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Abstract 

It is known that the exact neurons maintaining a given memory (the neural ensemble) change 

from trial to trial. This raises the question of how the brain achieves stability in the face of this 

representational drift.  Here, we demonstrate that this stability emerges at the level of the 

electric fields that arise from neural activity.  We show that electric fields carry information 

about working memory content.   The electric fields, in turn, can act as “guard rails” that funnel 

higher dimensional variable neural activity along stable lower dimensional routes. We obtained 

the latent space associated with each memory. We then confirmed the stability of the electric 

field by mapping the latent space to different cortical patches (that comprise a neural ensemble) 

and reconstructing information flow between patches.   Stable electric fields can allow latent 

states to be transferred between brain areas, in accord with modern engram theory. 

  

Introduction 

 

In the era of large scale electrophysiology 1,  neural recordings of high dimensionality are 

abundant.  Yet this has revealed that brain areas seems to exchange information in low 

dimensions, using few task-related variables (latent variables) 2.  Indeed, brain dynamics evolve 

in low, not high, dimensional spaces 3,4.  These spaces are found by dimensionality reduction, 

5,6.  Low dimensionality underlies a variety of cognitive and motor tasks  7,8. 

 

A key point is that low-dimension latent variables track information and task demands and are 

stable, highly correlated across trials 9. This stands in contrast to higher-dimensional neural 

dynamics; while there is some overlap10, the specific neurons and synapses activated are 

variable across trials 11,12,13. This appears paradoxical: which specific neurons are activated 

continuously changes, synapses rewire etc., yet at the functional/behavioral, stability comes 

from low dimensional, latent variables 14–16. This low dimensional stability is important for 

normal cognition and behavior.  Downstream neurons and networks need some consistency 

from upstream networks even though those upstream networks are under continuous 

reconfiguration.   

 

The continuous reconfiguration is known as representational drift 17. It  occurs at a time scale 

of days, minutes or seconds 18.  It helps ensure the robustness of brain circuits. If some neurons 
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fail, others can do the same task 19. Plus, neurons, especially in higher cortical areas, have 

mixed selectivity which adds computational horsepower and cognitive flexibility 20,21. 

Representational drift may also be important for the brain computations needed for Predictive 

Coding 22 and Reinforcement Learning 23.  But the biophysical mechanism that allows low-

dimensional brain dynamics to emerge despite the representational drift, is still a mystery.  

 

Here, we suggest that this low dimensional stability is an emergent property of the electric 

fields generated by neural activity.  Consider the following: First, that ensembles are 

functionally integrated within larger brain networks 24–26. Networks must somehow represent 

the same memory at different times even though larger networks in which they embedded are 

in different states at different times.  Given this fluctuating network activity, it is difficult to 

imagine how that memory could be represented by a specific set of neurons and connections, 

even if one assumes redundancy.  Second, different combinations of electric sources can 

generate the same field 27. Taken together, the above two facts suggest that a changing input 

from the rest of the brain leads to a reconfiguration of the ensemble so that a stable electric 

field is maintained.  Thus, a stable electric field level emerges from a high-dimensional 

representational drift of specific neurons. 

 

It may help to consider the following analogy: Brain anatomy is like the road-and-highway 

system. It is where traffic could go.  Current thoughts, memories etc. are the patterns of traffic 

at that moment.  An exact network of specific neurons is one particular route through the road-

and-highway system. But, importantly, the same destination can be reached by taking different 

routes at different times (i.e., representational drift).  What really matters are the general 

patterns of the traffic, not the exact roads it takes.  There are multiple ways to travel from 

location A to location B. 

 

This motivates the following hypothesis:  That ensemble representation at the electric field 

level is more robust and less variable than representation at the level of specific neurons and 

circuits. If true, this could explain how low-dimensional stable computations arise despite 

representational drift.  

 

Here, we tested whether this hypothesis is supported by data from a spatial delayed saccade 

task. We characterized the stability of both the electric field  and of the neural activity that 
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generates this field. The same data were earlier used to build brain computer interfaces 28 and 

provide an neurobiological explanation of the oblique effect29. We here used them to train a 

biophysical neural network model as an autoencoder that learned to maintain spatial locations. 

This gave us the latent space similarly to other dimensionality reduction approaches 8,30.  Then, 

we went one step further.  We obtained single trial estimates of effective connectivity between 

different neurons. These describe how information propagates over a cortical patch occupied 

by the neural ensemble; and how neurons communicate via electric signals sent from one part 

of the patch to the other. This is a difference between our approach and other approaches. Our 

approach maps the latent space to a cortical patch. It goes beyond dimensionality reduction and 

reconstructs information flow.   

 

Following 29,  we reconstructed the effective connectivity between neurons on the patch from 

the latent space obtained earlier. These connectivity estimates describe the exchange of electric 

signals within the ensemble. This extra step also allowed us to reconstruct the electric field 

produced by the ensemble. Having a detailed description of electric signals and neural activity 

within the patch, we computed the electric field near it, using a classic dipole model from 

electromagnetism 31. To sum up, we predicted neural activity and the electric field generated 

each time (trial) the same location had to be remembered. Then, we tested if they were the same 

across trials. We found that the electric field was different for different remembered locations 

and highly consistent across trials. It also contained stable information about the remembered 

locations, while specific neurons activated were variable across trials (representational drift). 

 

 

 

Methods 

Experimental Data and Recording Setup. 

 

We reanalyzed data from 28. The same data were used in our earlier paper 29. Two adult male 

monkeys (monkey C, Macaca fascicularis, 9kg; monkey J, Macaca mulatta, 11kg) were 

handled in accordance with National Institutes of Health guidelines and the Massachusetts 

Institute of Technology Committee on Animal Care.  They were trained to perform an 

oculomotor spatial delayed response task (Supplementary Figure 1B). This task required the 

monkeys to hold the location of one of six randomly chosen visual targets (at angles of 0, 60, 
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120, 180, 240 and 300 degrees, 12.5-degree eccentricity) in memory over a brief (750 ms) 

delay period and then saccade to the remembered location.  If a saccade was made to the cued 

angle, the target was presented with a green highlight and a water reward was delivered 

otherwise the target was presented with a red highlight and reward was withheld. Three 32-

electrode chronic arrays were implanted unilaterally in PFC, SEF and FEF in each monkey 

(Supplementary Figure 1C).  Each array consisted of a 2 x 2 mm square grid, where the spacing 

between electrodes was 400 um.  The implant channels were determined prior to surgery using 

structural magnetic resonance imaging and anatomical atlases. From each electrode, we 

acquired local field potentials (extracted with a fourth order Butterworth low-pass filter with a 

cut-off frequency of 500Hz, and recorded at 1 kHz) using a multichannel data acquisition 

system (Cerebus, Blackrock Microsystems). We analyzed local field potentials (LFPs) during 

the delay period when monkeys held the cued angles in memory.   

 

 

From the Wilson Cowan equations to Deep Neural Fields  

 

Below we derive the evolution equations for a biophysical neural network model whose 

connectivity parameters have been obtained after training it as an autoencoder. This describes 

the activity of a neural ensemble. Its connectivity is such that the mutual information between 

the remembered cue and the ensemble activity is maximized. The corresponding weights are 

optimal in an information-theoretic sense. 

 

 Consider a neural ensemble that consists of neurons occupying a cortical patch (two 

dimensional Euclidean manifold ) 
AM .  Let  ,a au v  be two spatial variables parameterizing a 

AM , ( , )a a Au v M , see e.g. 32–34.  Let ( , , )
E

a

a ax u v t  and ( , , )
I

b

b bx u v t  be the membrane potential 

of excitatory neurons and inhibitory neurons at locations ( , )a au v   and ( , )b bu v on the cortical 

surface and time t. The time evolution of ( , , )
E

a

a ax u v t  and ( , , )
I

b

b bx u v t  is given by the following 

neural network equations, known as the Wilson-Cowan Equations34,35  

 

 

''( , , ) ( , , ) ( , , , ) [ ( , , )] ,    ; ' { , }
E E P

a a c

a a E a a PP a a c c c c E

c

x u v t x u v t K u v u v f x u v t S U P E P E I= − + + = =   
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and                                (1) 

 

''( , , ) ( , , ) ( , , , ) [ ( , , )] ,      ; ' { , }
I P

b b c

b b I I b b PP b b c c c c I

c

x u v t x u v t K u v u v f x u v t S U P I P E I= − + + = =  

 

 

where : n nS →  maps exogenous inputs to depolarization and f is vector-valued transfer 

function that describes the mapping from membrane potentials to current (spikes per second; 

Lipschitz continuous to guarantee local existence) of the population around point ( , )a a Au v M .  

