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Abstract

The ability to jointly profile the transcriptional and chromatin land-
scape of single-cells has emerged as a powerful technique to identify cel-
lular populations and shed light on their regulation of gene expression.
Current computational methods analyze jointly profiled (paired) or indi-
vidual data modalities (unpaired), but do not offer a principled method
to analyze both paired and unpaired samples jointly. Here we present
MultiVI, a probabilistic framework that leverages deep neural networks
to jointly analyze scRNA, scATAC and multiomic (scRNA + scATAC)
data. MultiVI creates an informative low-dimensional latent space that
accurately reflects both chromatin and transcriptional properties of the
cells even when one of the modalities is missing. MultiVI accounts for
technical effects in both scRNA and scATAC-seq while correcting for
batch effects in both data modalities. We use public datasets to demon-
strate that MultiVI is stable, easy to use, and outperforms current ap-
proaches for the joint analysis of paired and unpaired data. MultiVI is
available as an open source package, implemented in the scvi-tools frame-
work: https://docs.scvi-tools.org/.
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1 Introduction

The advent of technologies for profiling the transcriptional and chromatin acces-
sibility landscape at a single cell resolution has been paramount for cataloging
cellular types and states, identifying important genomic regions, and linking
genes to their regulatory elements [1, 2]. However most uses of single-cell RNA-
seq (scRNA-seq) [3, 4] and single-cell ATAC-seq (scATAC-seq) [2, 5] have been
limited such that a given cell can only be profiled by one technology. Recently,
multi-modal single-cell protocols [6] have emerged for simultaneously profiling
gene expression and chromatin accessibility in the same cell. This concomi-
tant measurement provides a comprehensive source of information for a more
refined categorization of cell states and, ultimately, a better understanding of
the regulatory mechanisms that underlie the diversity of states.

A promising application of this emerging multi-modal technology is to pro-
vide a way to retrospectively analyze existing datasets of a single modality
(scRNA- or scATAC-seq only). Given such a dataset (which are much more
common than multi-modal datasets), use of multi-modal data can enable an in-
ference of the ”"missing” modality and thus reach new conclusions about the
diversity and regulation of cell states in a wide array of tissues, cell types
and experimental or clinical settings. While some computational methods have
emerged that can analyze multi-modal data in isolation [7, 8], the joint anal-
ysis of multi-modal and single-modality data necessitates the development of
novel computational methods. These methods must be capable of leveraging
the power of multi-modal data while accounting for the general caveats of sin-
gle cell genomics data, most prominently - batch effects, limited sensitivity and
noise, and taking into consideration the unique statistical properties of each
modality (i.e., quantitative signal for scRNA-seq and a largely binary signal for
scATAC-seq).

Here, we introduce MultiVI, a deep generative model for probabilistic and
integrative analysis of scRNA-seq, scATAC-seq and paired multi-modal data.
MultiVI learns low-dimensional representations of single cells that jointly re-
flects their chromatin and transcriptional landscapes, while modeling technical
confounders and accounting for batch effects. This information can be either
observed (for cells obtained from a multi-modal assay) or inferred (for cells ob-
tained from a single-modality assay). Similar to previous deep generative mod-
els[9, 10], MultiVT also provides a normalized and batch- corrected view of the
high-dimensional data (gene expression, chromatin accessibility; either observed
or inferred), along with quantification of uncertainty. We utilize several pub-
lished datasets to demonstrate the ability of MultiVI to integrate and intepret
information across different studies, modalities, and experimental technologies.
MultiVT is available in scvi-tools as an open source software, along with detailed
documentation and a usage tutorial https://docs.scvi-tools.org/.
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2 Results
2.1 The MultiVI Model

