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23 Abstract

24 1. Proper collection and preparation of empirical data still represent one of the

25 most important, but also expensive steps in ecological and

26 evolutionary/systematic research. Modern machine learning approaches,

27 however, have the potential to automate a variety of tasks, which until recently

28 could only be performed manually. Unfortunately, the application of such

29 methods by researchers outside the field is hampered by technical difficulties,

30 some of which, we believe, can be avoided.

31 2. Here, we present GinJinn2, a user-friendly toolbox for deep learning-based

32 object detection and instance segmentation on image data. Besides providing

33 a convenient command-line interface to existing software libraries, it

34 comprises several additional tools for data handling, pre- and postprocessing,

35 and building advanced analysis pipelines.

36 3. We demonstrate the application of GinJinn2 for biological purposes using four

37 exemplary analyses, namely the evaluation of seed mixtures, detection of

38 insects on glue traps, segmentation of stomata, and extraction of leaf

39 silhouettes from herbarium specimens.

40 4. GinJinn2 will enable users with a primary background in biology to apply deep

41 learning-based methods for object detection and segmentation in order to

42 automate feature extraction from image data.

43

44 Keywords

45 Automation, Computer Vision, Deep Learning, Instance Segmentation, Machine

46 Learning, Morphometrics, Object Detection, Trait Extraction
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47 Introduction

48 Conducting empirical studies in ecology and evolutionary/systematic biology typically

49 requires substantial effort for proper data collection and preparation. The ability to

50 automate time-consuming steps of this process, possibly along with further

51 downstream analyses, for example, using programming languages like Python or R,

52 can not only increase productivity, but also allow otherwise infeasible large-scale

53 analyses. Recent advances in machine learning (ML), both on the soft- and

54 hardware side, make it even possible to automate tasks that are difficult to solve by

55 means of classically designed algorithms. Computer vision, in particular, has largely

56 profited from deep learning, which increasingly influences even the more traditional

57 branches of organismic biology. Species identification tools running on smartphone

58 devices (for an overview, see Wäldchen & Mäder, 2018; Jones, 2020) are prominent

59 examples for this trend. Beyond pure classification tasks, a technically even more

60 challenging problem consists in localizing objects like cells, organs, or individuals on

61 images. Specialized tools address this problem for various areas of application, such

62 as crop or weed detection (e.g., Buddha et al., 2019; Afonso et al., 2020), detection

63 of leaves and other plant organs on herbarium specimens (e.g., Ott et al., 2020;

64 Weaver et al., 2020; Younis et al., 2020), stomata counting using microscopic leaf

65 images (e.g., Fetter et al., 2019), animal counting using camera traps (Norouzzadeh

66 et al., 2021), and many more.

67 Despite the availability of increasingly convenient frameworks, adapting well-

68 established ML methods to new areas of application typically requires an amount of

69 technical knowledge that may discourage potential users. GinJinn2, whose core

70 functionality is based on Detectron2 (Wu et al., 2019), aims at lowering this hurdle by

71 providing an easy-to-use command-line interface to the latter, augmented by a

72 number of utility functions, designed to help the user with building custom analysis

73 pipelines. While its predecessor (Ott et al., 2020) focussed on extracting leaves from
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74 digitized herbarium specimens, the presented program is a complete

75 reimplementation, aiming at a wider scope of application. Unlike the former, it is not

76 restricted to bounding-box object detection, but also incorporates functionality for

77 instance segmentation, i.e., pixel-precise detection and classification of individual

78 objects.

79 In the present contribution, a number of example analyses demonstrate how

80 ecological, agricultural or evolutionary/systematic studies may benefit from GinJinn2.

81 Those include pest monitoring using yellow glue traps, leaf-shape extraction from

82 herbarium specimens, stomata segmentation, and the evaluation of seed mixtures.