 

We then take the continuum limit of Equations (1). This is a common transformation of 

biophysical evolution equations36 and   allows one to replace sums with integrals. It follows a 

standard process in mathematical physics that provides the continuous version of a discrete 

system (opposite of discretization). We then partition 
AM   into N L cortical patches of neural 

densities a

ij  with dimensions ( , )v    1,...,i N and 1,..., .j L  Thus the subgroup of 

neurons in the square {[ ,( 1) ),[ ,( 1) )}a

ijT i u i u j v j v=  +   +  of 
AM is given by 

.a a

ij ij v  =     For mathematical convenience, consider a copy 
BM of manifold .AM  The 

interaction between neurons in cortical patches 
a

ij AT M   and  b

kl BT M only depends on the 

duplets ( , )i j  and ( , ).k l  A neuron at location ( , )a au v  inside square 
a

ijT receives input from all 

neurons in square b

klT  with strength 
' '( , , , ) ( , , ', ')PP PPK i j k l K i u j v k u l v=     , where we use  “ '  ” 

to denote locations on manifold 
BM . Also, K is the continuous version of function K under 

the assumption that connectivity is constant within the square with sides of length  and .v

For simplicity of notation, in the following we write K in place of .K  Then, we can define the 

local spatially averaged activity variable PX  by 1

( , )

( , , ) ( ) ( , , )
a

ij

a

P ij P

i j T

X i u j v t x i j t −



  =   and 

consider the continuum limit , , ', ' 0u v u v    →  : all nodes within the patches 
a

ijT and 
a

ijT

occupy the same location in manifolds and 
BM . After replacing u i u=  , v j v=    and 

' 'u k u=  , ' 'v l v=  , Equations (1) can be written as a system  

 

AM
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'( , , ) ( , , ) ( , , ', ') [ ( ', ', )] ' '
E E

B

E PP E

M

X u v t X u v t K u v u v f X u v t du dv S U= − + +  

and                (2) 

'( , , ) ( , , ) ( , , ', ') [ ( ', ', )] ' '

B

I I I PP I

M

X u v t X u v t K u v u v f X u v t du dv S U= − + +  

 

 

         

Similarly to 29, we  then consider perturbations ˆ
PX of membrane potentials around baseline: 

0
ˆ( , , ) ( , ) ( , , )P P PX u v t X u v X u v t= +  { , }P E I= .  This yields an expression of the perturbations

ˆ ( , , )PX u v t in terms of: 1) the functions 
kG , which we previously  called principal axes29; and 

2) the latent variables 
'PP

klz , which we called connectivity components—to resemble standard 

PCA terminology. Both are defined below. In that earlier work29, we found that the principal 

axes contained temporal information, while the connectivity components contained spatial 

information. The connectivity components 
'PP

klz were  defined by the following equations 

  

 

 

0

0

' 1

0 '

' 1

'!

( , ) ( , , ', ') ' '

( , ) ( , , ', ')( ') ( ') ' '

PP

P PP

dfPP k l

kl P PPk

z u v df K u v u v du dv

z u v K u v u v u u v v du dv





−

−

=

= − −




                                                              (3) 

 

while the principal axes were given by 

 

( ) ( )

ˆ ( , , )
kl

P P

k l

X u v t
G

u v


=

 
                                                                                                                   (4) 

 

Using Equations (3) and (4), Equation (2) yields the following expressions for the perturbations 

ˆ ( , , )PX u v t : 
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0 0

0 0

0 0 10 10 10 10 01 01 01 01 11 11 11 11

3 3

20 20 20 20 02 02 02 02 21 21 21 21 12 12 12 12

0 0

( , , )

( , )

( , , )

EE E EI I EE E EI I EE E EI I EE E EI I

E

EE E EI I EE E EI I EE E EI I EE E EI I

II I IE

I

X u v t z G z G z G z G z G z G z G z G

z G z G z G z G z G z G z G z G O u v

X u v t z G z G

= + + + + + + +

+ + + + + + + + +

= + 10 10 10 10 01 01 01 01 11 11 11 11

3 3

20 20 20 20 02 02 02 02 21 21 21 21 12 12 12 12 ( , )

E II I IE E II I IE E II I IE E

II I IE I II I IE E II I IE I II I IE E

z G z G z G z G z G z G

z G z G z G z G z G z G z G z G O u v

+ + + + + +

+ + + + + + + + +

              (5) 

 

 

Note that the above equation is obtained using linear stability analysis and includes a Taylor 

expansion over spatial coordinates. If we had separate data (depolarization or spike rates) for 

the excitatory and inhibitory populations, we could use Equations (5) and this data to find 

( , )EX u v  and ( , )IX u v  separately. We could estimate the connectivity components 
'PP

klz for the 

excitatory and inhibitory populations separately.   We will pursue this in future work using data 

from excitatory and inhibitory neurons. Here, our data included aggregate activity (LFPs) from 

both populations.  

 

LFP recordings contain aggregate activity of excitatory and inhibitory populations together. 

Mathematically, this is expressed as a two factor sum of membrane depolarization of all 

populations for each location on the cortical surface, ( , ) ( , ) ( , )E IX u v X u v rX u v= + , where r is 

the ratio of excitatory to inhibitory activity, which we take r=0.25. This value for r was chosen 

according to Dale’s principle that neurons can be either excitatory or inhibitory and there are 

four times more excitatory than inhibitory neurons 37,38. For mathematical convenience and 

without loss of generality we also consider a (differentiable) change of  coordinates 

( , ) ( , )u v u v→  where u  parameterizes the location of the excitatory populations and v  

parameterizes the location of the inhibitory populations. We also assume that the Jacobian of 

this transformation ( , ) 0J u v  . In the Results section, we validated this assumption 

numerically. The rigorous mathematical justification of this assumption will be considered 

elsewhere. Following this, the principal axes 
P

lkG  and components can be  simplified: 

 

(i)    
' '

' ' 0

0 ' '

0

{ ( ), ( ), ( )},    ,
{ , , }  ' { , }  

{ ( ), ( ), ( )},      ,

P PP PP

P PP PP lk kl

lk kl P PP PP

lk kl

G u z u z u P E
G z z P E I

G v z v z v P I

 =
= =

=
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(ii)    
0,    ,any ,   0

     
0,      ,any ,   0

P

lk

P E l k
G

P I k l

= 
= 

= 
 

 

Thus: (i) Principal axes  
P

lkG and components
'PP

klz   describing excitatory populations depend on 

u  only and terms describing inhibitory populations depend on v  (this was the assumption 

above); (ii) Axes 
E

lkG involving excitatory activity involving non zero sub-indices k can be 

removed from Equations (5), because these axes contain mixed derivatives. Similarly for 

inhibitory activity and its axes 
I

lkG  that contain mixed derivatives with non zero sub-indices l. 

Because u  and v  are distinct (the locations of excitatory and inhibitory populations are 

different), we can consider the union of the spatial domains for u   and  v  as a single, new spatial 

domain and join the spatial variables u  for the location of excitatory and v  for the location of 

the inhibitory populations into a single variable. Then, adding Equations (5a) and (5b), we 

obtain 

 

 

 

0 00 0 10 10 01 01 20 20 02 02

E E I I E E I I E E I IX A G A G A G A G A G A G  + + + + + +                                                     (6)  

 

 

where the aggregate connectivity components 
PA  are two factor sums of 

'PPz  defined by 

Equations (3)  : 

 

 

 

' '

0 0 0

' '

,          
( ),   ,    '

1/ ,    

( )

P P PP P P P P

P P PP P P P

kl kl kl

r P E
A q z q z q P P

r P I

A q z q z

=
= + = 

=

= +

                                                           (7) 
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Letting 
10 01 20 02 0 0, , , ,..., ,

T
E I E I E I

i iH G G G G G G =  
. Equation (6) is a deep neural field, and can be 

rewritten in the general form of a Gaussian Linear Model (GLM; cf. Equation (1) in 29 ),    

 

 

0 1 2 1

1

, , ,..., ,

j j

j

T

i i

l

N

Y H w m R

w A A A A A

m N X

−

−

= + +

 =  

=





                                                                                          (8) 

 

 

where for simplicity of notation we have relabelled, 0 01 10 0 0[ , , ,..., , ]P P P P P

k i iA A A A A A=  and have 

dropped the superscript P , because  we do not distinguish between  neural populations in what 

follows. This simply relabels components with two sub-indices as components with a single 

sub-index. Note that kA  are 1D, while 
'PP

klz are 2D. Since there is only one spatial variable in 

kA , only one sub-index was needed. We have also assumed that cortical activity ( , , )X u v t X  

was sampled from a random process  and ˆY X m= − .  

 

The above 1D reduction was obtained under certain  mathematical assumptions. To validate 

them,  we compared our effective connectivity estimates against two established approaches 

(see Methods subsection below and Results section). We found that our results correlated 

significantly with results obtained with these methods. The rigorous mathematical justification 

of these assumptions will be pursued elsewhere.  

 

To sum up, starting from a neural network model for coupled excitatory and inhibitory 

populations (Equation 1), we have shown how it can be reformulated as a deep neural field 

model (Equation 6) – and then a GLM (Equation 8). This is useful because it allows us to obtain 

the effective connectivity that characterises information flow within the neural ensemble. This 

is described in the next section. 

 

 

 

X
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Connectivity components and kernels.  

 

The connectivity components kA  are the latent states of the autoencoder trained by optimizing 

the cost function, known as the Free Energy, F ,  

 

 

 

2 2 2 1

2

1

1
( ) ( ) ln ln co

2

T T

s s s

T

s

T

F Y Hw r Y Hw s s Z Z nst

s I H H

Z H Y

−

−

   = − − − + +  + +    

 = +

= 

                                            (9) 

 

using a Restricted Maximum-Likelihood (ReML) algorithm39. This assumed a directed 

graphical model  ( )p Y w  used in autoencoders that yields an approximation q to the posterior

( ),p w Y see  29 for more details. Note that the cost function defined by Equation (9),  is 

the same cost function like the one used in Predictive Coding.  

 

 

To sum up, Equations (3) define the connectivity components 
'PPz of the neural network (1). 

Similarly, Equations (7) define the 1D connectivity components kA  of the deep neural field 

(Equation (6) ) as two factor sums of 
'PPz . Training the GLM to optimize the cost function (9) 

we obtain single trial estimates of effective connectivity components kA . Their averages across 

trials are shown in Figure 2 of 29. If we had separate recordings of excitatory and inhibitory 

neurons we could get the effective connectivity components 
'PPz of the neural network (1) in a 

similar way. This will be pursued elsewhere. Here, we used single trial kA estimates to identify 

neural ensembles that maintained location during each trial. We also compared them to similar 

measures obtained using other approaches for ensemble identification (see Methods below and 

Results).  
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We now turn to connection weights of the neural network (1). We call these connectivity kernels 

'PPK . In Equations (3), the connectivity components are integrals of the connectivity kernel 

( , , , , , ')a a b bK u v u v t t . Here we have dropped the sub-indices , 'P P  because the kernel is not 

spatially discrete;  instead, it   depends on continuous variables ( , )u v . 