MultiVT leverages our previously presented variational autoencoding (VAE [11])
models for gene expression (scVI [9]) and chromatin accessibility (PeakVI [10]).
Given multi-modal data from a single cell (X) from sample (or batch) S, we
divide the observations into gene expression (Xg) and chromatin accessibility
(X4). Two deep neural networks termed ‘encoders‘ learn modality-specific,
batch-corrected multivariate normal distributions that represent the latent state
of the cell based on the observed data, q(zg|Xg,S) and q(24]|X 4, S), from the
expression and accessibility observations, respectively. To achieve a latent space
that reflects both modalities, we penalize the model so that the distance between
the two latent representations is minimized and then estimate the integrative
cell state q(z| X g, X4,5) as the average of both representations. For ”unpaired”
cells, i.e., cells for which only one modality is available, the cell state is drawn
directly from the representation for which data is available (i.e., zg or z4).

In the second part of the model, observations are probabilistically generated
from the latent representation using two modality-specific deep neural networks
termed ‘decoders‘. Simialr to our previous generative models for gene expression
(scVI) and accessibility (PeakVT), the model assumes that the RNA expression
data is drawn from a negative binomial distribution, and the accessibility data
fits a Bernoulli distribution. The likelihood of the model is computed from both
modalities for paired (multi-modal) cells, and only from the respective modality
of unpaired cells. Finally, during training, we include an adversarial component
which penalizes the model if cells from different modalities are overly separable
in latent space.

This two-part architecture enables MultiVI to achieve several goals: first,
it leverages the paired data to learn a low-dimensional representation of cell
state, which reflects both data types. Second, it allows cells for which only one
modality is available to be represented at the same (joint) latent space. Finally,
the ‘decoding’ part of the model provides a way to derive normalized, batch-
corrected gene expression and accessibility values for both the multi-modal cells
(i.e., normalizing the observed data) and for unpaired cells (i.e., imputing un-
observed data; see Figure 1A and methods).

2.2 MultiVI integrates paired and unpaired samples

To study how well MultiVI integrates paired and single-modality data into a
common low-dimensional representation, we inspected the outcome of artificially
unpairing a jointly profiled dataset. Using a multi-modal PBMC dataset from
10X genomics, a randomly selected set of peripheral blood mononuclear cells
(PBMCs; at varying rates, from 1% to 99%), are made unpaired such that each
cell appears twice: once with only gene expression data, and once with only
chromatin accessibility data. This action resulted in a heterogeneous data set
containing three sets of cells: one set has both modalities available, a second
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set has only RNA-seq information, and the third set of cells has only ATAC-seq
information present.

Since, to the best of our knowledge, no published methods offer a principled
way to integrate paired multi-modal data with unpaired expression or chromatin
data, we attempted to use the Seurat V4 code base[12] to achieve this, and com-
pared the results to those obtained with MultiVI. We applied Seurat using three
different approaches: (1) gene activity: we converted the ATAC-seq data of the
accessibility-only cells to gene activity scores (using the signac procedure), and
then integrated all the cells using the gene- level data (i.e., gene scores when
RNA-seq is not available, or gene expression when RNA-seq is available); (2)
imputed: we followed the steps in (1) and then used Seurat to impute the RNA
expression values for the accessibility-only cells. This is done by averaging over
nearby cells in the integrated space for which RNA-seq is available (methods).
The data from the accessibility-only cells was then re-integrated with the re-
maining cells using the imputed RNA expression values instead of the gene
scores; (3) WNN': using weighted nearest neighbor graphs, which leverages in-
formation from both modalities to create a joint representational space, then
project single-modality data onto this space (methods).

