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One-sentence summary: Genotyping of gene bank collections of diploid A-genome relatives of wheat 4 

uncovered relatively higher genetic diversity and unique evolutionary relationships which gives insight 5 

to the effective use of these germplasm for wheat improvement.  6 
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Abstract 23 

The A-genome diploid wheats represent the earliest domesticated and cultivated wheat species in the 24 

Fertile Crescent and the donor of the wheat A sub-genome. The A-genome species encompass the 25 

cultivated einkorn (Triticum. monococcum L. subsp. monococcum), wild einkorn (T. monococcum L. 26 

subsp. aegilopoides (Link) Thell.) and T. urartu. We evaluated the collection of 930 accessions in the 27 

Wheat Genetics Resource Center (WGRC), using genotyping-by-sequencing (GBS) and identified 28 

13,089 curated SNPs. Genomic analysis detected misclassified and duplicated accessions with most 29 

duplicates originated from the same or a nearby locations. About 56% (n = 520) of the WGRC A-30 

genome species collections were duplicates supporting the need for genomic characterization for 31 

effective curation and maintenance of these collections. Population structure analysis confirmed the 32 

morphology-based classifications of the accessions and reflected the species geographic distributions. 33 

We also showed that the T. urartu as the closest A-genome diploid to wheat through phylogenetic 34 

analysis. Population analysis within the wild einkorn group showed three genetically distinct clusters, 35 

which corresponded with wild einkorn races α, β, and γ described previously. The T. monococcum 36 

genome-wide FST scan identified candidate genomic regions harboring domestication selection signature 37 

(Btr1) on the short arm of chromosome 3Am at ~ 70 Mb. We established A-genome core set (79 38 

accessions) based on allelic diversity, geographical distribution, and available phenotypic data. The 39 

individual species core set maintained at least 80% of allelic variants in the A-genome collection and 40 

constitute a valuable genetic resource to improve wheat and domesticated einkorn in breeding programs.  41 

 42 

 43 

 44 
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Introduction  48 

 49 

Wheat wild relatives are an important reservoir of genetic diversity that can be utilized for wheat 50 

improvement, particularly for diseases, insect pests, and abiotic stress tolerance (Wulff & Moscou, 51 

2014). Cultivated tetraploid (pasta wheat, Triticum turgidum) and hexaploid (bread wheat, Triticum 52 

aestivum) wheat arose through successive whole-genome hybridization between related species in the 53 

Triticeae.  Although polyploidization in wheat enabled broad adaptation and genome plasticity found in 54 

polyploids (Comai, 2005), it also created severe genetic bottlenecks within each subgenome (Feldman & 55 

Levy, 2012).  Likewise, of the three natural races within wild einkorn, only one natural race (β) has been 56 

domesticated, thus, genetic diversity in the wild einkorn is expected to be greater than in domesticated 57 

einkorn (Pourkheirandish et al., 2018). Some recent findings, however, reported no or low reduction in 58 

nucleotide diversity through einkorn domestication, most likely indicating a minimal bottleneck during 59 

domestication of cultivated einkorn (Kilian et al., 2007). This was true when diversity comparisons were 60 

performed between wild einkorn specific races (α and β) vs. domesticated einkorn. However, when the 61 

comparison was made between the domesticated einkorn vs. all groups of wild einkorn, the wild einkorn 62 

diversity was much higher than found in the cultivated accessions. The value of A-genome species 63 

diversity for alleviating the wheat diversity bottleneck have been described (Brunazzi et al., 2018; 64 

Mondal et al., 2016). Thus, diversity assessment in germplasm collections of diploid A-genome species 65 

is crucial for conservation planning and efficient utilization of germplasm in breeding. 66 

 67 

A-genome wheat species (2n = 2x = 14, AA) are diploid grasses including the wild einkorn (T. 68 

monococcum L. subsp. aegilopoides (Link) Thell.), domesticated einkorn (T. monococcum L. subsp. 69 

monococcum), and T. urartu (van Slageren, 1994).  Molecular and cytological studies have confirmed 70 

that T. urartu, a related species sharing the same genome as domesticated einkorn, is the A-genome 71 

ancestor to cultivated wheat (T. aestivum) (Dong et al., 2012). In the first polyploidization event that 72 

occurred ~500,000-150,000 million years ago (MYA) (Charmet, 2011), T. urartu naturally hybridized 73 

with a B-genome donor grass, an extant species but close relative of Aegilops speltoides Tausch, giving 74 

rise to the wild tetraploid wheat T. turgidumL. subsp. dicoccoides (Körn. Ex Asch. & Graebn.) Thell. 75 

(AABB, 2n = 4x = 28) (Nair, 2019). In the next event, the cultivated tetraploid emmer wheat (T. 76 

turgidum subsp. durum (Desf.) Husn.) naturally hybridized with the D-genome donor species (Ae. 77 

Tauschii Coss) forming hexaploid bread wheat (AABBDD, 2n = 6x = 42). The A-genome species 78 
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morphologically resemble cultivated tetraploid and hexaploid wheat more than any other surviving 79 

diploid genome donors and are predominant in the Fertile Crescent (Heun et al., 1997). Domestication of 80 

einkorn wheat, together with emmer wheat and barley around 12,000 years ago, transformed human 81 

culture from hunting-gathering to agriculture, popularly known as the ‘Neolithic Revolution’ (Kilian et 82 

al., 2010). The Karacadağ mountain in the southeast Turkey has been considered the geographical point 83 

for einkorn domestication (Brandolini et al., 2016).  84 

 85 

The donor of the A genome of the bread wheat, T. urartu, is estimated to have diverged nearly 0.57 – 86 

0.76 MYA from another widespread A-genome diploid species, T. monococcum.  Interspecific crosses 87 

between T. urartu and T. monococcum are infertile, confirming the large phylogenetic distance and 88 

genetic differentiation of the species (Middleton et al., 2014). Like hexaploid wheat, A-genome species 89 

have a large genome size with a mean nuclear DNA content of 5.784 pg/1C in T. urartu to 6.247 pg/1C 90 

in T. monococcum subps. aegilopoides (Özkan et al., 2010).  Morphologically, T. urartu possesses 91 

smooth leaves, a brittle rachis, and smaller anthers (< 0.3 mm).  The wild einkorn (T. monococcum 92 

subsp. aegilopoides) are characterized with a brittle rachis, hairy leaves, and larger (≥0.5 mm) anthers. 93 

Domesticated einkorn has a nonbrittle (semitough) rachis with smooth leaves (Brandolini & Heun, 94 

2019).   95 

 96 

Being homologous to the wheat A-genome, these species provide useful sources for wheat improvement 97 

using wide crosses and cytogenetics approaches. The A-genome species are important genetic resources 98 

for pest resistance and stress tolerance. For example, T. urartu was identified as a source of resistance to 99 

the root lesion nematode Pratylenchus thornei (Sheedy et al., 2012) and stem rust (Rouse & Jin, 2011). 100 

Novel stem rust resistance genes SrTm5 and Sr60 were mapped in an F2 population derived from crosses 101 

between wild and the cultivated einkorn (Chen et al., 2018). Sr35, the first gene cloned against the 102 

devastating stem rust race UG99, also originates from T. monococcum (Saintenac et al., 2013). A leaf 103 

rust gene, Lr63, in wheat chromosome 3AS was introgressed from T. monococcum (Kolmer et al., 104 