83 We hope to encourage interested researchers to consider deep learning-based

84 object detection or segmentation when faced with similar tasks. Using GinJinn2

85 together with pretrained models from Detectron2’s model zoo, new applications can

86 be explored with a minimum of invested time and effort, which makes it a potentially

87 useful tool for both beginners and advanced users.

88

89 Software

90 Overview

91 GinJinn2 is a toolbox for deep learning-based bounding-box object detection and

92 instance segmentation. As such, it provides functionality for model training,

93 evaluation and application based on the Detectron2 framework, segmentation

94 refinement based on CascadePSP (Cheng et al., 2020), a set of data pre- and

95 postprocessing tools for handling annotated image datasets, and capabilities for data

96 insight and visualization. GinJinn2 is not meant to be a replacement for existing

97 frameworks like Detectron2 or the Tensorflow Object Detection API (Huang et al.,

98 2017), but rather a toolkit enabling code-free access to deep learning-based object

99 detection technologies. All of GinJinn2’s functionality is accessible via an easy-to-use
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100 command-line interface (CLI).

101

102 Dataset splitting

103 Before training one of the available object-detection models, the user may want to

104 split annotated image data into two or three sub-datasets. Besides the data used to

105 train the model, it is generally advisable to use a so-called validation dataset in order

106 to detect overfitting and to optimize model choice and training parameters. Using a

107 separate dataset for those purposes is necessary because the model’s fit to the

108 training data does not provide information about its generalization capability. In other

109 words, a trained model may accurately reproduce the training data, but perform

110 poorly on images that have not been presented to it before. However, as soon as

111 any optimizing decision has been made based on the validation data (e.g., when to

112 stop the training process), the model may again show overly optimistic performance

113 for this particular dataset. To obtain an unbiased evaluation of the final model, it is

114 therefore necessary to provide an additional test dataset, which should not have

115 been used for any other task beforehand. The ginjinn split command partitions an

116 input dataset in such a way that each image along with its annotated objects is

117 assigned to one of the resulting subsets. To be representative for the original

118 dataset, each of the latter should comprise similar proportions of objects from each

119 category. Aiming at a high level of homogeneity, the proposed splits are generated

120 by a greedy optimization algorithm. Despite being a relatively rough heuristic, this

121 approach is often sufficient to create acceptable splits and can even be applied to

122 large datasets.

123

124 Object detection and instance segmentation

125 GinJinn2, by leveraging Detectron2’s model zoo, offers several Faster R-CNN (Ren

126 et al., 2015) and Mask R-CNN (He et al., 2017) models for bounding-box detection
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127 and instance segmentation, respectively. These are used in a supervised manner,

128 i.e., before being able to predict objects on new images in a meaningful way, their

129 parameters (“weights”) have to be fitted to images with known object occurrences

130 (“training”). While training such models de novo can be highly GPU-intensive, this

131 process can be considerably abbreviated by starting from pretrained rather than

132 randomly initialized weights (“transfer learning”). Accordingly, all available Detectron2

133 models have already been trained on a large image dataset. Using those pretrained

134 networks reduces the training time for new, custom datasets as well.

135

136 Once the user has prepared datasets for training, and, optionally, validation and test

137 (see Dataset splitting), a GinJinn2 project can be initialized using ginjinn new.

138 Training models using ginjinn train constitutes the computationally most demanding

139 part of a typical GinJinn2 pipeline. This process consists of a prespecified number of

140 iterations, at each of which one or multiple images from the training dataset are

141 presented to the model. The objects predicted by the latter are then compared to the

142 known annotations and the model weights are adjusted to reduce deviations (“loss”)

143 from the desired output. While minimizing the loss with respect to the training

144 dataset, at some point, the model’s generalization capability may begin to degrade.