We ran all methods on the artificially unpaired datasets and compared their
latent representations, with the exception of the WNN-based approach and the
99% unpaired dataset, which failed to produce results due to the low number of
paired cells (Figure 2A-B, Supplemental Figure 1). We first quantified the mix-
ing abilities of the different approaches, by calculating the local inverse Samp-
son’s index (LISI) score described by [13]. Briefly, for each unpaired cell the
fraction of neighbors among the K nearest single-modality neighbors that are of
the same modality (expression or accessibility), for varying values of K, normal-
ized by the overall fraction of that modality. This results in an enrichment score,
with 1 being perfect mixing (Figure 2C). We found that MultiVI outperforms
all other approaches in low rates of unpaired cells (below 50%), but the mixing
performance decreases when the rate of unpaired cells increases. Conversely,
the Seurat-based imputation approach (unlike the other two Seurat-based ap-
proaches) maintains high mixing performance across all levels of unpaired cells.
This result is expected, since each accessibility-only cell is represented by an
average over cells for which RNA-seq data is available, and that have similar
gene expression profiles (i.e., a local neighborhood in a transcriptome- based
space). It does not, however, indicate whether these representations are indeed
accurate.

Next, we examine the accuracy of the inferred latent space. To measure how
well each method captures the true biological state of a cell, we took advantage
of the ground truth information contained in our artificially unpaired datasets.
For the unpaired cases, we have two distinct representations of the same cell:
one based solely on the expression profile and the other solely on the chromatin
landscape. Ideally, the two representations would be situated closely in the
latent representation, as both capture the same biological state. To measure
this, we looked at the distances between the two representations of the unpaired
cells in the latent space created by each method. To account for the varying
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scales of different latent spaces, we used the rank distance (the minimal K
for which the two representations are within each other’s K nearest neighbors,
averaged across all cells; methods, Figure 2D). In this experiment, we found that
MultiVI maintains the multi-modal mixing accuracy substantially better than
competing methods, and that all methods have a deteriorating performance as
the level of unpaired cells increases.

As another test of accuracy, we evaluated the extent to which the stratifi-
cation of cells into sub-populations remains consistent when most of the data
is paired, and when paired data is only partially available. Ideally, if cells are
deemed to be at the same cluster based on multi-modal data, they should still
be at the same cluster even if they only have information available for one
modality. To test this, we clustered the cells in the fully paired and the 75%
unpaired data sets (Supplemental Figure 2, methods). Then, we assessed how
well the identified clusters in both data sets coincide by measuring the cluster
correspondence between data sets (Figure 2EF). To quantify this consistency,
we computed the Adjusted Rand Index (ARI) for both methods, indicating a
more faithful representation of the data in MultiVI (MultiVI ARI 0.81, Seurat
Imputation ARI 0.66, Figure 2E,F).

Taken together, these results show that MultiVI efficiently integrates un-
paired scRNA and scATAC data while capturing the true biological state of
each cell, while the Seurat-based approaches either ineffectively mix the modal-
ities, or mix them well but less accurately.

2.3 Integration of Independent Data

Our previous analyses rely on artificially unpaired data, where our model bene-
fits from all data fundamentally being generated in a single batch and by a single
technology. While allowing for more accurate benchmarks, this does not reflect
real-world situations in which it is desired to integrate data sets that were gener-
ated at different batches or even different studies, while possibly using different
technologies. We therefore sought to demonstrate MultiVI on a set of real-world
data. We collected three distinct datasets of PBMCs: 1) Multi-modal data from
the 10X dataset we used previously; 2) ATAC-seq from a subset of Hematopoei-
sis data generated by Satpathy et al[14], containing multiple batches of PBMCs
as well as cell-type specific (FACS-sorted) samples; 3) RNA-seq PBMC data
generated by various single cell technologies for a benchmarking study by Ding
et al [15]. The datasets were processed to create a set of shared features (genes,
loci), and annotations were collected from both Satpathy et al and Ding etl
al datasets and combined to a shared set of cell type labels (methods). The
resulting dataset has 63382 (53%) ATAC-only cells from Satpathy et al, 44615
(37%) RNA-only cells from Ding et al, and 12012 (10%) jointly profiled cells
from 10X.

