Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Genomic characterization of a pathogenic isolate of Saccharomyces cerevisiae reveals an extensive and dynamic landscape of structural variation

Lydia R. Heasley, View ORCID ProfileJuan Lucas Argueso
doi: https://doi.org/10.1101/2021.08.20.457152
Lydia R. Heasley
Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: Lydia.heasley@colostate.edu
Juan Lucas Argueso
Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Juan Lucas Argueso
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

The budding yeast Saccharomyces cerevisiae has been extensively characterized for many decades and is a critical resource for the study of numerous facets of eukaryotic biology. Recently, the analysis of whole genome sequencing data from over 1000 natural isolates of S. cerevisiae has provided critical insights into the evolutionary landscape of this species by revealing a population structure comprised of numerous genomically diverse lineages. These survey-level analyses have been largely devoid of structural genomic information, mainly because short read sequencing is not suitable for detailed characterization of genomic architecture. Consequently, we still lack a complete perspective of the genomic variation the exists within the species. Single molecule long read sequencing technologies, such as Oxford Nanopore and PacBio, provide sequencing-based approaches with which to rigorously define the structure of a genome, and have empowered yeast geneticists to explore this poorly described realm of eukaryotic genomics. Here, we present the comprehensive genomic structural analysis of a pathogenic isolate of S. cerevisiae, YJM311. We used long read sequence analysis to construct a haplotype-phased, telomere-to-telomere length assembly of the YJM311 diploid genome and characterized the structural variations (SVs) therein. We discovered that the genome of YJM311 contains significant intragenomic structural variation, some of which imparts notable consequences to the genomic stability and developmental biology of the strain. Collectively, we outline a new methodology for creating accurate haplotype-phased genome assemblies and highlight how such genomic analyses can define the structural architectures of S. cerevisiae isolates. It is our hope that through continued structural characterization of S. cerevisiae genomes, such as we have reported here for YJM311, we will comprehensively advance our understanding of eukaryotic genome structure-function relationships, structural diversity, and evolution.

Competing Interest Statement

The authors have declared no competing interest.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.
Back to top
PreviousNext
Posted August 21, 2021.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Genomic characterization of a pathogenic isolate of Saccharomyces cerevisiae reveals an extensive and dynamic landscape of structural variation
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Genomic characterization of a pathogenic isolate of Saccharomyces cerevisiae reveals an extensive and dynamic landscape of structural variation
Lydia R. Heasley, Juan Lucas Argueso
bioRxiv 2021.08.20.457152; doi: https://doi.org/10.1101/2021.08.20.457152
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Genomic characterization of a pathogenic isolate of Saccharomyces cerevisiae reveals an extensive and dynamic landscape of structural variation
Lydia R. Heasley, Juan Lucas Argueso
bioRxiv 2021.08.20.457152; doi: https://doi.org/10.1101/2021.08.20.457152

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Genomics
Subject Areas
All Articles
  • Animal Behavior and Cognition (4246)
  • Biochemistry (9175)
  • Bioengineering (6807)
  • Bioinformatics (24066)
  • Biophysics (12160)
  • Cancer Biology (9567)
  • Cell Biology (13847)
  • Clinical Trials (138)
  • Developmental Biology (7661)
  • Ecology (11739)
  • Epidemiology (2066)
  • Evolutionary Biology (15547)
  • Genetics (10673)
  • Genomics (14365)
  • Immunology (9515)
  • Microbiology (22916)
  • Molecular Biology (9135)
  • Neuroscience (49170)
  • Paleontology (358)
  • Pathology (1487)
  • Pharmacology and Toxicology (2584)
  • Physiology (3851)
  • Plant Biology (8351)
  • Scientific Communication and Education (1473)
  • Synthetic Biology (2301)
  • Systems Biology (6207)
  • Zoology (1304)