2010). Surveying the genetic variation in A-genome species that can be utilized in wheat improvement 105 

has lagged, considering the potential value of more effectively utilizing these species for wheat 106 

improvement.  107 

 108 
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Einkorn has multiple botanical names in the literature as proposed by the various taxonomists, and 109 

confusion related to the einkorn nomenclature is widespread.  In 1948, Schiemann classified einkorn as 110 

wild einkorn (T. boeoticum subsp. thaoudar), the feral einkorn (T. boeoticum subsp. aegilopoides), and 111 

the domesticated einkorn (T. monococcum subsp. monococcum) (Brandolini et al., 2016; Schiemann, 112 

1948). MacKey published einkorn classification in 1954 (Key, 1954) and updated the nomenclature 113 

several times through 2005 (Mac Key, 2005a). van Slageren also published the einkorn nomenclature, 114 

where the wild and domesticated einkorn were simply named as T. monococcum L. subsp. aegilopoides 115 

(hereafter subsp. aegilopoides) and T. monococcum L. subsp. monococcum (hereafter subsp. 116 

monococcum), respectively (van Slageren, 1994). In this study, we follow van Slageren’s (1994) einkorn 117 

taxonomy, because the A-genome species collection in the Wheat Genetics Resource Center (WGRC) at 118 

Kansas State University (KSU) were initially classified using this nomenclature (van Slageren, 1994).  119 

 120 

A well-characterized population structure of A-genome species is critical to formulating effective 121 

conservation strategy, selecting diverse germplasm, and enhancing the accuracy of the genomic analysis 122 

with structure information (Singh et al., 2019). Population structure and diversity assessment have 123 

become easier with next-generation sequencing, which makes discovery of thousands of genotyping 124 

markers possible. Here, we used genotyping by sequencing (GBS) for single nucleotide polymorphism 125 

(SNP) discovery.  GBS is straightforward, high-throughput, and with multiple downstream pipelines for 126 

data processing (Poland et al., 2012a). However, population structure of A-genome species has not been 127 

evaluated in detail with the resource of whole-genome profiling. Therefore, our objectives are to : i) 128 

curate A-genome wheat accessions in the gene bank by identifying duplicates and misclassified 129 

accessions, ii) assess the population structure and genetic diversity of the A-genome wheat species, and 130 

iii) establish genetically, geographically, and phenotypically representative core collections for A-131 

genome species within the WGRC gene bank.  132 

 133 

 134 

Results  135 

 136 

A-Genome Species Distribution  137 

Most of the wild einkorn (subsp. aegilopoides) in our collection, were collected across Turkey, northern 138 

Iraq, west Iran, and Transcaucasia, whereas the majority of domesticated einkorn (subsp. monococcum) 139 
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were from west Turkey and the Balkans (Figure 1, Supplementary Table S1). About half of the T. urartu 140 

accessions were from eastern Lebanon, around the Beqaa Valley, and a major part were from southeast 141 

Turkey (Figure 1).  The A-genome species are known to span from Transcaucasia through Anatolia to 142 

the Caspian Sea. The WGRC collection covers the geographic range of this species. After genomic 143 

characterization including misclassified accessions adjustment, we retained 196 T. urartu, 145 of 144 

domesticated einkorn, and 584 wild einkorn (Supplementary Table S1).  There were also 5 tetraploids 145 

identified in the population which were curated to correct species.  146 

  147 

Markers and Genotyping 148 

For all A-genome accessions, we identified 44,215 biallelic SNPs after a filter for passing Fisher exact 149 

test of disassociated alleles. Separating this by subspecies, we had 24,314 biallelic SNPs for subsp. 150 

aegilopoides, 19,940 biallelic SNPs for T. urartu, and 13,957 biallelic SNPs for subsp. monococcum.  151 

Upon filtration (MAF > 0.01, 30% < missing, 10% < heterozygosity), we retained 7432 SNPs for T. 152 

urartu and 6734 SNPs for T. monococcum, 6343 SNPs for subsp. aegilopoides, and 3980 for subsp. 153 

monococcum. For wheat and A-genome diploids together we found 15,300 filtered SNPs. For A-genome 154 

species diversity assessment, thousands of segregating loci were available for the groups defined by 155 

population analysis and core set selections (Table 1). We filtered the loci for MAF (MAF > 0.01) before 156 

splitting the VCF file to the species and sub-species and observed loci that were fixed or otherwise one 157 

heterozygous genotype call within the individual species and subspecies. To compute total segregating 158 

loci per group and minimize the effect of potential sequencing error, we did further filtration and 159 

removed any loci that were segregating only due to a single heterozygous genotype and otherwise the 160 

major allele is fixed in remaining population (Table 1).  161 

   162 

Gene Bank Curation 163 

We identified and corrected a total of 22 misclassified accessions using fastStructure analysis, 164 

phylogenetic and PCA clustering (Supplementary Figure S1) including nine T. urartu, two subsp. 165 

monococcum, six subsp. aegilopoides, and five tetraploid accessions (Supplementary Table S3). As 166 

large number of accessions in both T. urartu and subsp. aegilopoides collection were from southeast 167 

Turkey; we observed most of the misclassified accessions also were from the same site.   168 

 169 
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While evaluating the collection for duplicate accessions, we compared various number of loci for allele 170 

matching per A-genome species (Table 3) as the SNPs were filtered to keep only the sites with > 0.05 171 

MAF, < 50% missing and < 10% heterozygous. We identified and used a threshold of ≥ 99% identity by 172 

state (IBS) to declare the individuals as identical accessions to warrant the inclusion of identical 173 

accessions in the duplicate set (Supplementary Figure S2) with tolerance for sequencing and genotyping 174 

error.  With these criteria we identified a total of 520 (56%) duplicated accessions which were mostly 175 

observed within T. urartu and within α race subsp. aegilopoides (Supplementary Table S1). To confirm 176 

this analysis, we checked the collection sites of the groups of duplicates identified and all of the 177 

respective sets of duplicates were collected from the same or nearby sites. We further observed the 178 

duplicates had same phenotypes as the glume color scores were the same for sets of duplicates 179 

(Supplementary Table S1), confirming the accuracy of using the GBS data for identification of 180 

duplicated accessions.  For instance, TA471 and its 11 duplicates had glume color score of 7 while on a 181 

scale of 1 (white) to 9 (black) (Supplementary Table S1).   182 

 183 

Relationship Between A-genome Diploid and Wheat 184 

The genetic grouping of A-genome diploids and CIMMYT wheat lines together showed that wheat is 185 

closer to T. urartu than to T. monococcum (Supplementary Figure S3), a finding in agreement with the 186 

known relationship between the species.  The unrooted NJ tree constructed for wheat and A-genome 187 

diploid wheat showed five accessions (TA282, TA10915, TA1325, TA1369, and TA10881) clustering 188 

far from the T. urartu major clade (Supplementary Figure S3). Cytological analysis identified them as 189 

tetraploid (2n=28) (Supplementary Figure S4). Therefore, we excluded these five accessions from 190 

population analysis. This observation confirms that GBS also enables identifying cryptic accessions with 191 

different ploidy levels in the population. 192 

 193 

A-genome Population Structure and Wild Einkorn Genetic Races  194 

Population grouping in the fastStructure analysis at K=2 to K=7 showed the A-genome genetic structure 195 

was split with the known biological and geographical characterization (Figure 2). This analysis revealed 196 

a number of misclassified accessions that were individually curated and checked, including 197 

morphological confirmation, and were reclassified to the appropriate group (Supplementary Table S3).   198 