To gauge the extent of batch effects in this data, we first ran MultiVI with-
out accounting for the study of origin of each sample or to its specific technology
(which varies between the RNA-seq samples from Ding et al). With this ap-
plication, we found substantial batch effects, both between different samples in
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the chromatin accessibility data and between technologies in the gene expression
data (Supplemental Figure 3). We then reanalyzed the data, this time configur-
ing MultiVI to correct batch effects and technology-specific effects within each
dataset (methods). The resulting, corrected, joint latent space mixes the three
datasets well (Figure 3A), while accurately matching labeled populations from
both datasets (Figure 3B). MultiVI achieves this while also correcting batch
effects within the Satpathy data and technology-specific effects within the Ding
data (Figures 3C-D). To better examine the correctness of the integration, we
examined the set of labelled cells from the two single-modality datasets (FACS-
based labels from Satpathy and manually annotated cells from Ding). For each
cell, we examined its 100 nearest neighbors that came from the other modality,
and summarized the distribution of labels of those neighbors. We find a clear
agreement between the labels of each cell and the labels of it’s neighbors, with
some mixing among related cell types (Figure 3E). This analysis demonstrates
that MultiVI is capable of creating a biologically meaningful representation that
mixes data from different sources and modalities, and can be used to leverage
previously acquired data in conjunction with new multi-modal data.

2.4 Probabilistic Data Imputation

The probabilistic nature of MultiVI allows the model to impute missing obser-
vations, modalities, and generate uncertainty estimates for imputed values. To
demonstrate MultiVI’s imputation abilities, we resorted to the 10X data set
where 75% of the cells were artificially unpaired (as in Figure 2). We used Mul-
tiVI to impute the missing modality for the unpaired cells and found that for
both modalities, the imputation had high correspondence to the observed values
(Figures 4A-B). Specifically, we observe Spearman correlation 0.57 between the
imputed expression values and the observed data (taking the raw values, scaled
by library size), and an area under the precision-recall curve (PRAUC) of 0.41
for the accessibility data (taking the raw, binary signal). Since the raw data
can be largely affected by low sensitivity, we also calculated the correlation be-
tween the imputed values and a smoothed version of the data (obtained with a
method different of MultiVI; methods), where the signal is average over similar
cells (separately for ATAC-seq and RNA-seq), thus mitigating this issue. As
expected, we see a higher level of correspondence between the imputed values
and this corrected version of the raw data (Spearman correlations 0.8, 0.86 for
accessibility, expression respectively; Figure S4A-B).

Next, we focus our analysis on uncertainty estimation for the imputed ac-
cessibility values. We measured the uncertainty of the model for each imputed
accessibility value by sampling from MultiVI’s generative model (methods) and
found a strong relationship between the estimated uncertainty and the error of
each data point ((imputed — observed)Q), indicating that the model is indeed
less certain of predictions that are farther from the unobserved ”ground- truth”
values (Figure 4C). Equivalent analysis for expression imputations is hindered
by the high correlation between the average expression and both the measured
error and the uncertainty of the imputed results.
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Interestingly, we identified a small subset of values (roughly 0.5% of obser-
vations) for which we have high confidence imputations that are associated with
high error, when comparing to the unobserved raw accessibility data (Figure 4C,
green square). In the case of chromatin accessibility, these high-confidence-high-
error imputations correspond to cases where the model confidently predicts the
opposite of the actually observed value (Figure 3D). To investigate the source of
these errors, we inspected the same cases when comparing the imputed values to
the smoothed accessibility estimates (methods). We found that many of these
regions were detected as inaccessible in the raw data, but predicted to be acces-
sible by MultiVI, and vice-veras. Interestingly, the smoothed data agrees with
the MultiVI predictions - namely, observations that were predicted as accessible
tend to be open in highly-similar cells, and observations that were predicted as
inaccessible tend to be closed in high-similar cells (Figure 4E). This indicates
that these high-confidence-high-error values may correspond to false-negatives
and false-positives in the raw data.