 

In 29, after obtaining kA , we assumed that cortical connectivity has a Gaussian profile and 

computed  ( )  
1

2 2( , ) 2 exp ( ) / 2a b a bK u u C u u u C
−

= − − −    and obtained trial average 

estimates of ( , )a bK u u  where u and  C are the mean and standard deviation of axonal 

dispersion. Here, we first considered the same profile and focused on the corresponding single 

trial estimates of ( , )a bK u u . We  considered   a more general expression for the connectivity 

profile involving a weighted  Gaussian (see Mapping the latent space to a cortical patch section 

below). 

 

 

Comparison of our approach to established approaches in the literature.  

 

To validate our approach, we compared our estimates of connectivity components and kernels 

to methods that are established in the literature. First, we considered a correlation-based 

method, see 40 . This yields neuronal ensembles, where neurons in the same ensemble have 

dense connections with each other and weak connections to other neurons. This is achieved by 

maximizing a graph theoretic measure known as modularity and is similar to finding 

communities in social networks 41. It computes similarity measures including cosine similarity 

and the correlation coefficient that we used here. The method was initially developed to analyse 

spike train data, but we here adapted it to deal with LFPs. It provides a spectral decomposition 

of the modularity matrix using a stochastic algorithm 41. It employs a consensus algorithm to 

ensure that the same clustering is obtained for different initialisations 42. This method has been 

applied to neural activity in visual cat areas  40  and the Aplysia pedal ganglion  43. 

 

Second, we used a higher dimensional SVD method known as canonical decomposition 

(CD44,45). This provides a generalization of the usual SVD which factorizes a tensor in terms 
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of  R arrays.  It allows one to obtain an approximation of the data  represented by a third order 

tensor T SN N TY  
 given by 

 

 
1

,
R

ijk im jm km

m

Y f b c
=

                                                                                                              (10) 

 

where TN m

imf   ,    SN m

jmb


  and 
T m

kmc   are three matrices known as “modes” in the 

mathematical literature 45. Their first dimensions are   either number of  trials  

(
TN ), or electrodes (

SN )  or    time (T ).  R is known as the rank of Y  , with  m=1,…R.  

Equation (10) can be written explicitly as 1 1 1 2 2 2 ...ijk i j k i j k iR jR kRY f b c f b c f b c + + +  . This 

includes a sum of combinations of elements 1 1 1 2 2 2, , , , , ,...i j k i j kf b c f b c . . Taking together (i.e. for 

all  m=1,…R ) all elements with the same first dimension, e.g. the dimension denoted by index 

“i", that is,
1 2,. ,..,i i iRf f f  we obtain a matrix [ ]imF f=  and similarly for [ ]jmB b=  and [ ]kmC c=

. F, B and C are known as modes  Each mode is a matrix where the first dimension (denoted 

by i, j or k) is equal to one of the above three dimensions of the LFP array, that is, a number of 

trials (i=1,..,
TN ),  electrodes (j=1,…,

SN ) or time points (k=1,…,T ). Thus, each term in the 

sum ijkY  is a product of elements from the three modes im jm kmf b c . This product is called a factor. 

The second dimension (denoted by m) is the same for all three modes that belong to the same 

factor and is different for each term in the sum (i.e. each factor). It ranges between 1 and some 

arbitrary number R, 1,...,m R= . Thus, R is equal to the number of factors in the CD 

approximation ijkY . In the Results section, we will see that R can be estimated based on some 

measures from statistics.  

 

The approximation Y  is obtained using an alternating least squares algorithm (ALS) that 

minimizes  the reconstruction error min
FY

Y Y− , where 
F

Y  is the Frobenius norm of Y . The 

ALS approach fixes [ ]jmB b=  and [ ]kmC c= to find [ ]imF f= . The conditional least square 

estimate of A is then   

 

1

( ) ( )( )T TF Y B C B C B C
−

 =                                                                                     (11) 
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where  is known as the Kronecker product.  ALS continues by then fixing  F  and C to find 

B and finally F  and C to find B. The CD approximation is unique up to permutation and 

scaling of the modes. Thus, ALS is used iteratively.   For more details see 46. CD has recently 

been applied to analyse spiking data and identify neural ensembles in 47. Here, we adapted this 

work to identify neural ensembles using LFPs.  The CD approach by 47 does not provide single 

trial estimates of connectivity components and kernels, like those we considered here. 

However, we compared our results to CD estimates after averaging across all trials that 

corresponded to the same stimulus.  

 

In the expansion (10) above, the number of components is arbitrary. To find the rank R, we 

used two criteria:  consistency and congruence. Consistency was introduced as an alternative 

way to obtain the rank in CD approximations 48. It uses certain elements of CD theory, known 

as CD factors, to compute an alternative approximation of the data matrix, known as Tucker3 

approximation  49. The Tucker3 approximation also contains (mixtures of) CD factors. For a 

given R, consistency quantifies the difference between data fits using the CD and Tucker3 

approximations. R should be such that this difference is minimal. According to 48, this 

corresponds to consistency values between 50-100%. To sum up, consistency quantifies the 

degree that the LFP data contain a trilinear variation, see  48 for more details. It is optimal for 

that particular value of R, that renders the core of the corresponding Tucker3 approximation 

(the Tucker3 approximation with the same CD factors) superdiagonal.   

 

Congruence, on the other hand, is simply based on uncorrected correlation coefficients (CC) 

between any two sets of factor matrices {F1, B1, C1} and {F2, B2, C2} . These are averaged over 

a different implementations of the ALS algorithm starting from different initial conditions and 

then the maximum value is subtracted from 1 , i.e. congruence (CG) is given by 

1 max(1/ ))t

t

CG N = −  where
t is the CC computed in the t-th initialisation and we have 

assumed N initialisations. Congruence was initially used to remedy instabilities and slow 

convergence that are knowns to affect ALS, due to its iterative nature. A low value of 

congruence implies that the CD approximation was not stuck in local minima and CD factors 

are stable 50.  In Results, we chose a rank R with high consistency and low congruence. This 

results in a stable CD approximation that includes a trilinear variation in the data. 
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The electric potential and electric field   generated by a neural ensemble.  

 

To model the electric potential (EP) generated by synaptic activity (EPSPs and IPSPs) in a 

neural ensemble we use the bidomain model of the neural tissue 31. This assumes that the neural 

tissue can be represented by a cylindrical fiber of radius d . This means that the problem has 

rotational symmetry and the potential is a function of two coordinates ( , )Z , where 
aZ u=

is the coordinate along the fiber axis and  is coordinate vertical to it, see  51 and 

Supplementary Figure 4. Below, we use the bidomain model, to derive the extracellular 

potential eV  and the extracellular electric field generated by the neural ensemble,  
eE   . Details 

of this derivation can be found in the references above. Here, we included a summary for the 

convenience of the reader. The bidomain model describes the potential in the two sides of the 

neuron membrane, that is, the intracellular iV  and extracellular eV  potentials. Their difference 

0 0

m e iV V V= −  is the transmembrane potential and results in a spatial discontinuity also for the 

electric field ,   { , }.a a

oE V a e i= − = 0

eV  and 0

iV  are the values of the extracellular and 

intracellular EPs on the two sides of the membrane. Note that   denotes the gradient operator.  

According to the theory of electromagnetism, this discontinuity gives rise to dipole sources 

with moments 27 

 

2 /m

ap V r=                                                                                                                     (12) 

 

Here r is the brain resistivity with 2.2 Ohmr = 52 and we have assumed that the number of 

neurons is large and that each cell is very small compared to the distance at which the LFP 

electrode is placed. Also, the current density ( , )a

a aI u v  that results from EPSPs and IPSPs is 

given by 

 

( , ) /a

a a aI u v p=                                                                                                                  (13) 

 

where Ω is the total volume of the ensemble. Neglecting ephaptic interactions m iV V  , and 
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the extracellular electric potential generated by the current density ( , )a

a aI u v  is given by  

 

 

1( , , ) (4 ) ( , ) (1/ )e e e e e a aV u v w I u v R d −=                                                                      (14) 

 

where e is the conductivity of the extracellular space, and  R is the distance between the 

current source at the point ( , )ad u of the neural ensemble and the point ( , )eu  in the 

extracellular space where we measure eV , i.e. the location of the LFP electrode, 

2 2( ) ( )e aR u u d= − + − , see Supplementary Figure 4. Then, according to the bidomain 

model, Equation (14) can be written as 53,54   

 

 

1( , , ) (4 / ) [ ( ) ( )]e e e e e i mV u v w FT V k W k  −= −                                                                    (15) 

 

 

where  ( )mV k  is the Fourier Transform of the transmembrane potential mV  and FT-1 is its 

inverse Fourier Transform, that is, 

 

 

1

( ) ( )

[ ( )] ( ) ( )

m m ik

m m m ik

V k V e d

FT V k V V k e dk





 





−



− −

−

=

= =





                                                                          (16) 

 

The  function ( )W k  is given in terms of the modified Bessel functions of the first 
0 1( ), ( )I I   

and second 
0 1( ), ( )K K   kind 55,  

 

 

 

1 0

0 1 1 0

( ) ( )
( )

( ) ( ) / ( ) ( )i e

I k d K k
W k

I k d K k d I k d K k d



 
=

+
                                                             (17) 
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Then, the extracellular electric field (EF) generated by the neural ensemble,  
eE  ,  is just the 

gradient of  eV , e eE V= − .  