 199 
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At K=2, the population differentiation occurred only at the level of species, the accessions split into T. 200 

monococcum and T. urartu, confirming known species differences (Figure 2).  At K=3, the two 201 

subspecies of T. monococcum differentiated with the accessions in the α wild einkorn race were clearly 202 

differentiated from domesticated einkorn. However, the other races of wild einkorn (β and γ) appeared 203 

to be an admixture, supporting that there is not complete differentiation between the wild and 204 

domesticated einkorn, a classification that is simply based on the few morphological characteristics of 205 

the domestication syndrome.   206 

 207 

We observed differentiation of wild einkorn into genetically distinct groups at K=7. Comparing these 208 

three wild einkorn subgroups with the α, β, and γ wild einkorn races described by (Kilian et al., 2007), 209 

we report the three genetic subgroups as representing the races α, β, and γ by identifying common 210 

USDA Plant Introduction (PI) numbers for accessions in both studies. The genetic clustering pattern and 211 

geographical distribution then confirmed that the subgroups within subsp. aegilopoides represents α, β, 212 

and γ races described and we hereby name these genetic groups accordingly (Supplementary Table S4) 213 

(Kilian et al., 2007). In (Kilian et al., 2007), the α race accessions were primarily from southeast Turkey, 214 

northern Iraq, and Iran; the γ race involves accessions from Transcaucasia to western Anatolia; and the β 215 

race comprises a few accessions collected around Karacadag Turkey (Figure 1, Supplementary Table 216 

S1). Based on population differentiation, α race exhibited the strongest differentiation with domesticated 217 

einkorn and should represent the base population of subsp. aegilopoides, whereas the β race of wild 218 

einkorn exhibited the least differentiation with subsp. monococcum. Interestingly, the β race did not 219 

fully differentiate from subsp. monococcum at any value of K (Figure 2), supporting that domesticated 220 

einkorn originated out of this subpopulation, which already largely differentiated from the other wild 221 

einkorn, or (2) that the β race represents ‘feral’ subsp. monococcum accessions that were, at one point, 222 

fully domesticated but reverted to wild plant types through introgression and admixture.     223 

 224 

At K=5, the population subgrouping according to the accession origin was observed in α race accessions 225 

within the wild einkorn.  Accessions from Erbil (ancient name ‘Arbil’) differentiated as a subpopulation, 226 

and the accessions from Sulaymaniyah (Iraq) split as the admixture of the Erbil subgroup and the 227 

remaining accessions at K=5 (Figure 2).  We could not observe any new differentiation within the wild 228 

einkorn group at K=6.  However, at K=7, we observed three distinct subgroups and a higher level of 229 

admixture within the α race of subsp. aegilopoides (Figure 2). Also, there were two main sets of 230 
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admixture types; the first set mainly consists of accessions from Iran that shared ancestry from the 231 

Duhok (red) and Turkey (purple) subgroups, and the second corresponds with accessions from 232 

Sulaymaniyah (Iraq) and has ancestry from all three subgroups. Hence, within the population of α race 233 

einkorn accessions, three subgroups exist; Erbil, Duhok, and Turkey, and two groups of genetic 234 

admixtures (Iran and Sulaymaniyah), named from their origin.  235 

 236 

We did not observe any subgrouping within the accessions from the southeast Turkey, yet the accessions 237 

were primarily from two sites (Sanliurfa and Mardin). The grouping pattern of three subgroups within 238 

the α race accessions provided a new insight into the wild einkorn subgrouping and their genetic 239 

relationships.  We did not observe within population differentiation in domesticated einkorn group.    240 

 241 

In T. urartu, the subgrouping occurred at K=6, and was unchanged at K=7 (Figure 2). Two major T. 242 

urartu subgroups represented accessions from Turkey (#T) and another from Lebanon (#L).  Few T. 243 

urartu accessions were from Syria (#S); some showed admixture, and some had a clean ancestry that 244 

resembled accessions from Turkey (Figure 2).  The few remaining accessions primarily were from 245 

Transcaucasia (#M) and exhibited an ancestry similar to accessions from Turkey (Figure 2).  246 

 247 

Phylogenetic Clustering and PCA 248 

The phylogenetic clustering split the A-genome accessions into separate clades for T. urartu, T. 249 

monococcum subsp. monococcum, and all races within the subsp. aegilopoides (Figure 3).  Only 12 250 

accessions were retained within race β, and the accessions were clustered with some other domesticated 251 

einkorn accessions (Figure 3).  The T. urartu clade distantly clustered in both PCA and phylogenetic 252 

analysis from either of the einkorn clade indicating the obvious genetic differences between species.  253 

The misclassified accessions (Supplementary Figure S1) observed in the phylogenetic clustering were 254 

re-classified into proper genotype-based classes.  255 

 256 

A PCA plot of A-genome species also showed accessions clustering as in fastStructure and phylogenetic 257 

analysis (Supplementary Figure S5).  The first principal component (PC1), which grouped the 258 

accessions of T. monococcum and T. urartu in two primary clusters, explained 58% of the variation.  259 

The PC2, which divided the einkorn accessions, explained 8% of the variation and separated 260 
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domesticated and different races within the wild einkorn.  Misclassified accessions previously observed 261 

also were revealed in the PCA analysis and their taxonomy classification adjusted.  262 

 263 

Genetic Diversity and FST 264 

A considerably high Nei’s diversity index (0.25) was observed for the complete set of A-genome 265 

accessions.  The Nei’s diversity indices for individual A-genome species ranged from 0.058 for 266 

domesticated einkorn to 0.106 for the entire einkorn group. Among the three races of wild einkorn, the 267 

Nei’s diversity indices of β race (0.058) was the lowest and γ was the highest (0.093; Table 1).  As 268 

expected for diverse accessions, we found a high density of alleles with low minor allele frequency 269 

(MAF) (Supplementary Figure S6).  270 

 271 

Population differentiation within the A-genome species were further verified by pairwise fixation index 272 

(FST) values (Nei’s, 1987) computed between the groups.  Pairwise FST between T. urartu and entire 273 

einkorn were greater than 0.80, supporting that the two species are strongly differentiated (Table 2).  274 

The pairwise FST (0.56) between the α race and domesticated einkorn indicated the strongest 275 

differentiation between any two groups within the einkorn, whereas the weakest differentiation (FST = 276 

0.31) was between the β race and domesticated einkorn, supporting the model that this wild race was the 277 

most likely forerunner of domesticated einkorn as previously hypothesized (Kilian et al., 2007).  The 278 

concept also was endorsed by the origin of β race einkorn in the WGRC collection, mostly from 279 

Diyarbakir and Sanliurfa, which are near Karacadag and Kartal-Karacadag mountains (points of 280 

domestication). Nonetheless, the genetic grouping of β also occurred with subsp. monococcum in the 281 

unrooted NJ tree (Figure 3). Pairwise FST (~ 0.40) between pairs: ‘γ race - subsp. monococcum’ and ‘γ 282 

race - α race’ implicit the differentiation of γ race as a genetically intermediate type from truly wild α 283 

race and domesticated einkorn (Table 2).  The pairwise FST computed between two subpopulations 284 