As a specific example for imputation, we highlight the T-cell marker gene
CD3G. While the observed expression and the observed accessibility of the re-
gion containing the transcription start site (TSS) of the gene show high noise
and sparsity, the imputed values are highly consistent and clearly mark the
T-cell compartment of the latent space (Figure 4F).

Overall, these results show that MultiVI is capable of imputing missing
observations, and quantifying the uncertainty for each value, allowing the user
to then determine which imputed values are reliable for downstream analyses
and which are not. Importantly, since imputing values only requires a latent
representation, MultiVI can seamlessly impute missing modalities in a well-
integrated space.

3 Discussion

MultiVI is a deep generative model for the integrated analysis of single cell
gene expression and chromatin accessibility data. MultiVI uses jointly profiled
data to learn a multi-modal model of the data and to relate measurements of
individual modalities on the same population of cells. The model accounts for
various technical sources of noise and can correct additional sources of unwanted
variation (e.g batch effects). MultiVI learns a rich latent representation of the
data coalescing information present in each individual data type, which can be
used for further single-cell sequencing analysis.

Recent algorithms for the analysis of multi-modal data were developed to
process paired datasets, in which both modalities have been profiled at the same
cell [8, 7]. These algorithms handle multi-modal data, but lack the ability to
integrate single modality datasets into the same analysis. While this task is
possible to achieve with the Seurat code base [12], the respective methods we
utilized here were not specifically designed to this end, and their performance
was not tested for this task. Addressing this need for an integration method,
we have shown that MultiVI effectively combines unpaired scRNA and scATAC
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data with multi-modal single-cell data, generating a robust and meaningful rep-
resentation of the cells’ state that captures information about both their tran-
scriptome and epigenome. This joint representation is achievable even when
the amount of paired data is minimal, thus opening exciting opportunities for
future analysis. First, MultiVI and similar methods will enable reanalysis of the
large compendia of available unpaired datasets (representing the the majority
of existing data) with relatively small additional paired data, opening the way
for more comprehensive characterization of cell state. Second, it facilitates cost-
effective designs for future studies, in which only a subset of samples need to be
profiled with the (more costly) multi-modal protocol. Lastly, the probabilistic
nature of MultiVI enables data imputation and uncertainty quantification on
imputed values, opening the way for downstream statistical analyses that hinge
on unobserved values, such as differential accessibility in RNA- only data, or
cell state annotation based on marker genes in ATAC- only data.

In summary, MultiVI is able to seamlessly process single and multi-modal
data, integrate different chromatin and transcriptional batches, and create a rich
joint representation harnessing all available information. The representations
created by MultiVI are robust to different composition of multi-modal data
sets. Due to properly modeling each individual modality, MultiVI accounts for
technical confounders and batch effects. MultiVI is a probabilistic graphical
model, given its probabilistic nature, differential expression and accessibility
analysis can be performed. Lastly, MultiVI is implemented in the scvi-tools
framework [16], making it easy to configure, train, and use.
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4 Methods
4.1 The MultiVI Model

MultiVI inherits generative models describing chromatin accessibility and tran-
scriptional observations from scVI [9] and peakVI [10]. Briefly, Let Xz € N§*¢
be a scRNA-seq genes-by-cell matrix with C cells and G genes, where 27 € Ng
is the number of reads from cell ¢ that map to gene g. Let X4 € NgX be a
scATAC-seq region-by-cell matrix with C cells and J regions, where xCAj € Ny is
the number of fragments from cell ¢ that map to region j.

MultiVI models the probability of observing x.; counts in a gene by using a
negative binomial distribution,

zh ~ NegativeBinomial (€cpeg, 04) (1)

where /. is a scaling factor that captures cell-specific biases (e.g library size),
pcg is a normalized gene frequency and 6, models the per gene dispersion.
The probability of observing a region as accessible is modeled with a Bernoulli
distribution,

JU?Z ~ Ber (écpcjrj) (2)

where p.; captures the true biological heterogeneity; r; captures region-specific
biases (e.g width, sequence). In both observational models, the scaling factor
the region-specific and the per gene dispersion parameters are inferred from data
using deep neural networks (this is in contrast to the original implementation
of SCVTI in which library size was modelled using a lognormal distribution).