145 This so-called overfitting can be recognized by an increasing loss for the validation

146 dataset. The latter is therefore evaluated at predefined intervals. To enable a better

147 assessment of the learning progress, COCO (Lin et al., 2014) evaluation metrics for

148 the validation dataset are calculated as well. Since the model weights are stored

149 periodically, in case of overfitting, the user can go back to an earlier checkpoint

150 without having to discard the complete training. Since GinJinn2 is using Detectron2

151 as modelling backend, all models that are trained in the context of a GinJinn2 project

152 can be used with Detectron2’s Python interface without modification.

153 The quality of the final, trained model is best assessed based on a hitherto unused
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154 dataset with known object occurrences. This can be done using ginjinn evaluate,

155 which calculates COCO evaluation metrics for the specified test dataset.

156 The ginjinn predict command allows applying a trained model to predict object

157 occurrences for arbitrary images. Instance segmentations can optionally be refined

158 using CascadePSP (Cheng et al., 2020); while slowing down the predictions, this

159 may considerably improve the quality of the object outlines, especially in case of

160 clear object boundaries. To facilitate the further use of the predictions, GinJinn2

161 provides various output options: 1) visualization of the predictions on the original

162 images, 2) writing a new COCO annotation file, and 3) saving a cropped image and,

163 if applicable, segmentation mask for each predicted object.

164

165 Further functionality

166 GinJinn2 offers several utilities for data pre- and postprocessing:

167 As a counterpart to the already described splitting command (ginjinn split), datasets

168 can also be merged (ginjinn utils merge), which is particularly useful when using

169 COCO’s annotation format. In doing so, the input datasets are also checked for

170 duplicated images.

171 Object annotations can be filtered by either category or size using ginjinn utils

172 filter_cat or ginjinn utils filter_size, respectively. The latter command is also capable

173 of removing only small disjunct fragments from existing objects.

174 To simplify existing data, nested image directories can be summarized, making them

175 compatible with GinJinn2 and other tools. ginjinn utils flatten recursively collects all

176 images from a given directory and its sub-directories, renames and copies them into

177 a single directory, and modifies associated annotations accordingly.

178 Due to the limited spatial resolution of common object detection models, detecting or

179 segmenting objects that are small in relation to the image size can be difficult. To
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180 mitigate this problem, a sliding-window approach can be used to split the original

181 images into smaller sub-images (ginjinn utils sw_split), preserving annotated objects,

182 if available. Conversely, predictions based on such fragmented images can be

183 merged again (ginjinn utils sw_merge) in order to generate an annotation of the

184 original image.

185 The ginjinn utils crop command creates an annotated sub-image for each annotated

186 object from a given dataset. Similar to the sliding-window approach, this can be

187 utilized to increase objects sizes relative to the images. Specifically, performing

188 instance segmentation based on previously cropped bounding boxes may lead to

189 improved results.

190

191 Besides the aforementioned data processing features, the following commands aim

192 to provide additional convenience:

193 The contents of a dataset can be briefly summarized using ginjinn info. More detailed

194 information is provided by ginjinn utils count, which lists object occurrences

195 individually for each image in a given dataset. Object annotations can be visualized

196 with ginjinn visualize, which produces images overlaid by bounding boxes and, if

197 available, segmentation polygons. Moreover, Ginjinn2 allows to generate artificial

198 datasets for testing purposes (ginjinn simulate).

199

200 Installation and usage

201 GinJinn2 is implemented in Python3 and can be installed using the Conda package

202 manager, which also takes care of most of its dependencies. ginjinn and all its

203 subcommands provide a help option to list available parameters along with a short

204 description. Further guidelines regarding installation and usage, along with an

205 introductory tutorial and exemplary applications, are provided at
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206 https://ginjinn2.readthedocs.io.

207

208 Example analyses

209 Seed counting

210 In this section, we demonstrate how GinJinn2 can be applied for seed mixture

211 analysis, an illustrative use case for bounding-box detection with subsequent

212 counting. This approach could, for instance, be used to examine commercial seed

213 mixtures or be applied to ecological samples (e.g., from seed traps). The presented

214 analysis is based on a dataset consisting of 284 microscopic images of sand-

215 contaminated seed mixtures of the two plant genera Sedum L. and Arabidopsis (DC.)