(Turkey and Lebanon) of T. urartu was 0.52, which also agrees with the population structure analysis.     285 

  286 

Pairwise FST computed between the subpopulations within α race of subsp. aegilopoides signaled out the 287 

geographical differentiation and the potential gene flow within this wild einkorn race.  Consistent with 288 

the fastStructure output, the Erbil subgroup showed the stronger differentiation (higher FST) with other 289 

wild einkorn subgroups (Supplementary Table S5).  The subgroup Duhok and southeast Turkey and 290 

their admixture group (Iran) had the minimum pairwise FST (~ 0.12).  The accessions within the 291 
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admixture group of Sulaymaniyah displayed almost similar differentiation (~FST = 0.16) with three 292 

subgroups, which agrees with population structure as the admixture group has ancestry from all three.  293 

 294 

FST Scan and Einkorn Selection Signature 295 

After filtration and imputation, we had 6,622 SNPs segregating in T. monococcum on which we 296 

calculated per site FST values for each of the seven chromosomes that ranged from near 0 to 1. Both 297 

methods, Porto-Neto et al. (2013) and VCFtools, produced similar results for raw and smoothed FST 298 

values. We used a genome-wide threshold of 3σ (0.24) over the mean FST, from which we observed only 299 

a single-selection signature on short arm of chromosome 3A (Supplementary Figure S7) after smoothing 300 

using Lowess method (f = 0.1) (Pintus et al., 2014). This selection signature corresponded to the locus 301 

that harbors the brittle rachis 1 (Btr1) (Pourkheirandish et al., 2018) and was supported by the BLAST 302 

hit of a coding sequence (Supplementary text S1) of Btr1 on the reference genome used to genotype our 303 

population (T. urartu pseudomolecule), which was occurred at 62 Mb on chromosome 3A. We also 304 

observed that the raw FST values for three consecutive sites of the region (62 Mb) had the highest (FST 305 

=1) values. Thus, this selection scan identified the impact of selection for Btr1 in the domesticated 306 

einkorn.  307 

 308 

A-genome Core Collection  309 

To maximize the utility of the WGRC collection we identified a core set that captured the majority of 310 

allelic diversity within 19 T. urartu accessions, and 60 accessions of T. monococcum (einkorn wheat) 311 

(Supplementary Table S2). In core sets of the entire A-genome collection, we captured ~98 % of the 312 

identified alleles, whereas each separate sub-core also captured at least 80% of the segregating alleles of 313 

the respective species-specific collections (Table 1). Richness in allelic diversity within the core 314 

collections was confirmed by the higher Nei’s diversity index (0.27) of the selected cores relative to the 315 

entire collection (0.25) (Table 1). Distribution of the core set accessions in the phylogenetic cluster, 316 

PCA clusters, and in the geographic map showed that the selected accessions also represented all 317 

subgroups within the population and covered the geographic range (Supplementary Figure S8 – S10). 318 

Ranges of glume color scores (Supplementary Table S2) in the core indicated that the core collections 319 

are also an excellent representative of phenotypic variations within the whole collection.   320 

 321 

Discussion 322 
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  323 

A-Genome Species Distribution, Einkorn Nomenclatures and Morphology   324 

Our results confirm that the WGRC A-genome collection includes arrays of naturally selected 325 

germplasm around the center of origin (Figure 1). While verifying the morphologically based grouping 326 

of A-genome species through population analysis, we identified three genetically different wild einkorn 327 

races (Figure 2 and 3). This information is very crucial in handling a large group of wild einkorn so that 328 

accessions with desired genetic background and morphology of interest can be selected for utilization in 329 

breeding and further investigation. The wild einkorn genetic races described herein, matched with the 330 

races described Kilian et al. (2007), add information to establish the evolutionary and genetic 331 

relationships between wild and domesticated einkorn wheats.  332 

 333 

However, various nomenclature of the einkorn (Supplementary Figure S11) creates a conundrum in 334 

interpreting the different races within the wild einkorn.  Some einkorn nomenclature is written in 335 

multiple languages; Schiemann (1948) published his nomenclature in German and Dorofeev et al. 336 

(1979) in Russian , which could have reduced the acceptance of the nomenclatures by the wider research 337 

communities (Dorofeev et al., 1979). In a revised form of MacKey’s classification (Mac Key, 2005b), 338 

the T. monococcum subsp. boeoticum was changed to T. monococcum subsp. aegilopoides (Goncharov, 339 

2011). Therefore, no single einkorn classification is deemed to be the most widely accepted and 340 

uniformly used.  The van Slageren (1994) nomenclature that we follow also is mostly in agreement with 341 

the MacKey classification, because both systems use T. monococcum subsp. aegilopoides as the wild 342 

einkorn.  With all these issues, an updated and widely accepted monograph of einkorn may help 343 

maintaining uniformity in taxonomy of these natural accessions.  344 

 345 

Species and subspecies classification is first based on morphology. Multiple studies also have discussed 346 

different ecogeographical wild einkorn races that have intermediate morphology.  Van Zeist (1992) 347 

described two groups of wild einkorn: the first group (T. boeoticum subsp. thaoudar) predominately 348 

exists in the southeast Turkey, northern Iraq, and west Iran, and the second group (T. boeoticum subsp. 349 

aegilopoides) primarily occurs in the west Anatolian center (VAN ZEIST, 1992).  The first group of 350 

accessions had a double-grained spikelet, and the second group was single-grained, suggesting that the 351 

second group is more similar to domesticated einkorn. Brandolini and Heun (2019) explained the T. 352 

boeoticum subsp. aegilopoides as an intermediate type feral (semi-wild) einkorn with a semi-brittle 353 
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rachis and T. boeoticum subsp. thaoudar as the truly wild einkorn with an extremely brittle rachis and 354 

argued on the quantitative nature of  brittleness in einkorn wheat (Brandolini & Heun, 2019).  They 355 

hypothesized that the feral einkorn had evolved when agriculture moved from the southeast to west 356 

Turkey and Balkans.  The semi-brittle rachis breaks into two parts only after being bent and the naturally 357 

emerged semi-brittle rachis einkorn mutant still exists in the vicinity of the Karacadag, however, the 358 

area is predominant for the truly wild double-grained einkorn (Brandolini & Heun, 2019).  Some 359 

einkorn accessions with intermediate leaf hairiness, a trait used to classify accessions that is common 360 

only in wild einkorn, was also observed (Empilli et al., 2000), indicating that einkorn with intermediate 361 

or intergraded morphological characteristics are common (Harlan & Zohary, 1966).  The three genetic 362 

races of wild einkorn observed in this study also possess unique genetic relationships with cultivated 363 

einkorn, as shown by phylogenetic grouping and pairwise FST values, showing the varying levels of 364 

relatedness within and between wild einkorn accession.   365 

 366 

Gene Bank Curation 367 

Globally, plant gene banks often suffer from identified and unidentified duplicates that unnecessarily 368 

increase maintenance costs (Díez et al., 2018). Here, we curated 930 A-genome species accessions in 369 