Next, for each cell, normalized gene frequencies p., and biological hetero-
geneity p.; are estimated using a latent representation as in VAE[11]. Briefly,
each modality is assign their own latent representation, a isotropic multivariate
normal distribution Z4 ~ MVN(0,1) and ZF ~ MVN(0,1). Then, with the
purpose of bringing both representations together, they are combined by taking
their average Z. = M This merged representation is then used to decode
both model parameters, p.. = f(Z4) and p., = g(Za4).

4.2 MultiVI Inference Model

We use variational inference [17] to compute posterior estimates of model pa-
rameters using the following variational approximation:

q(zR, 240, Olz,y) = q(zR|x)q(zA\y)§g* Op# Oy (3)

where delta distribution § highlight the fact that parameters are inferred from
the data as point estimates. The cell-specific factor £, is computed from the in-
put data for cell ¢ via a deep neural network f; : N& — [0, 1]. The region-specific
factor r;, since it is optimized across samples, is stored as a K-dimensional ten-
sor, used and optimized directly. In the case of each latent representation, two
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encoders are computed as hITens¢ ; NEK — (RD7 RD) and hShrem . NE —
(RD ,RP ) where each of them computes the distributional parameters of a D-
dimensional multivariate normal random variable: Z ~ MV N (h; (xc), , bz (z¢)5).

Using the variational approximation, the evidence lower bound (ELBO) is
computed and optimized with respect to the variational and model parameters
using stochastic gradients. To enforce the similarity between chromatin and
transcription latent representations, we add to the ELBO a term that penalizes
the distance between representations using a symmetric KL divergence between
distributions d(Z4, ZF) = symmKL(q(z4), ¢(25)).

(&

5 Benchmarking and Evaluation

5.1 Dataset Preprocessing

The 10x multiomic unsorted PBMC dataset was downloaded from the com-
pany website. For artificial unpairing analyses, the processed peak-by-cell ma-
trix was downloaded and filtered to remove features that are detected in fewer
than 1% of the cells. For the mixed-source PBMC dataset, the fragment file
was downloaded and reprocessed using CellRanger-ARC (v2.0.0) with the Sat-
pathy hg38 peaks. The Satpathy dataset was downloaded from GEO (Ac-
cession GSE129785); specifically the processed peak-by-cell matrix and meta-
data files: scAT AC — Hematopoiesis — All.cell — barcodes.txt.gz, scATAC —
Hematopoiesis— All.mtx.gz, scAT AC' — Hematopoiesis — All.peaks.txt.gz. We
then filtered the data to only include peaks that were detected in at least 0.1%
of the data, and lifted those peaks over from the hgl9 to the hg38 genome refer-
ence using the UCSC liftover utility [18]. The Ding dataset was downloaded from
GEO (Accession GSE132044); specifically the pbme data: pbmey,g38.ount,atriz.mitz.gz, pbmeyg38.ell.tsv.gz,
Matching cell type annotation was downloaded from SCP (Accession SCP424).
After preprocessing, the reanalyzed 10x dataset was combined with both single-
modality datasets, and the features were filtered to remove features (either genes
or peaks) that were detected in fewer than 1% of the cells.