 

 

 

 

 

Gauge transformations of electric potentials.  

 

Multiple extracellular EPs eV  can give rise to the same EF e eE V= − in extracellular space. 

This is a well-known result in the theory of electromagnetism called Gauge invariance.  It 

follows from the conservation of electrical charges 27. In the case of LFP measured with 

multielectrode arrays, each trial gives rise to an LFP recording. This, in turn, results from a 

different EP generated by current flow within a neural ensemble in each trial. In Results, we 

test the hypothesis that the EF is the same for all trials corresponding to the same remembered 

stimulus, { trial } { trial }e eE i E j= . To test this hypothesis, we first needed  an estimate of the 

extracellular potential (EP) at an arbitrary trial j,  { trial }eV j . We obtained this using Equations 

(15) and (17) above, in two ways. First, using simulations of our deep neural field model. 

Second, using recorded LFPs as proxies for the transmembrane potential at arbitrary trial j, 

{ trial }mV j . Then by taking the gradient of { trial }eV j , we found the extracellular EF for trial 

j, { trial }eE j . Having obtained EF estimates, we tested the hypothesis that the EF is stable in 

three ways: First, we looked whether EFs where correlated across trials. Second, we asked if 

EF estimates were consistently different for neural ensembles that maintain different cued 

angles. We tested if we could distinguish between memorized cues based on EFs. We used EFs 

as classification features in two commonly used classification algorithms, Naïve Bayes and 

diagonal LDA29. Third, we used Gauge functions that connect the recorded LFPs. If the EF 

was stable, the EPs are related by called Gauge transformations 27 

 

{ trial } { trial } /e eV i V j t= +                                                                                         (18) 
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where the function ( , , )t   = is called Gauge function.  To sum up, a third way to test the 

stability of EFs is to test if the Gauge functions can be used to distinguish between different 

cued angles (see Results). According to Equation (18), the time derivative of the Gauge 

function / t   is equal to the difference of EPs corresponding to any two trials. Equation 

(18) should hold for any arbitrary pair of trials. Thus, we asked whether we could decode cued 

angles using Gauge function derivatives / t   as classification features. These, in turn, were 

obtained after subtracting LFP recordings. An independent experimental validation could also 

be carried out using intracellular recordings: If Equation (18) holds, then a similar Equation for 

the intracellular potential iV  also holds with the same Gauge function ( , , )t   = . Thus, 

the Gauge function ( , , )t    , can be found experimentally by measuring iV during any two 

trials, { trial }iV i and { trial }iV j . 

 

 

Mapping the latent space to a cortical patch. 

 

The extra step that allowed us to obtain the electric field above was the mapping of the latent 

space to a cortical patch 29. Starting from the connectivity components, we obtained the weights 

that scaled incoming input to each population from all other populations in the ensemble, called 

the connectivity kernel. This describes information exchange and electrical activity on the 

patch. Having this, we then reconstructed the EF. Consider Equation (1).  The connectivity 

kernels 
'( , , , ), { , }PP X X c cK u v u v X a b=  include the weights that scale input from a population at 

location ( ,c cu v ) to an excitatory population at ( ,a au v ) or an inhibitory population at ( ,b bu v ). 

Above, we considered the continuum limit of Equations (1), that is, Equations (2) and similarly 

the continuum limit of the connectivity kernels
'( , , ', ')PPK u v u v . These have the same meaning 

as
'( , , , )PP X X c cK u v u v . Only a difference in notation: the sub-indices denoting location have 

been replaced by continuous spatial variables that lie on a patch , Au v M . Then, given the 

connectivity components 
0

A , klA , we can find  
'PPK . In mathematical terms, the kernels are 

probability distribution functions and can be estimated using a variety of methods from inverse 

problems theory, including splines 56, series expansions 57  and other methods 58,59.  

 

We here considered a  Gaussian connectivity profile used in 29 and an alternative expression 
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for the connectivity kernel that includes sums of Gaussian profiles weighted by polynomial 

factors known as Hermite polynomials, 
nH  55. These sums are known as Gram-Charlier series. 

In brief, the connectivity kernel of the neural ensemble can be approximated by 

 

 
0

2 2

1

0

2

0 2 1

0

( , ') ( ) ( , ')

( , ') exp ( ' ) / 2

k

n n C

C

K u u d H u g u u

g u u u u u C

A
u

A

A A A
C

A

=

= − − −

=

−
=



                                                                       (19)                                     

 

where the Hermite polynomials, 
nH  are known and the coefficients 

nd  can be found by 

substituting (19) and the definition of  
nH  into  

 

2

'/ ! ( , ') ( )n

n PP nd C n K u u H u du=         (20) 

 

Interestingly, Equation (20) using the binomial theorem and the definition of connectivity 

components gives 

 

 

0

1 0

1

!

( , ') ( ) ( , ') ( 1) ' '
k k

n k k n

k n n C

df

Pk

k
A u u d H u g u u u u du

n


 

−

−

 
= −  

 

=

 
    

                                                         (21) 

 

 

 

The above expression seems complicated. However, one can use the properties of the Hermite 

polynomials to find the coefficients , 0,1,...,nd n k= .  
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0 0

1 1

2 2 2

2 2 1 01/ 2[ 2( ' ) ( ' 2 ) ]

d A

d A

d A u u A u u C Cu A

=

=

= + − + + − −

                                                     (22) 

 

 

Substituting the above expressions and the expressions for Hermite polynomials into Equation 

(19), we obtain an alternative expression for the connectivity kernel ( , ')K u u  that involves a 

Gaussian function weighted by terms involving connectivity components  (keeping the first 

three terms in the series expansion given by Equation (19)):  

 

 

    2

0 1

2 2 2 2 4 2

2 1 0

( , ') ( , ')

( ) /

1/ 2[ 2( ' ) ( ' 2 ) ]( ) / ( 1/ )

CK u u g u u

A A u u C

A u u A u u C Cu A u u C C



 + −
  + + − + + − − − − 

             (23) 
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Results 

 

Deep neural fields describe neural ensemble structure in a holistic fashion. 

 

This paper follows upon our recent work that focused on groups of neurons that represent 

memories known as neural ensembles (Figure 1). In 60 we studied computations performed by 

neural ensembles during a flexible sensorimotor decision making task61. We showed that neural 

ensembles in the same brain area  performed different computations based on the  rule applied 

during each trial, although the stimulus processed was the same. This result was obtained by 

comparing brain responses to both a behavioral model and a deep neural network and testing 

if they give similar results. In a parallel line of work29, we  also studied the structure of neural 

ensembles and obtained their effective connectivity. Our analyses below build upon that earlier 

work and used the same dataset. This includes a spatial working memory task, where the angle 

of a cue had to be remembered (delayed saccade task; Supplementary Figure 1A). We analysed 

LFP data recorded during the delay period. 

 

 

 

 

 

Figure 1. A. Outline of our approach. We first reformulated a neural network (described by Wilson Cowan 

equations) as a neural field model and then a Gaussian Linear Model (GLM). We trained this model as an 
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autoencoder and obtained the latent states (connectivity components). Then, using inverse problem theory, we 

obtained the corresponding connectivity kernels. In 29, we used the kernels and graph theory to characterize the 

topography and topology of neural ensembles. Here, we use the kernels and electromagnetism (dipole theory) to 

study the stability of the electric field generated by an ensemble. This paper and 29 focus on the structure and 

biophysics of neural ensembles. In related work 60, we also studied the computations performed by ensembles 

using deep neural networks and behavioural models. 

 

We analysed neural activity (LFPs) recorded from a multielectrode array of Ns = 32 electrodes 

implanted in the FEF of two macaque monkeys. LFPs are thought to describe neural activity 

from a population in the proximity of each electrode 62,63. Analysing LFPs allowed us to 

identify neural ensembles and test if they overlap in different trials. Electrodes were numbered 

in a monotonic fashion; neighbouring electrodes had adjacent numbers (Supplementary Figure 

1B). Our approach and the main results of 29 are summarized below and in Figure 1.  

 

Our approach has the following steps: 1) Start with a neural network model. 2) Reformulate 

this as a  biophysical Gaussian Linear Model (GLM), that we called deep neural field.  The 

term “deep” was used in our earlier work29 to distinguish this model (with learned connectivity 

parameters) from common neural field models where connectivity weights are chosen ad hoc, 

e.g.64–67.  The learned parameters are obtained after training  the neural field as an autoencoder 

(see also 29). Thus, the term “deep” refers to the hidden layer of the corresponding training 

network. 3) Use the latent states (connectivity components) and inverse problem theory to 

obtain the effective connectivity (connectivity kernels). We will come back to components and 

kernels (and their differences) below. 

 

In29, we used average connectivity estimates and graph theory and showed that path length 

portioned the space of cued angles. The smallest values occurred for cues on the horizontal 

meridian, i.e. information propagates faster. This provided an explanation of the oblique effect 

in psychophysics68. Here, we use single trial connectivity estimates and dipole theory to 

reconstruct the electric field produced by a neural ensemble. This will be discussed in detail 

later.  

 

  Examples of neural activity for two different individual trials corresponding to the same task 

condition are shown in Figure 2A. LFP amplitudes (in mV) are shown on the vertical axis. The 

horizontal axis are electrode number (location) and time (in ms). We assumed that FEF 
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comprised a large number of neural populations (indexed by j=1,…,N=32), that was equal to 

the number of electrodes we sampled from, see also 29. Each of these populations can be thought 

of as centred around a point ( , )a au v  on the 2D cortical surface. They also interact with other 

populations located at point ( , )b bu v , via an effective connectivity kernel ( , , , , , ')a a b bK u v u v t t .  