WGRC gene bank, identifying duplicates and misclassified accessions, and recognizing valuable unique 370 

accessions using genotyping. The existence of misclassified accessions in the gene bank may be due to 371 

human error on class assignment and/or data recording; rarely, some accessions might also have 372 

controversial morphology. As an example of severe misclassification, consider the wild einkorn 373 

accession PI 427328 discussed earlier.  Except for the WGRC and Leibniz gene banks, other three gene 374 

collection agencies have listed this accession (PI 427328) as T. urartu (https://www.genesys-375 

pgr.org/a/v2JRrMq2g22), illustrating the importance of genetic scrutiny of the misclassified accessions 376 

within the A-genome accessions in different repositories.  This genotype-based curation reduces the 377 

gene bank operation costs and makes germplasms preservation and utilization easier.  378 

 379 

T. urartu: the Closest A-genome Diploid Relative of Wheat 380 

With GBS information here we showed that T. urartu is the closest diploid A-genome relative of wheat 381 

and thereby most likely donor of A-genome to the hexaploid wheat (Supplementary Figure S2). This 382 

study endorses the known relationships between wheat and A-genome diploids, which was based on 383 

thousands of molecular markers and samples (~1,000 diploids and > 200 wheat). Most previous studies 384 
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describing the relationship between T. urartu and wheat (Dvořák et al., 1993) however relied on 385 

cytogenetic analysis.  386 

 387 

Wild Einkorn Races  388 

The wild einkorn groups were previously divided into α, β, and γ races (Kilian et al., 2007; Zaharieva & 389 

Monneveux, 2014)which was consistent with the phylogeny observed in our study. Furthermore, we 390 

validated these race groups to match accessions with common USDA PI numbers in both studies 391 

overlapped their point of collection and almost all fall under the same races in both studies 392 

(Supplementary Table S4).  Comparing between studies, there were a few discrepancies in race 393 

assignment of accessions (Kilian et al., 2007) that needed correction. For example, Killian et al. (2007) 394 

grouped PI 427328 in T. urartu, but our genetic analysis grouped it into α race within subsp. 395 

aegilopoides which is also in harmony with WGRC database (accession no. TA879).  According to the 396 

Genesys database (https://www.genesys-pgr.org/10.25642/IPK/GBIS/98704), another gene bank 397 

(Leibniz Institute of Plant Genetics and Crop Plant Research) also classified this PI 427328 within wild 398 

einkorn but under the name T. baeoticum Boiss. subsp. boeoticum exemplifying multiple wild einkorn 399 

nomenclatures use and creating confusion when describing wild einkorn.  Interestingly, Kilian et al. 400 

(2007) reported a few feral types of einkorn accessions, indicating they are T. monococcum subsp. 401 

aegilopoides according to the nomenclature used, which we did not observe in the WGRC collection.  402 

We show that the wild and domesticated einkorn can clearly be differentiated based on genomic data 403 

into α, β, and γ races and the domesticated accessions.  Given the difficulty and ambiguity of 404 

morphological classification, the genetic classification from genomic data can be a preferred approach to 405 

cleanly classify any given accession.  406 

 407 

Population Analysis and Different Groups Under A-genome Species  408 

The population structure and FST analysis on the A-genome species endorsed the established 409 

relationships between the species and subspecies. For instance, hybrids between T. monococcum and T. 410 

urartu are largely sterile and, hence, the genetic differentiation between these species is apparent 411 

(Fricano et al., 2014). Also, the intraspecific population differentiation between groups under einkorn at 412 

relatively higher K values supported the known genetic relationship between these crossable subspecies 413 

that produce mostly fertile hybrids (Harlan & Zohary, 1966).  414 

 415 
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Our analysis shows that the α race einkorn accessions most likely represent the truly wild einkorn with 416 

an extremely brittle rachis, most likely the group of accessions that were traditionally classified as T. 417 

boeoticum subsp. thaoudar (Brandolini & Heun, 2019). Differentiation of subpopulations within the α 418 

race wild einkorn corresponding to geographic distribution implies migration and genetic drift among 419 

truly wild einkorn in the Near East. The T. urartu subgrouping of accessions from Lebanon and Turkey  420 

agrees with Wang et al. (2017) , where two subgroups, Mediterranean coastal and Mesopotamia-421 

Transcaucasia, within T. urartu were reported (Wang et al., 2017).  422 

 423 

Diversity Analysis  424 

Cultivated einkorn had a lower Nei’s diversity index (0.058) than the wild sister group and wild T. 425 

urartu (Table 1), which was expected. As a domesticated species, subsp. monococcum experienced a 426 

strong population bottleneck and artificial selection might have triggered genetic erosion. On the other 427 

hand, the population structure of cultivated einkorn did not show substantial admixture, with the 428 

exception of a few accessions, all individuals were true to the ancestry (Figure 2), suggesting a low post 429 

domestication admixture contributing elevated diversity. The involvement of a single race (β) in 430 

domestication would have further reduced allelic diversity in the cultivated einkorn; there was no 431 

difference between the Nei’s diversity of β race (0.058) and the domesticated einkorn (0.058). Kilian et 432 

al. (2007) illustrated no nucleotide diversity was reduced during einnkorn domestication; instead, they 433 

observed increased diversity in domesticated compared to wild einkorn (Kilian et al., 2007). However, 434 

the diversity assessment in (Kilian et al., 2007) could be influenced by the limited number of loci and 435 

smaller sample size; especially, diversity estimates are sensitive to sample size when there are only a 436 

handful of markers (Bashalkhanov et al., 2009; Li et al., 2009). In this experiment, we used thousands of 437 

SNP markers and have larger sample size, which minimized the effect of sample size and the number of 438 

loci. The highest Nei’s diversity index (0.25) for all A-genome combinedly, and the considerably higher 439 

Nei’s diversity index for each species and core collections indicated that these accessions are very 440 

important assets with novel and useful genetic variations.  441 

 442 

Btr1: Einkorn Domestication Signal 443 

Through FST computation, we showed that in einkorn wheat there is a single strong selection signal 444 

observed on chromosome 3A corresponding to the Btr1 locus (Supplementary Figure S7). Previous 445 

study also described Btr1 as one of the most important features of einkorn domestication 446 
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(Pourkheirandish et al., 2018). The non-brittleness in domesticated einkorn is controlled by a single 447 

nucleotide change in Btr1 of wild einkorn that results in an amino acid substitution (alanine to threonine) 448 

(Pourkheirandish et al., 2018). With ~ 1,000 filtered loci per chromosome, we located the candidate 449 

selection region. The availability of a T. monococcum reference genome to call the genotype would be 450 

ideal for obtaining dense markers and better locating the selection signature on einkorn wheat.  451 

 452 

Core Collections 453 

Establishing core collections of A-genome species enabled harnessing useful genetic variation to 454 

improve wheat and cultivated einkorn.  To the best of our knowledge, this is the first genetic core of A-455 

genome species, which included only 79 accessions and yet contains ~ 98% of the identified alleles 456 

while achieving a more than 10-fold (79/930) reduction in the number accessions (Table 1, 457 

