all studies would seem to be that the Apis mellif-697

era CpG methylome is far smaller than the set of all genomic698

CpGs and closer in size to the currently observed 287,455699

value.700

Fig. 6. Novel hsm CpG sites discovered by the most recent Apis mellifera BS-seq
studies. Abbreviations used: H = H7 (50); Y = YI (51); O = all other studies (see
Dataset S2). Overlap sets are labeled by the respective combination of letters. The
numbers of sites in each segment are: HYO, 178162; O, 47600; YO, 36603; Y, 16979;
HO, 8111; H, 2940; HY, 2103.

Features of methylated CpG sites. To further explore character-701

istics of CpG methylation sites, we applied the BWASP script702

hsmsetexplore.pl to the set of *.mcalls files of the 58703

Apis mellifera samples. The script output shows that of the704

19,687,378 CpGs in the Apis mellifera genome, 19,544,535705

(99.27%) were identified as scd in at least one sample, but706

only 287,455 (1.46%) as hsm. 91,043 sites were identified as707

Fig. 7. The graph shows the number of hsm CpG sites shared by the x-axis indicated
number of experimental Apis mellifera samples shown in Dataset S2. For example,
there are 40,545 sites unique to one experiment and 58,607 sites seen in only two
samples.

scd in all 58 samples, but only 57 sites as hsm. Thus, the 708

CpG methylome is small relative to the entirety of all genomic 709

CpGs and to a large extent conserved under different condi- 710

tions (as shown in the previous section), but still modulated 711

in sample-specific manner. On average, 0.69% of CpG sites 712

that are scd for the Cs on both forward and reverse strand 713

are hsm in both positions, with 0.06% each being hsm on only 714

forward or reverse strand, respectively. In the following we 715

focus on CpG sites methylated on both strands. 716

We used the hsmsetexplore.pl script to pull out represen- 717

tative highly methylated sites (criteria: read depth between 33 718

and 330; at least 90% methylation on both strands; shared by 719

at least 15 samples) and strongly non-methylated sites (criteria: 720

read depth between 33 and 330; at most 4% methylation on 721

both strands; shared by at least 15 samples), which generated 722

1,183 and 782,849 sites, respectively. We further restricted 723

these sets to unique sites (no overlap of +/-25 base segments 724

around the CpG with other sites in the set) and differenti- 725

ated sites completely within coding regions from sites with 726

no overlap with coding regions (again including 25 nucleotide 727

flanks) to end up with four sets: hhCDS (553 highly methylated 728

sites in coding sequences); hhNCS (213 highly methylated sites 729

in non-coding sequences); nnCDS (858 non-methylated sites 730

in coding sequences); and nnNCS (950 non-methylated sites 731

in non-coding sequences). (The nn sets have the additional 732

constraint to include only sites shared by at least 17 or 25 733

samples, respectively, to generate set sizes similar to those for 734

the hh sets.) There is no rationale for the parameters used 735

other than to generate sets of several hundred sites each that 736

are representative to the most consistently methylated and un- 737

methylated sites in coding and non-coding regions. Standard 738

sequence logos for each set (reflecting the frequency distribu- 739

tion of nucleotides in the positions around the CpG) are shown 740

in Fig. 8. No obvious diagnostic motifs are found that corre- 741

late with consistently high methylation. We note, however, 742

the strong 3-periodic signature unique to the hhCDS set. It 743

is therefore conceivable that a methylation code is hidden in 744

the third codon positions of the coding sequences surrounding 745

strongly methylated CpGs. 746
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Fig. 8. Sequence logos produced by the MEME software for CpG isites from four distinct
sets, in order top to bottom: highly methylated sites in coding sequences; strongly
non-methylated sites in coding sequences; highly methylated sites in non-coding
sequences; and strongly ‘non-methylated sites in non-coding sequences.