 

We previously identified neural ensembles based on their effective connectivity kernel 

averaged across trials 29. This connectivity was expressed in terms of two measures: 1) the 

latent variables of an autoencoder that we called connectivity components and 2) the 

connectivity kernel  ( , , , , , ')a a b bK u v u v t t  of a biophysical rate model (neural field). This kernel 

was obtained from the connectivity components after assuming a Gaussian connectivity profile 

over space. Here, we followed a similar approach and focused on effective connectivity of a 

neural ensemble and its components at the single trial level (i.e., without averaging). We also 

considered a more general weighted Gaussian as a connectivity profile over space.  Our starting 

point was different to  29: we modelled each neural ensemble as a 2D neural network model of 

interacting excitatory and inhibitory populations (Wilson-Cowan Equations; see Methods). By 

changing the variable that parameterised the cortical surface from discrete to continuous, the 

neural network was reformulated as a mean field model, known as a neural field 34,69,70. In 29, 

our starting point was a usual neural field.   

  

 

Since we are measuring aggregate activity (LFPs), we could not distinguish between locations 

of excitatory vs inhibitory populations. At the same time, these locations do not overlap. 

Intuitively, this means that we can join the 2 spatial variables in the neural network, describing 

locations of excitatory and inhibitory populations, into one. To sum up, the original 2D neural 

network model was first transformed to a 2D neural field and then to an 1D deep neural field 

considered in 29. The details of this reduction are included in Methods. Its mathematical 

implications will be considered elsewhere. Here, we assessed whether this reduction allowed 

us to correctly identify neural ensembles, by comparing our results to those obtained using 

other methods. 

 

 

Effective connectivity components of deep neural fields reveal clusters obtained using pairwise 

correlations.  
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We compared the effective connectivity components and kernels obtained with the deep neural 

field model to estimates of ensemble connectivity obtained with other methods. Below, we 

show that our effective connectivity estimates correlated significantly with connectivity 

estimates obtained using pairwise correlations 40 and a high dimensional SVD approach 44.  

 

We first discuss connectivity components (denoted by kA  in Methods). These are the latent 

variables of the low dimensional space obtained after training our deep neural field as an 

autoencoder. We will see below that they describe aggregate synaptic input to neural 

populations located at a certain point on the cortical patch. They cluster neurons into  task 

related groups 47. Specifically, we obtained single trial component estimates in the following 

way.   We trained a deep neural field model using a cost function considered in predictive 

coding and autoencoder networks.  Component averages across trials were shown in Figure 2 

of 29.  In that paper, we also showed that connectivity components  were matrix-valued 

functions with dimensionality equal to
T SN N , where 600TN =  is the number of trials. For 

each trial, we obtained a vector of dimension 
SN  whose entries were called component 

strengths. These were similar to loadings or principal components in PCA. Because we here 

used aggregate neural activity from both kinds of populations (LFPs), we obtained effective 

connectivity components for both populations together. This is similar to other dimensionality 

reduction approaches, e.g. 8,47. 

 

Here, we validated the effective connectivity components obtained in 29 (summarized also  in 

71) using two independent methods. First, using a correlation-based method, see 40.  This was 

originally used to identify similarities between spike trains. It was based on pairwise 

correlations. Similarities were then used to define neural ensembles –assuming that neurons 

with similar spiking patterns represented the same stimulus or sequence. Thus, one obtains 

neural ensembles. Each neuron is included in an ensemble (called a “cluster” in the original 

paper), indicated by an ensemble index.  In other words, the approach by 40 did not yield  

effective connectivity per se, but one can map the ensemble index to effective connectivity 

components and kernels that we obtained.  
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Figure 2. A. Examples of neural activity for two different individual trials corresponding to the same task 

condition. Local field potentials (LFPs, in mV) are shown on the vertical axis. The electrodes (location on the 

cortex) and time (in ms) are shown on the two horizontal axes. B. Significance (p-value) of Pearson correlations 

between the single trial connectivity components and ensemble indices obtained by the approach of 40. Trials 

where a horizontal location was maintained (θ=0 degrees) are shown in the left panel. Similarly, trials for cued 

angle at θ=60 degrees are shown in the right panel. Estimates for all trials correlated perfectly (p<10-2). C. 

Example of effective connectivity kernel with a Gaussian profile. This describes the weights which scale neural 

activity propagating between any pair of populations located near one of the electrodes. This kernel characterizes 

information flow at the single trial level. D. Example of an alternative expression of the effective connectivity 

kernel obtained as a weighted  Gaussian  using a series expansion. E. Correlations between the connectivity 

kernels in panels C. and D.  R=87% of connectivity weights were significantly correlated at the p<.05 level. These 

are shown in yellow. Blue denotes weights that were not significantly correlated. 

 

Below, we compare our effective connectivity estimates to the clusters obtained using the 

method presented in  40. This yields an alternative way to obtain the same  neural ensembles 

described by our deep neural field model in an unsupervised way, using a k-means algorithm. 

We adapted the original algorithm from  40 to work with LFP data, instead of spike trains. For 

each trial, the method assigned each electrode to an ensemble using an ensemble index. 

Assuming that electrodes sample from populations in their proximity 62,63, this process also 

assigns populations to ensembles.  We then computed the correlation between the ensemble 

indices and the first connectivity components for different cued angles (angles).  We asked 

whether the ensemble index correlated with the component strength for each electrode and trial. 
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In 29, we showed that the component strengths are aggregate sums of all the weights of all 

connections that target the electrode at hand. They describe changes of signal as it propagates 

between electrodes. Thus, different values of component strengths correspond to different 

levels of activity (drive) that each electrode receives. 

 

Pearson correlations were obtained for ensembles obtained from trials with different cued 

angles. Recall that the monkey performed a spatial delayed saccade task (Supplementary Figure 

1A). The p-values across all 32 electrodes are shown in Figure 2B for a remembered stimulus 

at angle 0 =  (left) and 60 =  (right) degrees. Correlations were also significant for trials 

that involved different angles (other stimuli, not shown).  It should be noted that both the 

ensemble index and the component strength of the deep neural fields are single trial measures. 

The fact that they were significantly correlated implies that electrodes formed ensembles based 

on the drive that the neural population in the vicinity of each electrode received during each 

trial. This is similar to intercolumnar synchronization observed in perceptual grouping 

studies72.  

 

To sum up, we found that the effective connectivity components of our deep neural field model 

describe the same clusters as those found using pairwise correlations 40.   |This  provides an 

independent validation of our effective connectivity estimates at the single trial level.  

 

 

 

Connectivity kernels correlate with ensemble indices.  

Recall that, besides connectivity components, our  approach  also yields the connectivity 

kernel. Its entries, called connectivity weights quantify the strength of the effective connections 

between the recording sites within each cortical area, see Supplementary Figure 1B. They 

multiply input signal from other electrodes that targets a certain electrode measuring activity 

from a part of the neural ensemble. In other words, they describe how the signal is amplified 

or attenuated when it propagates between recording sites.   Large positive weights of 

connections targeting a certain electrode implies that large LFP responses would be expected 

from that recording site.  

 

The connectivity kernel enabled us to map the latent space (spanned by the components) to a 
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cortical patch, that the neural ensemble occupies. Later, we will also use the connectivity kernel 

to predict the electric field generated by the ensemble. First, we assessed whether the 

connectivity kernel could also identify neural ensembles, similarly to the connectivity 

components above. 

 

We assumed a Gaussian connectivity profile over space and obtained single trial connectivity 

kernel estimates ( , )C a bg u u  (Methods). We also considered a more general weighted Gaussian 

profile. This is a generalization of the widely used Gaussian kernel64,65,67 that  follows from a 

series expansion 57. Here, a Gaussian kernel is  weighted by known Hermite polynomials 55.  

 

  Example of these connectivity kernels obtained using data from a random trial are shown in 

Figure 2C and 2D. Figure 2C shows a single Gaussian kernel, while Figure 2D shows the more 

general weighted  Gaussian. Note that because of the Gaussian profile, only elements around 

the main diagonal are non-zero. Figure 2E shows correlations between the two expressions 

obtained.  R=87% of connectivity weights of the kernels shown in Figures 2C and 2D were 

correlated. 

 

For simplicity, in the analyses below we used the expression involving a single Gaussian 

kernel. Similar analyses can be carried out using alternative expressions. First, we asked 

whether the connectivity kernel could be used to identify neural ensembles, similar to the 

analyses for connectivity components presented above. We computed correlations between 

single trial connectivity kernels and ensemble indices, obtained using the method of 40 . 

 

Earlier, we found that ensemble indices were correlated with connectivity components..  

Correlations were significant for all trials. This implied that electrodes formed ensembles, 

where electrodes in the same ensemble had neural populations in their vicinity driven by the 

same input. Similarly, we found that ensemble indices also correlated with the connectivity 

kernels we obtained. Correlations between ensemble indices and connectivity kernels for cued 

angle at 240 =  degrees are shown in Figure 3A . Correlation coefficients are shown in the 

vertical axis and trials in the horizontal axis. Trials with significant correlations at p<0.05 are 

denoted with asterisk. Overall, 25-40% of single trial kernel estimates correlated with ensemble 

indices for different angles. The percentage of significantly correlated trials for each cued angle 

is shown in Figure 3B. Connectivity components were correlated with ensemble indices across 
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all trials. Connectivity kernels across some of the trials where the same cued angle was 

maintained, not all. Note that the connectivity kernels were a priori constrained to have a 

Gaussian (parametric) form, while the components were unconstrained. This explains why the 

percentage of significant correlations is smaller in the case of kernels. Some ensemble indices 

show Gaussianity too – but there is nothing intrinsic in  the method of 40 that requires this 

assumption—which, on the other hand, was intrinsic to the Gaussian profile we assumed for 

kernels.. If ensemble indices are not Gaussian, there are no significant correlations.   