Supplementary Table S2). The Nei’s diversity index computed for these core collections supported that 458 

they have considerably higher relative diversity and can be leveraged for targeted germplasm 459 

improvement.  460 

 461 

Conclusions 462 

This study reports the important aspects of the A-genome wheat species for genetic diversity, gene bank 463 

curation, and core set selection. Following an assessment of nearly 1,000 accessions, we report that the 464 

A-genome species possess a considerable amount of genetic diversity, which can be utilized in breeding 465 

wheat and domesticated einkorn. This vast diversity is most effectively managed in pre-breeding with 466 

well-defined core collections. Identifying and in-depth characterizing of such core collections adds 467 

significant value and accessibility to the germplasm.  Having a well curated and accurately described 468 

gene bank collection, as done here, is a critical foundation to effectively using this rich diversity for crop 469 

improvement and enhancing the value of gene bank resources.  470 

 471 

  472 
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Materials and Methods 488 

 489 

Plant Resources  490 

This study included 930 accessions of the A-genome diploid wheat species maintained in the WGRC 491 

gene bank (Supplemental Table S1), which were primarily acquired from the Near East, Transcaucasia, 492 

and the Balkans (Figure 1). Most of the A-genome accessions (~ 85%) tested include those initially 493 

collected by B. Lennert Johnson, University of California–Riverside in the 1960s and 1970s. The 494 

remaining accessions were obtained from gene banks in Japan (22), Germany (24), and ICARDA (61).  495 

Several accessions were donated by Robert Metzger, USDA, Oregon State University, Corvallis (26), 496 

seven were collected by the WGRC, and the remainder (10) from other sources. We also tested 225 497 

CIMMYT wheat lines (Supplementary Table S1) genotyped earlier with GBS SNPs (Gao et al., 2021) 498 

thereby inferring the genetic relationships between A-genome diploids and the wheat.   499 

 500 

Genotypic Characterization 501 

The tested accessions were grown as single plants in the greenhouse and tissue collected in 96-well 502 

plates. The tissues were lyophilized for ~3 days and ground to a fine powder using Retsch mixer mill 503 

MM 400. Genomic DNA extraction and GBS library preparation steps were according to Singh et al. 504 

(2019). We had total four multiplexed GBS libraries including one for the pilot study. The pilot study 505 

GBS library was 384-plex, whereas the other GBS libraries were 288-plex. We sequenced on the 506 

Illumina platform with 150 bp pair-end reads (PE150). We had total The information about GBS of 226 507 

CIMMYT lines can be obtained (Gao et al., 2021).  508 

  509 

The TASSEL5 GBSv2 pipeline was used for sequence data processing and genotype calling (Glaubitz et 510 

al., 2014).  Reads were aligned to a T. urartu pseudomolecule reference (Ling et al., 2018) using 511 

bowtie2 alignment (Ling et al., 2018) and exported to variant call format (VCF). Filtering of the VCF 512 

was done for bi-allelic SNPs using the Fisher exact test with a threshold p-value <0.001 as described 513 

previously (Poland et al., 2012b) considering that the genotypes should represent biallelic variants in 514 

inbred accessions.  Genotypes for accessions across all A-genome species were called together, followed 515 

by extracting variants segregating within each species using VCFtools (Danecek et al., 2011).  The SNPs 516 

were filtered for minor allele frequency (MAF) > 0.01, missing percentage < 30%, and heterozygous 517 

genotypes < 10% at the population level using TASSEL and R (R Core Team 2019).  518 
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 519 

The A-genome diploids and wheat lines were genotyped together calling SNP on A-genome of wheat 520 

reference genome of cultivar Chinese Spring (iwgsc_refseqv1.0) (Appels et al., 2018). We also filtered 521 

these SNPs using aforementioned criteria. The unrooted neighbor-joining (NJ) phylogenetic tree of A-522 

genome diploid and wheat lines were generated for investigating the genetic relationship. We followed 523 

approach of Singh et al. (2019) to generate NJ tree from GBS sampled population, where clustering was 524 

conducted with default parameters of R packages ‘dist’, ‘ape’, and ‘phyclust’.  525 

 526 

Gene Bank Curation 527 

A-genome species in the WGRC gene bank were curated to identify misclassified and duplicate 528 

accessions. The misclassified accessions identified based on the genetic properties were compared with 529 

accessions in the adjusted class morphologically to assure if they were previously assigned or 530 

documented to the wrong class. Furthermore, to confirm the ploidy of the misclassified accessions that 531 

were grouped far from the major T. urartu clade and did not exhibit a closer relationship with any 532 

diploid A-genome in genetic tree, chromosome counts were made by staining with 4',6-diamidino-2-533 

phenylindole (DAPI). The detail method for chromosome count was obtained (Koo et al., 2017).  534 

  535 

The genetically identical accessions were identified using pairwise allele matching across homozygous 536 

and non-missing sites. We first analyzed the loci identity proportions distribution at genome-wide scale 537 

including every possible pair-wise comparison among accessions within a single species. A threshold for 538 

allele matching percentage given discrepancies for sequencing errors was then detected by finding a 539 

point that separates the local maxima existing around the prefect identity (100%). The identity matrix 540 

and percentage allele matching were computed in R using a custom script as described by (Singh et al., 541 

2019). The morphological similarity and the geographical relations of the identified duplicate accessions 542 

were checked for confirmation. Glume color (level of darkness) was used as a morphological marker for 543 

cross-validation to affirm the accessions in a duplicate set have the same or similar phenotypes.  The 544 

variation in glume color was rated from completely white (0) to dark black (9). 545 

 546 

Population Structure  547 

Population structure of A-genome wheat species was analyzed using fastStructure (Raj et al., 2014).  548 

The fastStructure was initially run at K=2 to K=12 with three replications using ‘simple’ prior where K 549 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 20, 2021. ; https://doi.org/10.1101/2021.08.20.457122doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.20.457122
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

 20 

refers to number of population or model complexity.  For the optimum value of K, the program was run 550 

using ‘logistic’ prior at K=2 to K=7 with three replications (Singh et al., 2019).  An appropriate number 551 

of K was also obtained using the fastStructure provided utility tool, chooseK.py.  The fastStructure 552 

output was graphically visualized using an R package POPHELPER (Francis, 2017). Passport 553 

information including the classification based on morphology, and the accessions geographical sites 554 

were used to group and reorder the samples in population analysis. Accessions that were identified as 555 

misclassified were confirmed through morphological evaluation and reordered to subspecies based on 556 

the genotype-based grouping and the final result was plotted.   557 

 558 

Phylogenetic clustering was carried out in R using ‘dist’ function and ‘ape’ and ‘phyclust’ packages  559 

(Singh et al., 2019).  The branches of an unrooted neighbor-joining (NJ) tree were first colored using the 560 

morphology-based classification, and then according to genotype analysis. The morphology-based 561 

coloring was particularly focused in identifying misclassified accessions. A-genome species population 562 

genetic structure was also dissected using principal component analysis (PCA) of genomic data. For 563 