Non-CpG methylation. The extent and role of cytosine methyla-747

tion in non-CpG context has not been settled in social insect748

genomics. Cingolani et al. (42) discuss experimental and749

computational caveats that might lead to under-detection of750

non-CpG methylation and report significant levels of non-CpG751

methylation in honeybee introns, with a potential role in the752

regulation of alternative splicing. While our study cannot753

address any experimental biases against non-CpG methylation754

site detection, our consistent workflow application can elim-755

inate biases in the computational and statistical treatment756

of the data. Our re-evaluation of the Remnant et al. (45)757

study (section ’Using workflow-enabled re-analysis to evaluate758

published results’ above) points to the importance of analysis759

parameter choices. A similar argument can be made concern-760

ing the data of He et al. (46) who report the average context761

of methylation sites as 77.55% CpG, 20.5% CHH, and 1.95%762

CHG, which is in stark contrast to our analysis results that763

found only a few hundred potential hsmCHH sites (Dataset764

S8). The criteria for site definition are not discussed in (46),765

but lenient treatment of the statistical problem of multiple766

comparisons would be one explanation of the results. For767

example, calling a site methylated on the evidence of one read768

would give context proportions of 26.21%, 63.52%, and 9.67%769

for CpG, CHH, and CHG, respectively, for the aggregate QWE770

sample. A threshold of two reads would change the proportions771

to 77.84%, 19.93%, and 2.24%, respectively; and a threshold772

of three reads would lead to proportions 95.63%, 3.96%, and773

0.41%. Thus, evidence for non-CpG methylation sites seems774

to largely be at the statistical noise level, and the substantial775

number of reported sites is accounted for by the large number776

of genomic CHH sites.777

The overall methylation levels per C-context are shown in778

Dataset S10 for all 58 Apis mellifera samples. CpG methyla-779

tion was observed between 0.38% and 1.98%, with a mean of 780

0.99%; CHG methylation was observed between 0.06% and 781

0.94%, with a mean of 0.34%; and CHH methylation was 782

observed between 0.06% and 4.72%, with a mean of 0.58%. 783

However, CHH methylation in excess of 1.0% was observed 784

in only five samples, and without those samples, the average 785

is 0.35%. Thus, significant CHH methylation levels remain 786

outliers. The five samples are: queen and worker samples of 787

Foret et al. (11); the data of Cingolani et al. (42) on Euro- 788

pean and Africanized bees; and the low count sperm sample 789

of Yagound et al. (49). Looking at the fraction of scdCHH 790

sites that are hsmCHH (Dataset S8), the 2.5% value of the 791

low count sperm sample of Yagound et al. (49) is the only 792

outlier (noted also in (49), but nor pursued by the authors); 793

without that data point, the average is 0.05% (compared to 794

0.69% for CpG sites). Thus, our global analysis confirms the 795

impression that DNA methylation in honeybee is overwhelm- 796

ingly in CpG context, consistent with observations in other 797

social insect species (e.g., (66)). Obviously, this computational 798

result does not preclude the possibility of biologically signifi- 799

cant non-CpG methylation at specific sites. A recent study 800

by Harris et al. (50) postulates that low level but elevated 801

CpA methylation in CpG-methylated genes in honeybee head 802

tissues may be involved in the regulation of gene expression 803

during development. 804

Validation. After completion of the data analyses described 805

above, Yagound et al. published another DNA methylation 806

study on Apis mellifera, comparing methylation sites and levels 807

between drones (samples of DNA taken from thorax labeled as 808

"drone" and samples from semen labeled as "semen") and their 809

daughters derived from instrumental insemination of queens 810

("worker" samples) (52). The goal of the study was to investi- 811

gate the existence of epigenetic inheritance, and the authors 812

concluded that there is no DNA methylation reprogramming 813

in bees and that epigenetic information is transferred from 814

fathers to daughters within patrilines. The author’s interpre- 815

tation has been critically discussed (67, 68). Here, we have 816

pursued two major aims with our re-analysis of the study’s 817

BS-seq data via our BWASP/R workflows: (1) We wanted to 818

know whether the new data are consistent with our earlier 819

findings on the size of the CpG methylome and the lack of non- 820

CpG methylation; (2) We wanted to probe the robustness of 821

the published similarities of DNA methylation patterns within 822

patrilines for different methylation site selection criteria and 823

with respect to the different BWASPR-implemented similarity 824

measures. 825

Summary statistics for the aggregate samples from colonies 826

B1 and B2 (four replicates each for drone, semen, and worker) 827

and colony B4 (two replicates for drone, semen, and worker) 828

have been added to Datasets S4, S6, S8, S10, S12, and S14. 829

All samples give high genome coverage (97X or higher) except 830

for B4D and B4S that were sequenced about half as deeply 831

(Datasets S4 and S6). Overall methylation levels are similar 832

to values observed in the previous studies (Dataset S10), and 833

the mapping of methylation sites to genomic feature regions 834

also gave consistent results (Datasets S12 and S14). Non- 835

CpG methylation levels are marginal, as for most studies as 836

discussed in the previous section. 837

The tally of new hsmCpG sites was 12,282, thus increasing 838

the total observed CpG methylome to 299,737 sites (update 839

to Fig. 4). Unique sites (update to Fig. 5) were predominantly 840
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seen in the semen samples (B1S, 2107 sites; B2S, 1788 sites;841

B4S, 1067 sites) compared to worker (512, 632, and 910 sites)842

and drone (269, 235, and 208 sites). Thus, this additional843

large data set does not greatly change our estimate of the size844

of the CpG methylome, nor the overall summary statistics of845

methylation levels.846

Fig. 9. Dendrogram based on correlation distances between methylation levels of the
indicated samples from Yagound et al. (52).