 

 

 

 

 

 Figure 3.A.  Correlations between single trial ensemble indices and connectivity kernels for cued angle at 

240 =  degrees. Correlation values are shown on the vertical axis. Individual trials are shown on the horizontal 

axes. Trials with significant correlations at p<0.05 are denoted with an asterisk. B.  Percentage of significantly 

correlated trials for each cued angle. Locations are shown on the horizontal axis. Overall, 25-40% of single trial 

kernel estimates correlated with ensemble indices for different angles. C. Canonical Decomposition. Left and 

right panels show results for cued angles at θ=0 and θ=60 degrees. The number of factors (rank) is shown on the 

horizontal axis. Consistency is shown using magenta bars, while congruence is shown using grey bars. Different 

bars correspond to different ranks. Consistency values are shown on the left vertical axes, while congruence values 

are shown on the right vertical axes. ALS algorithm reconstruction error is shown in the insets. D. Correlations 

between connectivity components and first (left panel) and second (right panel) neuron factors obtained via 

Canonical Decomposition. Cued angles are shown on the horizontal axes. P-values (grey bars) are shown on the 
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left vertical axes. Correlation coefficients are shown on the right vertical axes (burgundy bars). 

 

 

 

 

All in all, the above results suggest that the connectivity kernels identified the clusters obtained 

with the pairwise correlation method of 40. The advantage that these kernels have over the 

previously considered components is that they describe actual connectivity on a cortical patch, 

not latent space. 

  

 

Connectivity components of deep neural fields correlate with high dimensional SVD 

components.  

 

We also validated the effective connectivity components obtained using our deep neural field 

approach using a second method.  This is based on  some old extension of high dimensional 

SVD, known as Canonical Decomposition (CD), see 44 and 47 for a recent application. Recall 

that, to obtain effective connectivity estimates, we trained the biophysical model as an 

autoencoder. This is similar to classical principal component analysis (PCA): Obtaining the 

connectivity components amounts to obtaining principal components. Thus, another validation 

of our components can be achieved by comparing them to components obtained using an SVD 

approach like  CD.  Note that CD components do not correspond to  single trial ensemble 

connectivity like the components obtained using our method. CD provides an estimate of  

average (across trials) connectivity that we had found in 29. The authors of 47 called this average 

the neuron mode and suggested that it describes the “spatial structure that is common across 

all trials”. Below, we will see that this is similar to the average connectivity component across 

trials. We will also compare the CD neuron mode with the average connectivity component.  

We will show that the two correlated perfectly.  

 

CD yields an approximation of our data: this is a three-dimensional LFP array T SN N TY  
  

(trials x electrodes x time; Methods). The CD approximation includes three matrices (or 

“modes”) that describe patterns over each of the three dimensions: a trial, electrode and time 

mode. These are dominant patterns in the data, similar  to PCA components that describe 
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dominant patterns in time or space. Examples of such PCA components include those obtained 

with the dimensionality reduction approach of 73 that outputs motor timing, i.e. trajectories in 

a low dimensional domain spanned by PCA components in the time domain; also in 74 PCA 

components included  trajectories traced out by neurons representing  motion and color. 

 

  

We used the CD approximation to validate our effective connectivity estimates. Of particular 

interest for our current analysis is the neuron mode. This is an  
SN R  matrix, where 

SN  is the 

number of electrodes and   R is a constant, known as rank, that will be estimated below based 

on some measures from statistics. We assume that each electrode measures activity from a 

neural population in its proximity.  The columns of this matrix are vectors  of dimension equal 

to the number of electrodes. Each entry is an  approximate  LFP measured at each electrode 

(averaged across time and trials). The paper 47 used spiking data and the CD approach to obtain 

the neuron mode. These authors suggested that one can think of the neuron mode as a 

prototypical firing rate across neurons.   

 

According to 47 , a neuron mode corresponds to “the synaptic weights from each latent input to 

each neuron”. This is the same definition as that of the component strengths included in 29: 

“(component strengths) express the sum of all connectivity weights that target the neurons that 

contribute to the LFPs observed from each electrode”.  Thus, our connectivity components and 

CD neuron modes are generalisations of principal components in three dimensions, and they 

have similar definitions. 

 

Note that here, we used the word “mode” instead of “factor”,  because the word “factor” is 

commonly used in the mathematical literature to denote terms in the CD approximation 45. In 

other words, our “neuron mode” is the “neuron factor” of 47.  

 

We  asked whether our connectivity components and CD neuron modes that can be found using 

our LFP data were correlated. We considered connectivity components averaged across trials. 

To find  the CD neuron modes  we used a standard iterative Alternating Least Squares (ALS) 

algorithm 46. Before obtaining the modes we needed to find the rank, R (Methods). This is part 

of the CD approach. We assumed different values for rank R=1,…,5. For each value of R, we 

calculated the sum of squares reconstruction error.  This is plotted on the vertical axis appearing 
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in the top right insets of the panels in Figure 3C. On the horizontal axis, we plotted the number 

of factors (rank, R). The left panel shows results obtained for LFP responses when a cue 

stimulus was presented at angle 0 = degrees. The right panel shows similar results for a cue 

to 60 =  degrees. 

 

For both stimuli (and all other angles, Supplementary Figure 2A), the error reduced with an 

increasing number of factors (blue line in the insets). This provides a sanity check that the ALS 

algorithm produces meaningful results as the rank increased. This is similar to PCA, where the 

more principal components are included, the higher the variance explained. To find the optimal 

value for rank R, we computed two statistical measures: consistency and congruence.  

 

Consistency was introduced as way to obtain the rank, R, in CD approximations in the paper 

48. It uses certain elements of CD theory, known as CD factors, to compute an alternative 

approximation of the data matrix, known as Tucker3 approximation  49 and calculates the rank 

based on this approximation (see Methods for more details). High consistency suggests that 

there is a trilinear variation in the data. Congruence (also known as similarity) on the other 

hand, is the result of subtracting the maximum average uncorrected correlation coefficient 

(UCC) between factors corresponding to different initialisations of the ALS algorithm from 1 

(see Methods). This addresses the local minima problem of the ALS algorithm. The lowest the 

congruence, the more stable the CD approximation (it does not depend on ALS initialisation). 

In these cases, congruence is small or close to zero, which was the case in our data too (see 

below). 

 

To sum up, we chose the optimal rank R such that consistency is high and congruence is low. 

This ensures the CD approximation reflects a trilinear variation in the data and is stable. 

Consistency and congruence are shown in the right and left vertical axes of the bar plots in the 

main panels of Figure 3C. Consistency is shown using magenta bars, while congruence is 

shown using grey bars. Different bars correspond to different ranks. Rank is shown on the 

horizontal axes. Consistency values are shown on the left vertical axes, while congruence 

values are shown on the right vertical axes.  

 

For cues presented at both 0,60 = degrees (left and right panels in Figure 3C) we obtained 

high consistency values for R=1,2 (magenta bars).  The same was true also for other angles 
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(Supplementary Figure 2A). For all values of R in Figure 3C and Supplementary Figure 2A, 

congruence was very small (grey bars). Its order was 10-4 for 0 =  and 10-5 for 60 = degrees 

.  Thus, in what follows, we used the CD approximation with R=2. For all angles, this 

corresponded to high consistency and low congruence.  For R=2, the neuron mode was a matrix  

of dimensionality 2SN   . Fixing *m M= , where * 1,2M = we obtained two vectors *b jM  , j 

=1,…, 
SN that approximate average LFPs across time and trials. These are the two columns of 

the neuron mode. Following 47, we call these vectors the 1st and 2nd neuron factors.  

 

Recall that, each connectivity component is also a vector of length 
SN . In 29, we studied the 

first four connectivity components (similar to principal components in PCA). Here we focused 

on the first, as this explains most of the data variance similarly to the neuron factors that 

comprise the neuron mode. This explained about 35% of variance (Supplementary Figure 2B). 

Keeping up to 4 components, variance explained increased to about 60%. We asked whether 

the two neuron factors (recall R=2 above) were correlated with the first connectivity 

component. For cues presented at every angle  ( 0,60,120,180,240,300 = degrees), we 

computed the correlation coefficient and corresponding p-value between the 1st and 2nd neuron 

factors and the connectivity component averaged across trials. These are shown in Figure 3D. 

We found that the average connectivity component was significantly correlated with both the 

1st and 2nd neuron factors. Correlations were significant for all angles. P-values (grey bars) are 

shown on the left vertical axes of left (1st neuron factor) and right (2nd neuron factor) panels. 

Only the 2 largest p-values for 60 =  degrees are shown. All other p-values were much 

smaller than p<10-5. Thus, they are not visible in the plot. The corresponding values of the 

correlation coefficient r are shown on the right vertical axes (burgundy bars). They are all high. 

Correlation coefficients were r>0.9 for all angles except 60 =  for which  r>0.7. Note that 

the CD approximation assumes a trilinear variation in the data, while the autoencoder approach 

we used to obtain our components is nonlinear. Thus, the remaining dissimilarity can be 

explained by a  nonlinear mixing of latent states afforded by an autoencoder. 

 

To sum up, we  compared our approach for performing dimensionality reduction to a high 

dimensional SVD approach, known as Canonical Decomposition (CD44,47). We found that the 

effective connectivity component obtained using our approach correlates significantly with the 

neuron factors obtained using CD.  This provides a second, independent validation of our 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 4, 2022. ; https://doi.org/10.1101/2021.08.22.457247doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.22.457247
http://creativecommons.org/licenses/by-nc-nd/4.0/


33 

 

 

33 

 

 

approach.  