216 Heynh.

217 For all images, intact seeds were annotated with bounding boxes using the

218 Computer Vision Annotation Tool (CVAT, https://github.com/openvinotoolkit/cvat),

219 resulting in 6,732 and 1,964 annotated seeds for Arabidopsis and Sedum,

220 respectively. The annotated images were exported as COCO dataset, which was

221 then flattened (ginjinn utils flatten), and split into sub-datasets for training, validation,

222 and testing. A Faster R-CNN model was simultaneously trained and validated

223 (Figure 1A). The quality of the fit model was assessed using COCO evaluation

224 metrics for bounding-box detection. In addition, instances predicted for the test

225 dataset were counted (ginjinn utils count) and compared with the manually obtained

226 counts.

227 After training, the AP50 was 98.6 and 98.90 for the validation and test dataset,

228 respectively, which indicates that no overfitting occurred. The mean absolute error

229 (MAE) of the class counts for the training dataset was 0.77 for Arabidopsis and 0.58

230 for Sedum, meaning that on average, less than a single object per image was

231 misclassified, missed, or falsely detected. The MAE of the seed proportions was

232 0.01, i.e., only one percent deviation from the true seed proportions.
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233

234 Yellow-sticky-traps insect detection and counting

235 As an example project for counting small, low-contrast objects on large images, the

236 Yellow-Sticky-Traps dataset (Nieuwenhuizen, 2018) was analyzed. This dataset

237 consists of images of yellow glue traps that were placed in greenhouses to monitor

238 insect abundance. Three categories of insects (true bugs) were annotated with

239 bounding boxes: Whitefly (WF), Macrolophus (MR), and Nesidiocoris (NC).

240 After removing redundant images and correcting erroneous or missing annotations

241 using CVAT, a cleaned sub-dataset comprising 120 images along with 4,913

242 bounding-box annotations (WF: 3,660, MR: 1,069, NC: 184) was exported in COCO

243 format. In contrast to the seeds dataset, these bounding-box annotations are of

244 considerably lower quality, often enclosing the insects only loosely.

245 The cleaned dataset was split into training, validation, and test datasets using ginjinn

246 split. Since the insects are relatively small compared to the total image size, a

247 sliding-window approach was applied (ginjinn utils sw_split) to crop sub-images

248 along with corresponding object (sub-)annotations. The cropped datasets were used

249 to train and evaluate a Faster R-CNN model for bounding-box detection. Finally,

250 object instances predicted for the test dataset were counted (ginjinn untils count) and

251 compared with true object counts.

252 The trained model achieved a validation and test AP50 of 90.12 and 92.4,

253 respectively. The mean absolute error (MAE) of the instance counts was 1.67 for

254 WF, 0.21 for NC, and 0.79 for MR at an average of 27.1, 1.67, and 7.41 annotated

255 instances per image for the respective object categories. The former amounts to a

256 relative counting error of 6% for WF, 12.5% for NC, and 10.6% for MR (weighted

257 average: 7.24%).

258

259 Stomata segmentation
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260 To demonstrate basic instance segmentation with the aim of detecting stomata, we

261 applied GinJinn2 to microscopic images of epidermal plant material, retrieved from

262 the Cuticle Database Project (Barclay et al., 2012). Results of such a segmentation

263 can be used in downstream analyses for counting, measuring density, or examining

264 size and shape of the stomata.

265 Using CVAT, 147 images were annotated with 2,314 polygons, each enclosing the

266 guard cells of a stoma. The annotated images were exported as COCO dataset and

267 split into training, validation, and test datasets used to train and evaluate a Mask R-

268 CNN model.

269 The trained model achieved an AP of 49.46 and 51.32 for the validation and test

270 dataset, respectively. The mean absolute counting error amounts to 2.34 at an

271 average of 14.69 stomata per image. An exemplary prediction is shown in Figure 2A.