To probe the similarity of the replicate samples, we used847

the same approach as introduced in the subsection ’Similar-848

ity of DNA methylation patterns’ above. The equivalent of849

Table S2 is shown in Dataset S23. We excluded B4 samples850

because of the large difference in sequencing depth relative851

to the other samples. We then transformed the correlation852

and overlap values to distances by subtracting them from853

1 and generated dendograms based on hierarchical cluster-854

ing of the distance matrices (using standard R functions and855

functions from the ggdendro and ggplot2 libraries; clustering856

by Ward.D2 method). Fig. 9 shows the clustering based on857

the correlation of methylation levels, and Fig. 10 shows the858

clustering based on the overlap index distances.859

The correlation-based clustering shows clear grouping by860

type: the drone samples form a subcluster, as do the workers,861

and these clusters are separated from the semen cluster. In862

contrast, the overlap-based clusters shows consistent clustering863

by patriline (related drone, semen, and worker samples forming864

subclusters). What was initially puzzling is that figures 2 and865

S3 of (52) showed correlation-based clustering along patrilines866

like our overlap-based clustering. However, the explanation867

is easy enough: Yagound et al. build the methylation level868

matrix from all sites that were covered by at least 10 reads in869

all samples and classified as hsmCpG in at least one sample.870

The correlations derived from that matrix are heavily biased871

by the zero values at sites that are sufficiently covered but872

not methylated (nsm sites in our notation). Thus the authors’873

approach convolutes the two factors separated in our analysis:874

the overlap index measures how similar two sets of hsmCpG875

sites are, whereas the correlation measures how similar the 876

methylation levels are at shared hsm sites. The first measure 877

reflects genetic distance (e.g., drone thorax and semen from the 878

same individual represent the same haploid genome), whereas 879

the second measure reflects the activity of methylation and 880

de-methylation enzymes in the respective samples. In this 881

purview, the data of (52) would seem to be perfectly consistent 882

with classical genetic inheritance with subsequent methylation 883

level control based on environmental (sample) conditions (see 884

Discussion). 885

We should note that the clustering patterns shown in Figs. 9 886

and 10 are unchanged for different coverage thresholds or 887

sample subset choices. Also, clustering the methylation level 888

matrix from Yagound et al. (kindly provided by the authors) 889

after deletion of rows with zero values (which reduces the 890

number of sites from 20523 to 5680) similarly shifted the 891

pattern to what we show in Fig. 9. Thus, we are confident 892

that the two components of genetic and physiological difference 893

are properly reflected in the overlap and correlation distance 894

measures, respectively. 895

Fig. 10. Dendrogram based on overlap index distances between hsmCpG sets of the
indicated samples from Yagound et al. (52).

Discussion 896

DNA methylation systems have not been found universally 897

in all social insects, and, where present, methylation levels 898

are very low compared to vertebrates and plants, with typical 899

observations at around 1% of CpGs being methylated in hon- 900

eybee tissues. The low levels complicate statistical analysis 901

of whole genome bisulfite-sequencing experiments, as different 902

approaches to data quality control can significantly alter re- 903

ported methylation levels. We have presented a conceptual 904

framework for analyzing such data in a consistent manner 905

and implemented the computational steps in completely and 906

easily reproducible workflows. The framework (summarized 907

in Fig. 1) centers on the identification of sites that are suf- 908
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ficiently read-covered (scd sites) to allow statistically solid909