PCA, we estimated the eigenvalues and eigenvectors on R using the ‘e’ function in ‘A’ matrix obtained 564 

from the rrBLUP (Endelman, 2011; Singh et al., 2019).  565 

 566 

Analysis of Genetic Diversity  567 

A-genome species genetic diversity was assessed by computing the Nei’s diversity index (Nei 1973) 568 

using filtered genotyping markers (Nei, 1973).  We computed the Nei’s indices of (1) all A-genome 569 

accessions together, (2) each species and subspecies independently, (3) the races within the subspecies, 570 

and (4) and the core collections. The minor allele frequency (MAF) for each species was also plotted to 571 

discern the excess of rare variants in respective population. Number of segregating loci per group were 572 

determined (Table 1). A pairwise fixation index (FST) (Nei, 1987) also was computed between the 573 

species and subgroups separated by the population analysis (Singh et al., 2019).  574 

 575 

FST Within Einkorn and Selection signature 576 

We computed a genome-wide FST statistic for variants within the einkorn group using R (R Core Team 577 

2019) as described (Porto-Neto et al., 2013). This method compute FST statistic based on pure drift 578 

model (Nicholson et al., 2002). We also compared the output by computing the Cockerham and Weir 579 

FST statistic (Weir & Cockerham, 1984) using VCFtools (Danecek et al., 2011). The T. monococcum 580 
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VCF file with biallelic variant was further filtered keeping SNPs with MAF > 0.01, missing < 30% and 581 

heterozygous < 10% followed by imputation using Beagle 5.1 (Browning et al., 2018). The filtered and 582 

imputed genotyping information was used to derive the FST values. To balance the population sizes of 583 

domesticated and wild einkorn, we randomly chose 145 wild einkorn accessions to match the number of 584 

145 domesticated accessions. The FST were plotted using ggplot2 in R (R Core Team 2019) and the raw 585 

FST plots were smoothed using Lowess method (Pintus et al., 2014) to find the genomic regions with 586 

extreme FST. To define the selection signal peak, we considered outlier FST values that were more than 587 

three standard deviation (3σ) over genome wide average as the threshold.  588 

  589 

Core Collections  590 

Core collections of T. urartu, and T. monococcum (wild and domesticated einkorn) were selected taking 591 

allelic diversity, genotype coverage, geographical representation, and phenotypic variation (glume color) 592 

into consideration.  From the filtered genotyping file, heterozygous genotypes were masked before 593 

running the core accessions selection software GenoCore (Jeong et al., 2017). We ran GenoCore with 594 

the default parameters: -d 0.01% and -cv 99%.  The positions of the selected samples within the 595 

phylogenetic tree and PCA clusters were observed through coloring the selected core accessions versus 596 

all other samples. Also, the geographical representations were evaluated marking the selected vs. 597 

remaining accessions in the google map using GPS Visualizer (https://www.gpsvisualizer.com).  To 598 

ensure phenotypic variations in the selected core sets, we considered the glume color score 599 

(Supplementary Table S2) as a reference variation.  The Nei’s diversity index (1987) of core sets were 600 

also computed (Danecek et al., 2011).   601 

  602 
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 603 
Accession Numbers 604 

 605 
Raw sequence data obtained from GBS, the fastq files, has been deposited at the National Center for 606 
Biotechnology Information (NCBI) SRA database with the BioProject accession PRJNA744683 607 
(https://www.ncbi.nlm.nih.gov/sra/PRJNA744683). The GBS key file with required information for 608 
demultiplexing and further detail about the SRA deposited fastq files can be obtained at Dryad digital 609 
repository (doi:10.5061/dryad.9zw3r22f6).   610 
 611 

 612 

Supplemental Data 613 

 614 

Supplementary Table S1. List of A-genome accessions, their origin and duplicated accessions.  615 
 616 
Supplementary Table S2. Core collections of A-genome species.  617 
 618 
Supplementary Table S3. The misclassified A-genome species accessions, their previous class based 619 

on morphology and the updated class/group based on the genotyping.  620 

 621 
Supplementary Table S4. Number of accessions with common PI numbers that clustered in 622 

corresponding groups in this experiment and a past experiment. Both studies tested only a portion of 623 

germplasms from USDA. The α, β, and γ races indicate the three genetic clusters within the wild einkorn 624 

as designated in the past study. The * indicates the accessions that we detected as misclassified and need 625 

adjustment of class. Past study also grouped these accessions in the same group that we observed, 626 

however, they did not discuss on misclassification issue and just listed the accessions based on 627 

morphological classification.   628 

 629 
Supplementary Table S5. Pairwise FST coefficients among the subgroups within α race of subsp. 630 

aegilopoides (wild einkorn) and the admixture groups. There were three subgroups (Turkey, Duhok, 631 

Erbil) and two admixture groups (Iran and Sulaymaniyah (Iraq)).  632 

 633 
Supplementary Figure S1. The T. urartu clade and subsp. aegilopoides α race clade in the unrooted NJ 634 

tree highlighting the misclassified accessions between the two groups. The red branches within the gold-635 

colored clade and the gold branches within the red clade reflect the misclassified accessions.  636 

 637 
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Supplementary Figure S2. Threshold determination for declaring duplicate accessions identification. 638 

(A) Percentage identity versus the number of comparisons among 204 accessions in T. urartu (D) 639 

Percentage identity versus the number of pairwise comparisons for the accession pairs in T. urartu that 640 

had near perfect (≥ 99%) identity. 641 

 642 

Supplementary Figure S3. An unrooted Neighbor-Joining (NJ) tree of wheat and A-genome species: T. 643 

urartu, subsp. aegilopoides, and subsp. monococcum. The tree branches are colored based on the genetic 644 

grouping of the accessions after correcting misclassified accessions. T. urartu (yellow), domesticated 645 

einkorn (red), wild einkorn race α (blue), and wild einkorn race γ (green), and misclassified tetraploids 646 

(brown) are shown.  647 

 648 
Supplementary Figure S4. The mitotic metaphase cell of a misclassified wild wheat accession in 649 

WGRC collection, TA10881 confirming the accession as tetraploid (2n=4x=28) and thus verified the 650 

GBS based genetic grouping. Chromosomes were stained with 4',6-diamidino-2-phenylindole (DAPI). 651 

Before genotyping and cytological confirmation, the accession was falsely grouped under T. urartu.  652 

 653 
Supplementary Figure S5. Principle component analysis (PCA) plot for A-genome wheat species with 654 

two major PCs. There were three races α, γ and β within the wild einkorn group which clustered 655 

separately in population analysis.  656 

 657 
Supplementary Figure S6. Minor allele frequency plots of A-genome diploid species: (a) T. 658 

monococcum subsp. aegilopoides, (b) T. monococcum subsp. monococcum, and (c) T. urartu  659 

 660 

Supplementary Figure S7. Smoothed FST curve showing selection signal for einkorn wheat on 661 

chromosome 3A. The strongest signal was located at 60-90 Mb. The horizontal green line indicates the 662 

selection signature determination genome-wide threshold (0.24), which is 3σ above the mean. The red 663 

vertical line at 62 Mb on chromosome 3A indicates the location of candidate selection signature Btr1. 664 

 665 

Supplementary Figure S8. An unrooted NJ phylogenetic tree of A-genome wheat species showing the 666 

accessions in the core collections and all other accessions in respective clades. Black branch reflects the 667 

accessions in the core collection, and the golden branch indicates all other accessions that are not in the 668 

core collections.  669 
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Supplementary Figure S9. Principle component analysis (PCA) plot of A-genome wheat accessions 670 

showing partitioning of different groups within the species and the accessions selected in the genetic 671 

cores (black triangles). 672 

 673 

Supplementary Figure S10. Geographic map of A-genome wheat accessions, where the core 674 

accessions were indicated by larger google marks and the rest of the accessions were shown by smaller 675 

marks of the respective groups.  676 

 677 

Supplementary Figure S11. Diagram showing three different taxonomic classification systems of 678 

einkorn wheat. In WGRC, we follow the taxonomic classification system of Van Slageren (1994).  679 