272

273 Leucanthemum leaf segmentation

274 Morphometric studies often rely on outline data of specific animal or plant organs

275 like, for example, leaves in the latter organism group. A common workflow to

276 generate such data is to manually remove leaves from a living or herborized plant,

277 fixate them on a contrasting surface, capture digital images, and finally apply semi-

278 automatic thresholding methods (e.g., OTSU-thresholding) to construct binary

279 segmentation masks. In this exemplary application of GinJinn2, we show an

280 alternative way to segment individual leaves from digitized herbarium specimens

281 based on a two-step approach involving separate models for bounding-box detection

282 and segmentation.

283 For this purpose, the Botanic Garden and Botanical Museum Berlin provided us with

284 303 digitized herbarium specimens from 12 different Leucanthemum Mill. (ox-eye

285 daisy) species. Using CVAT, the specimen images were annotated with polygons of

286 the single object category “leaf”. This category represents largely intact leaves, which
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287 are a prerequisite for reliable morphometric analyses. The annotated images,

288 comprising 950 “leaf” instances, were exported from CVAT as COCO dataset,

289 flattened (ginjinn utils flatten) and split into training, validation, and test datasets.

290 A two-step pipeline (Figure 1B) was applied, consisting of 1) a Faster R-CNN

291 bounding-box detection model that allows to extract individual leaves, and 2) a Mask

292 R-CNN model to segment the leaves on those image parts. The Faster R-CNN was

293 trained and evaluated on sliding-window crops (ginjinn utils sw_split) of the three

294 datasets. For the Mask R-CNN, sub-images (ginjinn utils crop) were cropped from

295 the original annotated images, each containing a single annotated leaf. Based on

296 those cropped datasets, the Mask R-CNN was trained and evaluated. In addition,

297 segmentation refinement was applied to the predictions for the test dataset.

298 After training, the Faster R-CNN achieved an AP of 30.57 and 25.85 for the

299 validation and test dataset, respectively. The Mask R-CNN’s AP scores were 76.44

300 and 74.54. Figure 2B illustrates an exemplary prediction. For new image data, the

301 complete prediction process also involves sliding-window merging as illustrated in

302 Figure 1B in order to remove duplicated objects.

303

304 All used GinJinn2 commands and the corresponding project configuration files can

305 be found in the Supporting Information (S1-S6).

306

307 Discussion

308 The GinJinn2 framework advances the original GinJinn by reimplementing its ideas

309 on the basis of Detectron2, while also introducing new features like segmentation

310 models including mask refinement, as well as several data pre- and postprocessing

311 capabilities.

312 Based on four exemplary datasets we have shown applications of varying

313 complexity. The seeds and yellow-sticky-traps analyses address multi-category
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314 object counting problems using bounding-box detection. We were able to predict the

315 seed ratios with an absolute error of only 1%, proving the potential of our software for

316 the automation of such counting tasks. Considering the similar problem of counting

317 insects on yellow glue traps, with an error of 7.2%, the accuracy of the trained model

318 may appear less convincing. There are two likely causes for this difference in

319 accuracy: 1) low contrast between objects (insects) and background (glue trap) and

320 2) low quality of annotations. The latter could easily be solved by a more careful

321 annotation scheme. Nevertheless, the achieved accuracy might be sufficient for

322 practical applications, e.g., to measure the response to insecticide treatments or

323 released beneficials in greenhouses.

324 The stomata analysis serves as a basic example of instance segmentation. Despite

325 several previous works on the automated examination of stomata (Toda et al., 2018;

326 Fetter et al., 2019; Li et al., 2019; Carrasco et al., 2020; Casado-García et al., 2020;

327 Meeus et al., 2020; Song et al., 2020), this contribution, to our knowledge, is the first

328 trying to automatically segment whole stomata (represented by their guard cells)

329 using deep learning. With only 88 highly variable training images, our model

330 achieved an AP of 51.32. Depending on the intended downstream analyses, this

331 precision may already be acceptable if, for instance, only few high-quality object

332 instances are required. Undoubtedly, a model trained on a larger dataset will achieve

333 substantially higher predictive power.