 

All in all, we compared the effective connectivity components with results obtained using 

pairwise correlations and the latent states of a high dimensional SVD approach. Our 

components correlated with those found using alternative methods. Thus, all three methods 

found a similar structure of the latent space within which neural activity evolves, while neurons 

are maintaining cued angles. 

 

 

 

 

 

Stable electric fields emerge  from neural ensembles that represent the same cued angle in 

different trials. 

 

To sum so far, we first found the latent space associated with maintenance of a cued angle 

(connectivity components). We then mapped this space to a cortical patch occupied by a neural 

ensemble—and obtained the connectivity kernels. These  describe the exchange of information 

during cue maintenance. We found that the corresponding connectivity weights correlated 

significantly with single trial ensemble indices obtained using pairwise correlations 40 across a 

large percentage of trials.  

 

Recall that the connectivity weights scale the input signal from other electrodes that targets a 

certain electrode measuring activity from a part of the neural ensemble. Having obtained these 

weights, we could then predict the Electric Field (EF) generated by the neural ensemble. The 

connectivity kernels describe how neurons communicate via electric signals sent from one part 

of the ensemble patch  to the other. These electric signals generate the EF. Below we used the 

connectivity kernel and the deep neural field model to simulate EFs.  We wanted to test if EFs 

were similar across trials where the same cued angle was maintained.  

 

LFPs can be thought of as proxies to electric fields. However, it is not clear what their source 

is –and whether they are solely produced by  neurons that participate in an ensemble or  

neighbouring neurons too. In other words, the ground truth regarding neural sources that 
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produce the ensemble EF is unknown. Thus, we used our deep neural field model and the 

bidomain model to obtain predictions of ensemble EFs. The deep neural field model stands in 

for an in silico implementation of a neural ensemble. The bidomain model has been used to 

predict the electric field generated by biological tissues, like the cardiac muscle 53,54.  To 

estimate the extracellular EF, the model requires only a measurement of the transmembrane 

potential mV  (Methods). The bidomain model neglects ephaptic coupling and electromagnetic 

wave effects –that are small compared to electric effects.  It yields the EF in the extracellular 

space by computing the Fourier transform of mV  measurements and an analytical expression 

based on Bessel functions of the first and second kind. 

 

Here, we obtained two EF estimates. First, EF estimates based on deep neural field model 

predictions of transmembrane potentials mV .  These are simulated potentials after training the 

deep neural field model with all available data. We called them  simulated EFs.  Second, EF 

estimates based on real LFPs. These  did not use the deep neural field model. LFPs were used 

as proxies for transmembrane potentials and replaced the simulated transmembrane potential 

from the neural field model above. We called the EFs obtained used real LFPs and the bidomain 

model, real EFs.  

 

An example simulated EF estimate is shown in Figure 4A. The EF amplitude is shown on the 

vertical axis (V/m), while the two horizontal axes show the electrode number (ID; location on 

the cortex) and time (ms). P-values of correlations between EF amplitudes are shown in Figure 

4B. These correspond to EFs generated by neural ensembles maintaining a cued angle at  0 =  

degrees. We here considered EF estimates from trials where our connectivity kernel correlated 

with the findings of 40  (correlated trials). To obtain these estimates, we first simulated neural 

activity using our deep neural field model. Variance explained was about 40% for all stimuli 

(cued angles, Supplementary Figure 5A and see also Figure 9 in 29; there we had used all trials, 

instead of correlated trials that we used here). After simulating neural activity, we computed 

EF estimates using the bidomain model. We asked whether they correlated across trials for the 

same electrode. 

 

Yellow entries in the correlation matrix denote significant p-values, p <.05, for an electrode at 

the edge of the patch and cued angle 0 = . The percentage of significantly correlated single 

trial EF estimates is shown on the top right corner of the left panel in Figure 4B , R=81%. 
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Similarly, we found that EF amplitudes were also correlated across all trials and other angles 

with R= 70-80% (see Supplementary Figure 3). We also computed the corresponding 

correlation using deep neural field activity estimates at the same electrode for the same cued 

angle. The percentage of significantly correlated trials was R=77% (top right corner of right 

panel in Figure 4B). Note this is lower than the percentage of correlated trials computed using 

EF estimates obtained above.  

 

We then asked if the same result holds across many electrodes: that is, if the percentage of 

correlated trials was lower when using single trial neural activity (deep neural field simulated 

data) compared to EF estimates. If it was, that would mean that  neural activity was more 

variable than EF recordings. In other words, several   distinct configurations of neural sources 

led to the same field.  

 

To sum up, we asked whether for the same electrode (location on the ensemble patch),  there 

was a significant difference in the percentage, R, of correlated trials obtained using: 1) 

reconstructed neural activity, which we called, RNA and 2) reconstructed EF estimates , called 

REF. We repeated this for all electrodes and summarized results for each cued angle. Results 

are shown in Figure 4C. For all stimuli, a larger number of electrodes had reconstructed single 

trial EF estimates that were correlated across trials, REF, compared to reconstructed neural 

activity estimates, RNA,:  

 

Bars in Figure 4C show the percentage electrodes, Q, where REF was significantly higher than 

RNA, Q=11-27%.  To test for statistical significance, we used a Fischer exact test. This allows 

one to find differences between binomial distributions. Here, the binary variable describes 

whether a single trial EF estimate or neural activity estimate was correlated or not (the entries 

of matrices in Figure 4B). The null hypothesis was that there was no difference in the 

percentage of correlated trials (at the 5% significance level). We repeated the analysis for each 

electrode.  

 

We found that a large part of electrodes had REF > RNA 
1 . In other words, electric field estimates 

were more often correlated across trials, i.e. more stable, compared to neural activity 

                                                 

 
1 For all cued angles except θ=60 degrees (Supplementary Figure 5B). 
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estimates2. In the next section, we will see that stronger stability of the EF compared to neural 

activity was also confirmed by decoding analyses. Training accuracy based on neural activity 

was significantly lower than accuracy based on EF estimates. This also suggests that 

information contained in delay neural activity was less stable than that contained in the electric 

field. 

 

Not all electrodes had significant differences, REF > RNA , because different stimuli activate 

different parts of the patch. Differences in connectivity components between stimuli are 

localised within those parts (see Figure 2 of  29 and relevant discussion ).  This suggests that 

only parts of the patch  (certain electrodes) will be sensitive to changes of stimuli.  EF and 

neural activity estimates measured at those electrodes will be correlated, that is, stable across 

trials (not the whole patch).    

 

To sum, we found that electric fields were correlated across trials where the same cue was 

maintained. Further, the number of electrodes  (locations) where this happens was larger than 

the corresponding number  when neural activity was correlated.  All in all, the above results 

suggest that stable electrical fields emerge from high-dimensional ever-shifting neuronal 

activity patterns of neural ensembles  during trials where the same cue was maintained in 

memory networks. Having shown that electric fields are stable, we  turned to the information 

carried by them and asked if it was stable too. 

                                                 

 
2 During memory delay, some part of neural activity will be stable (attractor dynamics). This is not always 

picked up by EF estimates measured at certain locations (electrodes) due to assumptions in the bidomain model 

(isotropic field, homogeneous resistivity, infinite neural source etc; Supplementary Figure 5B). 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 4, 2022. ; https://doi.org/10.1101/2021.08.22.457247doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.22.457247
http://creativecommons.org/licenses/by-nc-nd/4.0/


37 

 

 

37 

 

 

 

Figure 4. A. Example of simulated electric field (EF) using the bidomain model. The EF amplitude is shown on 

the vertical axis (V/m), while the two horizontal axes show the electrode (location on the cortex) and time (ms). 

B. (Left) P-values of correlations between single trial EF amplitudes. These correspond to EFs generated by neural 

ensembles maintaining a cued angle at 0 =  degrees. Yellow entries in the correlation matrix denote significant 

p-values, p <.05. The percentage of significantly correlated single trial EF estimates is shown on the top right 

corner, R=80%. (Right) P-values of correlations between single trial deep neural field data. Yellow entries denote 

significant p-values as in Figure 4B. Percentage of correlated trials is lower than Figure 4B. C. Percentage of 

electrodes where electric field estimates were correlated across a larger number of trials compared to neural 

activity estimates, for different stimuli (angles).   

 

 

 

Emergent electric fields carry unique information about working memory content. 

 

 

Finally, we asked whether EF produced by neural ensembles carried information about working 

memory content. We assessed whether EF estimates obtained using our approach were 

consistently different among  neural ensembles that maintained different cued angles. In other 

words, we  tested if we could distinguish between memorized cues based on  EFs. If we could, 

this means that EFs can be uniquely associated with different working memories that are used 

to perform the task.  To formally test this hypothesis, we used the EF estimates as classification 
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features of different trials by cued angle. We used 450 trials and held out 20% of the data as a 

test set. We used  simulated  and real EFs as classification features and two different algorithms, 

Naïve Bayes and diagonal LDA. These are among the most commonly used.  

 

The results of our analyses are shown in Figure 5 (using Naïve Bayes) and Supplementary 

Figure 7 (using diagonal LDA). Decoding accuracy values are shown on the vertical axis, while 

the corresponding electrodes (patch locations) are shown on the horizontal axis. We performed  

permutation tests, after shuffling class labels (cued angles) around. Blue bars denote observed 

accuracy values. Orange bars denote the maximum of the shuffled distribution. If blue bars are 

larger than orange, the  observed accuracy is significantly higher  than chance (max of shuffled 

estimates) at the p=0.01 level. This was the case for over half of the electrodes and accuracies 

obtained using simulated EFs (Figure 5A) . The corresponding train and test confusion matrices 

are shown in Supplementary Figure 6A. These are averages over all electrodes. Accuracies 

were very similar for all stimuli3.   