determination of methylation levels at accessible (hsm) sites.910

We have shown that re-analysis of published studies in this911

way with conservative data quality control (including unique912

mapping of reads; removal of likely unconverted BS-seq reads913

and of PCR duplicates; and culling of technically biased read914

positions from further analyses) may suggest alternative inter-915

pretations of the data. Most importantly, different studies can916

be fairly compared in this way, with the original data equally917

quality-controlled and mapped to the most current genome918

and annotation.919

Identification of the Apis mellifera CpG methylome. Although low920

levels of cytosine methylation in largely CpG context, predom-921

inantly in exon regions of the genome, have been consistently922

reported for Apis mellifera, only by means of an integrative923

study as presented here can we assess the extent to which dif-924

ferent studies have identified the same methylation sites. This925

assessment is particularly challenging for the honeybee because926

there have been multiple genome and annotation versions in927

use over the period of more than ten years of methylation928

studies. Our results show that the set of all CpGs identi-929

fied as methylated in at least one experiment numbers just930

below 300,000 sites currently, or about 1.5% of all genomic931

CpGs (Fig. 4). By the same method, we find no evidence for932

significant levels of non-CpG methylation.933

Our workflow implements three measures of evaluating sim-934

ilarity of DNA methylation patterns between samples. The935

overlap index measures the extent to which two sets of methy-936

lation sites overlap. Correlation analysis of methylation levels937

at common sites measures whether the shared sites are methy-938

lated in similar proportions in samples being compared. A939

flexible script applies rank-biased overlap statistics to com-940

pared lists of genes (or other regions) ordered by methylation941

level. The power of these complementary measures was demon-942

strated in our re-analysis of the recent Yagound et al. (52)943

study comparing methylation levels from honeybee drone tho-944

rax and semen samples and worker daughters derived from945

artificially inseminated queens. We show that the hsmCpG946

sets are closely related within patrilines (Fig. 10), whereas947

methylation levels at common sites cluster by sample type948

(Fig. 9). This refined analysis offers a much simpler explanation949

for the data then the epigenetic inheritance model proposed950

by Yagound et al. that was based on a correlation analysis951

that convoluted these two measures of similarity. It seems to952

us that the most parsimonious model for the data involves953

sequence-determined sets of methylation-accessible CpGs in954

combination with dynamically determined methylation levels955

by physiologically regulated methylation/de-methylation ac-956

tivity. As the genetic background of drone thorax and semen is957

identical and semi-conserved in the daughter workers, hsmCpG958

sets are most similar within a patriline, but methylation level959

similarity goes with cellular type; see also the discussion in960

(67) and (68).961

An open question remains concerning the sequence charac-962

teristics that distinguish the 1.5% of methylable CpGs from the963

other 98.5%. A preliminary search for characteristic sequence964

motifs did not result in the identification of clear signatures965

(Fig. 8). However, our analysis should provide good data sets966

for more sophisticated machine learning approaches.967

Standards of reproducibility. Motivated by open questions con- 968

cerning the extent and role of DNA methylation in social 969

insects, we have implemented easily accessible computational 970

tools for the analysis of whole genome bisulfite sequencing 971

data. Beyond the introduction of several new concepts and 972

measures for the presentation and statistical treatment of the 973

data, a significant component of our work has been the em- 974

phasis on complete reproducibility of all steps in the data 975

processing, from download of the raw sequence data from a 976

public repository to the generation of summary tables and 977

figures. Our general philosophy with respect to computational 978

reproducibility has been previously discussed (69). In brief, 979

we argue that, for the most part, computational reproducibil- 980

ity should encapsulate the ability of bitwise regeneration of 981

published results. Obviously, there can be changes like time 982

stamps or expected fluctuations in stochastic models, but the 983

practical requirement should be that every data point in a 984

publication can be reproduced without ambiguity. 985

It could be debated whether such standard of reproducibil- 986

ity is realistic. Initially, there may seem to be few apparent 987

incentives to put a premium on providing complete workflows. 988

Workflows often are the result of a lot of trial and error and 989

keeping track of what worked and what did not requires dili- 990

gent documentation – often pieced together at the manuscript 991

writing stage, rather than incrementally put into an executable 992

script that retraces everything done and validated up to that 993

point. A standard accepted by most reviewers and journals is 994

that sufficient detail is provided in the publication to repro- 995

duce the work “in principle." In practice, this would typically 996

require much effort and additional communication with the 997

original authors, with obstacles for resolving any differences 998

in outcome. 999

We would like to argue that our large-scale data work with 1000

the BWASP/R software has demonstrated that: (1) There are 1001

now software solutions that do allow complete reproducibil- 1002

ity of even very complex workflows. (2) Implementation of 1003

reproducible workflows is feasible and provides no particular 1004

technical difficulties beyond the implementation of the original 1005

data analyses in a study. (3) The adherence to such workflow 1006

standard for dissemination of scientific work enhances peer 1007

review, democratizes science, and accelerates discussion and 1008

community efforts. (4) The workflow approach opens new 1009

possibilities for integrative studies that incorporate raw data 1010

from multiple original sources. 1011

The workflow approach demonstrated here has the advan- 1012

tage of capturing what researchers are already doing, whatever 1013

software and scripts in any programming language they are 1014

using. The only add-on is the demonstrated and verified re- 1015

producibility of the entire data analysis, with the discussed 1016

benefits of scalability and re-usability. For more narrowly 1017

defined bioinformatics workflows there are now a number of 1018

alternative workflow managements systems, adoption of which 1019

will greatly help the cause of reproducibility (e.g., (70, 71)). 1020
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