5.2 RNA-based Seurat integration

This integration modality, disregards multiomic information and only RNA in-
formation is considered from multiome cells. Briefly, RNA information is first in-
tegrated and then, chromatin accessibility is integrated using gene activity scores
(RNA-based method) or RNA imputed values (RNA-based Imputed method).
In more detail, cells were separated into three different datasets, multiomic
cells (using only expression data), rna-only cells and atac-only cells. Seurat
objects were created for multiome and rna-only data, and were then normal-
ized, scaled, and the first 50 principal components are calculated. For atac-only
cells, a Seurat object was created, gene activity scores were calculated, scaled,
and principal components were computed. To integrate the three datasets, in-
tegration anchors (using FindIntegrationAnchors) were calculated and the data
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was then integrated (using IntegrateData). The RNA-based method uses gene
activity scores as representative values from the atac-only cells. The RNA-
based Imputed method includes an additional step in which RNA imputed values
are calculated from gene activity scores by running FindTransferAnchors and
TransferData.In this integration method, RNA imputed values are used as rep-
resentative values from atac-only cells. Finally, integrated data was then scaled
and principal components were calculated to generate the final latent space.
Across these integration methods, we followed the standard recommended pro-
cedure for analyzing data with Seurat given in their tutorials [19].

5.3 WNN-based Seurat Integration

This approach aims to leverage information from both modalities (chromatin
accessibility and expression values), using the newly described weighted nearest
neighbors approach from Seurat V4 [12]. We first created a weighted nearest
neighbor graph using multiomic information and then project chromatin and
transcriptional information onto this.

We begin by separating cells in unpaired datasets into three different datasets,
multiomic cells (with both expression and chromatin data), rna-only, and atac-
only. First, multiome latent representation is found by calculating SC transform
and principal components on the expression data and latent semantic analysis
(TF-IDF decomposition followed by SVD) on the chromatin data. Next, mul-
timodal neighbors and the first 50 supervised PCA are calculated. To merge
rna only and atac only data to multiome representation, transfer anchors (Find-
TransferAnchors) are computed on rna only data and gene activity scores on
atac only and each datasets is integrated using IntegrateEmbeddings function.
Finally, datasets and dimensionality reductions are merged and umap is visual-
ized using the merged information.

5.4 Neighbor Rank Distance Calculation

For artificially unpaired cells, each cell has two unpaired representations in the
latent space. Given cell ¢ with representations ¢, and ¢, let S (c,, K) be the
set of K nearest neighbors to ¢,. We then define § (¢4, ¢p) as the minimal K for
which cell ¢, is among the K nearest neighbors of cell ¢,: min {k : ¢, € S (cq, k)}-

5.5 Enrichment Score Calculation

Enrichment scores were computed as they were in our previous work[10], and
similarly to the LISI scores described in the Harmony paper[13]. Briefly, given
a latent representation R, an integer k, and the modality labels (expression, or
accessibility) L, we compute Gr, the K-nearest neighbor graph from R with
k neighbors. Using G, we compute for each cell the proportion of neighbors
that share the same modality: s; = %ZjeGR,k(i) 1(L; = L;). The enrichment
score is the average score across all cells, §, normalized by the expected score
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for a random sample from the distribution of labels: E'[s] = >, p7, with py
being the proportion of each modality.

5.6 Estimating Imputation Uncertainty

We estimate the uncertainty of the model for each imputed value by sampling
from the latent space (n=15) and computing the standard deviation of the
imputed values for each observation. More consistent predictions correspond to
less uncertainty.

5.7 KNN-based estimate of accessibility

To estimate accessibility without using MultiVI, we computed a lower-dimensional
representation of the data using Latent Semantic Analysis (LSA, top 30 com-
ponents), then for each cell we computed the average accessibility profile of
the 50 nearest neighbors in the LSA space. This creates a smooth estimate of
accessibility using highly-similar cells, mitigating the effect of false observations.

5.8 Expression Smoothing

Expression smoothing was achieved by taking the top 30 principle components of
the expression data (computed with PCA), computing the K-nearest neighbors
graph (for K = 50) and averaging the expression values of the neighbors for
each cell (scaled by library size).