334 Finally, the Leucanthemum analysis illustrates how to construct a pipeline consisting

335 of sliding window-based bounding-box detection and subsequent segmentation for

336 the extraction of high-quality leaf silhouettes from herbarium specimens. Here, the

337 Faster R-CNN achieved an AP of 25.85. For potential morphometric analyses, we

338 are not interested in extracting all leaves, but only largely intact ones, even at the

339 cost of discarding viable instances. Therefore, the relatively low AP is sufficient. The

340 Mask R-CNN, with an AP of 74.54 before refinement, was very successful at
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341 segmenting the leaves inside the bounding boxes. This pipeline already allows to

342 generate leaf outlines for downstream analyses like Elliptic Fourier Analysis or Leaf

343 Dissection Index calculation (for an overview of such methods, see McLellan &

344 Endler, 1998) with little manual effort.

345 With the presented exemplary analyses, we hope to provide guidance for the

346 application of GinJinn2 for automatic data collection and feature extraction. Despite

347 GinJinn2’s progress compared to its predecessor, there is still room for further

348 improvements. At the moment, GinJinn2 is only available for Unix-like operating

349 systems with access to an NVidia GPU while Windows support may become

350 available with forthcoming updates to the Windows Subsystem for Linux (WSL).

351 Moreover, there is only one meta-architecture for each of the two detection tasks

352 available, namely Faster R-CNN and Mask R-CNN. These, however, are among the

353 most successful architectures for general-purpose object detection and

354 segmentation. The integration of additional model architectures may be part of future

355 versions.

356 We are confident that GinJinn2 will enable users, even those without programming

357 experience, to apply deep learning-based methods for object detection and

358 segmentation as part of their analysis pipelines. Besides, advanced users may utilize

359 GinJinn2 as a tool for rapid prototyping.
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486

487 Figure 1. Seeds (A) and Leucanthemum (B) analysis workflows. The Seeds dataset

488 is split into training, validation, and test datasets, which are used to train and

489 evaluate a bounding-box model (A, Training). The trained model is applied to new

490 data for seed counting (A, Prediction). The Leucanthemum dataset is also split into

491 training, validation, and test datasets, but the workflow comprises training and

492 evaluation of two separate models (B, Training). The blue branch refers to a

493 bounding-box model for the detection of leaves on sliding-window crops of the split

494 dataset. The orange branch depicts the training and evaluation of an instance

495 segmentation model on padded bounding boxes cropped from the split datasets.
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496 Leaf segmentations for new data are predicted by combining both models (B,

497 Prediction).

498

499

500 Figure 2. Exemplary outputs from the Stomata (A) and Leucanthemum (B) analyses.
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501 A depicts a single input image along with corresponding predictions by the stomata

502 model, showing different output formats. Similarly, B shows an input image and

503 corresponding predictions for the Leucanthemum pipeline, before and after

504 segmentation refinement.

505

506 Supporting information

507 commands.pdf:

508 Appendix S1. GinJinn2 commands of exemplary analyses.

509 seeds.yaml:

510 Appendix S2. GinJinn2 configuration file for the seeds analysis.

511 stickytraps.yaml:

512 Appendix S3. GinJinn2 configuration file for the yellow-sticky-traps analysis.

513 stomata.yaml:

514 Appendix S4. GinJinn2 configuration file for the stomata analysis.

515 leucanthemum_bbox.yaml:

516 Appendix S5. GinJinn2 configuration file for the Leucanthmum analysis (bounding-

517 box detection).

518 leucanthemum_segmentation.yaml:

519 Appendix S6. GinJinn2 configuration file for the Leucanthmum analysis (instance

520 segmentation).

521 split_image.py:

522 Appendix S7. Image splitting script.
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