 680 

Supplementary text S1. Coding sequence of gene for non-brittle rachis 1 (Btr1) in T. monococcum 681 

subsp. monococcum  682 
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Table 1. A-genome species and sub-species groups with number of samples, the Nei’s diversity indices, 702 

and number of segregating loci. The percentage of segregating SNPs for core set groups were estimated 703 

relative to the segregating loci within the respective groups.   704 

 705 

Group Number of 

Samples 

Diversity 

Index 

Segregating 

SNPs 

A-genome species (T. monococcum + T. urartu)  925 0.25 13089 

  T. monococcum (einkorn) 729 0.106 6587 (50.3%) 

       Domesticated einkorn (subsp. monococcum) 145 0.058 3637 (27.8%) 

       Wild einkorn (subsp. aegilopoides) 584 0.086 6213 (47.4%) 

             α race einkorn  524 0.073 5119 (39.1%) 

             γ race einkorn  48 0.093 4440 (33.9%) 

              β race einkorn 12 0.058 2622 (20.1%) 

  T. urartu  196 0.069 4072 (31.11%) 

A-genome species core set 79 0.271 12907 (98.6%) 

  T. monococcum core  60 0.116 5926 (89.9%) 

            Wild einkorn core 41 0.098 5324 (85.6%) 

             Domesticated einkorn core  19 0.065 3039 (83.6%) 

  T. urartu core 19 0.072 3324 (81.6%) 

 706 
  707 
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Table 2. Pairwise FST coefficients among the A-genome wheat species. Higher FST reflects a stronger 708 

population differentiation. The α, β and γ genetic races comprise the wild einkorn (T. monococcum 709 

subsp. aegilopoides L.).  710 

 711 

 α race γ race β race T. urartu 

subsp. monococcum 0.56 0.41 0.31 0.87 

α race - 0.40 0.50 0.86 

γ race - - 0.37 0.83 

β race - - - 0.86 

 712 
  713 
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Table 3. Number (#) of unique accessions, number of accessions in a duplicate set consisting maximum 714 

identical accessions, and total accessions of A-genome species: T. urartu, domesticated einkorn (subsp. 715 

monococcum), and wild einkorn (subsp. aegilopoides) three genetic races: α, γ, and β. The identical 716 

accessions were detected using pairwise allele matching.   717 

 718 

 α race γ race β race subsp. monococcum  T. urartu 

Total accessions 524 48 12 145 196 

# Loci compared 4112 4112 4112 3337 6356 

Max duplicates set 28 3 0 5 39 

Unique accessions 198 (37.8%) 37 (77%) 12 (100%) 97 (66.8%) 61 (31.2%) 

 719 

 720 
 721 
 722 
  723 
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Figure Legends  724 

 725 

Figure 1. Geographic distribution of A-genome wheat species in the WGRC gene bank.  Collection sites 726 

of accessions in this study are designated for domesticated einkorn (Triticum. monococcum subsp. 727 

monococcum) (red); α race within wild einkorn (T. monococcum. subsp. aegilopoides) (blue); γ race 728 

wild einkorn (orange); β race wild einkorn (magenta); and T. urartu (yellow). 729 

 730 

Figure 2. Population structure of A-genome wheat species: Triticum monococcum L. and T. urartu.  731 

Subpopulations were determined using fastStructure at K=2 to K=7.  Each color represents a population, 732 

and each bar indicates the admixture proportion of an individual accession from K populations.  The 733 

subgroup within α, which is exemplified by yellow color sole includes the accessions from Erbil (also 734 

spelled Arbil), Iraq, whereas the subgroup embodied by red color only comprises the accessions from 735 

Duhok (ancient name ‘Dahuk’, Iraq). The bars with purple color only represent the accessions from 736 

southeast Turkey (ST). Other admixture types within α included accessions were from Iran, SU 737 

(Sulaymaniyah (Iraq)), random different sites (D) and unknown sites (U) as indicated. Within T. urartu, 738 

the LE group represents accessions from Lebanon, the TU includes accession from Turkey, S indicates 739 

accessions from Syria and M shows accessions from mixed sites.  740 

 741 

Figure 3. An unrooted Neighbor-Joining (NJ) tree of A-genome species: T. urartu, subsp. aegilopoides, 742 

and subsp. monococcum. The tree branches are colored based on the genetic grouping of the accessions 743 

after correcting misclassified accessions. T. urartu (yellow), domesticated einkorn (red), wild einkorn 744 

race α (blue), and wild einkorn race γ (green) are shown.   745 

 746 

Figure 4. Relationship between the allele coverage as estimated using GenoCore and the number of 747 

samples selected in the core for einkorn group (T. monococcum).  The threshold for 60 accessions at 748 

approximately 90% genotype coverage is shown with vertical red line.  749 

 750 

 751 

  752 
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 979 

 980 
 981 

 982 

Figure 1. Geographic distribution of A-genome wheat species in the WGRC gene bank. Collection sites 983 

of accessions in this study are designated for domesticated einkorn (Triticum. monococcum subsp. 984 

monococcum) (red); α race within wild einkorn (T. monococcum. subsp. aegilopoides) (blue); γ race 985 

wild einkorn (orange); β race wild einkorn (magenta); and T. urartu (yellow). 986 

 987 
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 988 
 989 

Figure 2. Population structure of A-genome wheat species: Triticum monococcum L. and T. urartu.  990 

Subpopulations were determined using fastStructure at K=2 to K=7.  Each color represents a population, 991 

and each bar indicates the admixture proportion of an individual accession from K populations.  The 992 

subgroup within α, which is exemplified by yellow color sole includes the accessions from Erbil (also 993 

spelled Arbil), Iraq, whereas the subgroup embodied by red color only comprises the accessions from 994 

Duhok (ancient name ‘Dahuk’, Iraq). The bars with purple color only represent the accessions from 995 

southeast Turkey (ST). Other admixture types within α included accessions were from Iran, SU 996 

(Sulaymaniyah (Iraq)), random different sites (D) and unknown sites (U) as indicated. Within T. urartu, 997 

the LE group represents accessions from Lebanon, the TU includes accession from Turkey, S indicates 998 

accessions from Syria and M shows accessions from mixed sites.  999 
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 1001 

 1002 
 1003 

Figure 3. An unrooted Neighbor-Joining (NJ) tree of A-genome species: T. urartu, subsp. aegilopoides, 1004 

and subsp. monococcum. The tree branches are colored based on the genetic grouping of the accessions 1005 

after correcting misclassified accessions. T. urartu (yellow), domesticated einkorn (red), wild einkorn 1006 

race α (blue), and wild einkorn race γ (green) are shown.   1007 
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Figure 4. Relationship between the allele coverage as estimated using GenoCore and the number of 1011 

samples selected in the core for einkorn group (T. monococcum).  The threshold for 60 accessions at 1012 

approximately 90% genotype coverage is shown with vertical red line.  1013 
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