6 Figures
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Figure 1: MultiVI Model Overview. Conceptual model illustration in which
input data (top) consists of either chromatin accessibility (ATAC), gene expres-
sion (RNA) or both data types (Multiome). Variable S represents experimental
covariates, such as batch or experimental condition. Each data modality is en-
coded into modality-independent latent representations (using neural network
encoders) and then, these representations are merged into a joint latent space.
The joint latent representation is used to estimate (decode) the input data to-
gether with chromatin region-specific effects (r4), gene-specific dispersion (o),
cell-specific effects (4, £r), accessibility probability estimates (Yz) and mean
gene expression values (ug).
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Figure 2: MultiVI accurately integrates gene expression and chromatin accessi-
bility data. A) UMAP representations of the latent spaces learned by MultiVI
(top row), Seurat using the RNA-only based integration (middle row), and
Seurat using the WNN-based integration (bottom row) for various rates of un-
paired data, colored by cell modality. B) The mean distance between the two
representations of artificially unpairedlgells, measured as the number of cells
between them. C) Enrichment of neighbors from the same modality, computed
as the fraction of neighbors of the K-nearest neighbors that are from the same
modality, normalized by the overall fraction of cells from that modality. D-E)
Correspondence between clusters identified using the latent space of MultiVI
(D) and Seurat Imputation (E) methods run on the fully paired dataset versus
clusters computed using the 0.75 fraction of unpaired cells data set.
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Figure 3: MultiVI effectively coalesce single and multi-modal data sets, inte-
grating information from different experimental technologies and batches. We
integrated three PBMC datasets in which only multi-modal data (10X multi-
ome), only ATAC-seq information (Satpathy et al) and only RNA-seq informa-
tion (Ding et al) is present. A)-D) UMAP representation computed from the
latent space of MultiVI in which cells are color labeled by their dataset (A),
their cell type (B) or ATAC-seq cells are labelled by the replicate in which they
were collected (C) or RNA-seq cells are labelled by their collection experimental
technology. E) Heatmap summarizing the fraction of cell neighbors that share
the same label as the original cell.
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Figure 4: MultiVI imputation and uncertainty estimation. A) normalized ob-
served RNA counts by MultiVI-imputed RNA estimates; all values, including
color intensity, are presented in log scale (log(x + le — 4) for stability). B)
MultiVI-imputed accessibility estimates by the observed values. C) the imputa-
tion error (imputed — observed)2 as a function of the standard deviation of the
imputed accessibility estimates. Green box marks high-confidence-high-error
values examined in following panels. D) MultiVI-imputed accessibility esti-
mates by the observed values for high-confidence-high-error cases. E) smooth
accessibility estimates for values observed as 1 (top) and 0 (bottom). estimates
computed by averaging the accessibility profiles of the 50 nearest neighbors,
in a 50-dimensional space computed using Latent Semantic Indexing. F) ob-
served and imputed values for CD3G expression and CD3G TSS accessibility.
Expression values are normalized and in log scale.
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Figure S1: Extended Integration results depicting mixing of cells in data sets
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method (C), and Seurat wKNN method (D).
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Figure S2: Extended Analysis of cluster consistency using dataset with 0.75 frac-
tion of unpaired cells. UMAP representation computed from the latent space of
MultiVI or Seurat Imputation in which cells are color labeled by their modality
(A / B), their cluster correspondence computed at 0 fraction of unpaired cells

(C / D) and their cluster correspondence computed at 0.75 fraction of unpaired
cells (E / F).
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Figure S3: Latent representation of mixed sources data sets in which no batch
correction techniques have been applied. We integrated three PBMC datasets
in which only multi-modal data (10X multiome), only ATAC-seq information
(Satpathy et al) and only RNA-seq information (Ding et al) is present without
correcting for batch or modalities effects. A)-D) UMAP representation com-
puted from the latent space of MultiVI in which cells are color labeled by their
dataset (A), their cell type (B) or ATAC-seq cells are labelled by the replicate in
which they were collected (C) or RNA-seq cells are labelled by their collection
experimental technology.
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