 

Recall that simulated EFs above were obtained from connectivity components, which, in turn, 

were obtained after training the neural field model on the whole dataset. Thus, decoding 

features contain some previous information from the data, something often referred to as data 

leakage. To address this, we computed the decoding accuracy using real EFs as features. Recall 

also that these were obtained after using LFPs as proxies for transmembrane potential. Thus, 

the corresponding accuracy will not be biased and includes out-of-sample validation based on 

a 20% held out test set.  Similarly to simulated EFs, a permutation test confirmed accuracy 

significantly higher than chance at the p<0.01 level for over half of the electrodes (Figure 5B). 

The corresponding average confusion matrices are shown in Supplementary Figure 6B.  

Accuracies based on simulated EFs are similar to those obtained using LFPs (real EFs). To test 

for their equivalence, we used the TOST procedure75. We found that accuracies were the same,  

t(31)=-2.05, p=0.02 (assuming that a meaningful difference would be larger than 2%). 

 

                                                 

 
3 Except for θ=0 degrees, which is slightly higher. 
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Figure 5. A. Permutation test of decoding accuracy based on simulated EF estimates. Accuracy values are shown 

on the vertical axes, while the corresponding electrodes (patch locations) are shown on the horizontal axes. Blue 

bars show observed accuracy estimates. Orange bars show the maximum obtained accuracy after performing 

N=100 permutations. For those electrodes that unshuffled estimates are higher than the maximum of the 

distribution after shuffling, decoding accuracy is significantly higher  than chance at the p=0.01 level. Over half 

of the electrodes have higher accuracy (blue bars) than the maximum of the distribution obtained after shuffling 

(orange bars). B. Same as in A. after replacing simulated EFs by real EFs. An equivalence test found that simulated 

and real EF accuracy estimate are the same (see text). C. Same as in A. after replacing simulated EFs by Gauge 

functions that do not depend on the neural field or dipole models. D. Same as in A. after replacing simulated EFs 

by neural activity estimates. A Welch test found that training accuracy obtained using neural activity was smaller 

than the corresponding accuracy obtained using real EFs (see text).  Results shown in all panels were obtained 

using a Naïve Bayes classifier. 

 

 

 

To sum up, we found that simulated and real EF estimates differed systematically depending 

on the exact cued angle; they were uniquely associated with  the remembered stimulus. The 
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above results confirm our earlier result that EFs were stable across trials where the same cued 

angle was maintained. They contained unique information about the remembered stimulus, that 

seems to be preserved across trials. 

 

 The theory of electromagnetism suggests that if EFs are stable, then the differences of the 

corresponding extracellular potentials should also be stable. These are known as Gauge 

functions (Methods). They are obtained by subtracting real LFPs recorded in different trials 

where the same cued angle was maintained. We thus asked if we could distinguish cued angles 

when using Gauge functions as decoding features. If we could, this would provide an 

alternative confirmation of our results. Crucially, Gauge functions do not rely on the validity  

of neither bidomain nor the  deep neural field model. Thus, if they can distinguish between 

cued angles this is a confirmation of our result  independent of these models.  

 

 The results of our analyses are shown in Figure 5C.  As before, blue and orange bars 

correspond to observed accuracy and  chance accuracy (maximum of the shuffled distribution) 

respectively. Accuracy obtained Gauge is similar to the results in Figures 5A and 5B. Thus, 

Gauge functions are also stable and contain information about the cued angle.  

 

 Finally, we repeated the decoding analyses using simulated neural activity (from the deep 

neural field model). Permutation test results are shown in Figure 5D. Accuracy was higher than 

chance (p<0.01) for over half of the electrodes. A one sided, Welch test also found that training 

accuracy based on neural activity was significantly smaller than accuracy obtained using real 

EFs t(31)=-8.2, p<0.001. The corresponding confusion matrices are shown in Supplementary 

Figure 6C. Correctly classified trials were fewer than those obtained using real and simulated 

EFs. Thus, neural activity did not contain the same stable information as the electric field. This 

is in accord with our earlier result (Figure 4 ). 

 

 

All in all, we found that electric fields provided higher than chance decoding accuracy in 

predicting the remembered stimuli (cued angles). Thus EFs contained unique information about 

working memory content needed to perform the task. 
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Discussion 

 

We analyzed monkey LFP data from  a spatial working memory task28,29. We found that stable 

electrical fields emerge from high-dimensional ever-shifting neuronal activity patterns of 

neural ensembles in the brain. We trained a biophysical neural network model as an 

autoencoder that learned to maintain spatial locations. This provided latent variables describing 

the connectivity of neural ensembles, which we called 'connectivity components'. We also 

reconstructed single trial effective connectivity estimates, ‘ connectivity kernels’ 29. These 

describe information flow within the neural ensemble; in other words, the exchange of electric 

signals between neurons forming an ensemble.  Crucially, this distinguishes our approach from 

other dimensionality reduction approaches 5,7. Our approach maps the latent space to a cortical 

patch. It goes beyond dimensionality reduction and reconstructs information flow.   

 

Mathematically, the connection weights (kernel) can be thought of as the probability of having 

connections between neural populations forming a neural ensemble29. Other methods to obtain 

the probability function, including splines 56, and tools from complex systems 58. We will 

systematically consider these methods elsewhere. We here used a Restricted Maximum 

Likelihood (ReML) algorithm for obtaining the connectivity components29. This optimizes the 

same cost function used in variational autoencoders,  called Free Energy (FE; also known as 

Evidence Lower Bound, ELBO). ReML does not require an explicit cross validation step (the 

E-step is embedded in the M-step after substituting the posterior variance). While cross 

validation (CV) partitions data in test and training sets, ReML prevents overfitting by 

penalizing for model complexity.   The relationship between CV and FE for assessing source 

reconstruction error in the context of neuroimaging data has been systematically studied in 

several studies including76,77. CV error and FE are correlated78. 

 

We found that the connectivity components and kernels were highly correlated with latent 

factors extracted by  Canonical Decomposition (high dimensional SVD) 44,47,50. We also found 

that they were correlated with cluster indices obtained using unsupervised clustering 40.  

 

Connectivity components and kernels describe the effective connectivity between different 

neurons forming a neural ensemble: How electric signals and information are exchanged  

between them. Using  kernels and classic dipole theory of electromagnetism, we reconstructed 
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the electric fields (EFs) produced by a neural ensemble. We reconstructed the electric field 

using three steps. Step 1 is obtaining the connectivity components after training a neural field 

model. These are the latent variables. Step 2 involves mapping the latent space to a cortical 

patch. This yields the connectivity kernel and predictions of neural activity. Step 3 is mapping 

neural activity to electric field using electromagnetism (bidomain model). 

 

We found that different remembered locations resulted in different electric fields. These fields 

were highly stable across trials yet, at the level of specific circuits there was more variability 

(representational drift17,18). We reconstructed electric field and neural activity estimates during 

delay where the same location was remembered and looked at the percentage of trials where 

they were correlated. The percentage of electric field estimates that were significantly 

correlated across trials was higher than the corresponding percentage obtained using neural 

activity estimates and this was replicated across many electrodes and stimuli.  

 

This result is also supported by the theory of electromagnetism.  The same electric field can 

arise from different combinations of specific neurons and networks (electromagnetic sources 

and sinks79). This is known as non-uniqueness of the electromagnetic inverse problem: One 

cannot find the exact sources by measuring electric fields alone 27.  

 

 Across like trials, the same memory was maintained even though the inputs entering a given 

network changed. Electromagnetism predicts that neural sources will reconfigure themselves 

to accommodate these inputs but the overall electric field will be the same. When inputs 

change, the neural sources change but the electric field will not. This can explain of the 

observed variability in the patterns of neurons forming a neural ensemble.  Here, we confirmed  

this hypothesis using LFP data and computational modeling. In future work, we will 

experimentally test the stability of the electric field. 

 

Finally and importantly, different EFs were uniquely associated with different working 

memories needed to perform the experimental task successfully. To support this, it was shown 

that the EF estimates provided higher-than-chance decoding accuracies in predicting the 

remembered stimuli (i.e., cued angles). Further, training accuracy based on neural activity was 

lower and correctly classified trials were fewer than those obtained using EFs. Neural activity 

is less stable than the electric field.  
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Our model assumes that LFPs contain information about the excitation to inhibition (E/I) 

balance, despite being an aggregate measure of neural activity obtained from both excitatory 

and inhibitory populations. This is supported by both computational 80–82 and empirical 83,84 

studies , see also 85 for a recent discussion. In particular, a large body of work by us and 

others using Dynamic Causal Models (DCM) has shown that it is possible to infer E/I ratios 

assuming that LFPs arise as a result of certain synaptic currents, usually AMPA and GABAA 

currents, see e.g. 86–91.  In future work, we will use separate recordings (depolarization or 

spike rates) from excitatory and inhibitory populations, to reconstruct excitatory and 

inhibitory activity separately. 

 

In general, there are three different ways one can reduce the dimensionality in large, brain 

imaging datasets. Because these datasets involve three-way matrices (tensors) with  dimensions 

(time x neurons x trials), three different sets of principal components (PCTs) can be obtained, 

in either   (i) time; (ii) neurons (or channels) or (iii) trials domain. The outputs of this process 

are trajectories – i.e. collections of points–  in domains spanned by the corresponding PCTs. 

For example, in 73 the output was motor timing (i.e. trajectories in a low dimensional domain 

spanned by time PCTs—ie. temporal evolution of population activity); while 74 obtained 

trajectories traced out by neurons in the motion and color domains (because PCTs along the 

second dimension, neurons, correspond to behaviourally relevant variables; neurons are 

grouped into PCTs depending on their tuning preferences). Finally, PCTs can be defined in the 

trial domain and the corresponding trajectories can then be used to obtain estimates of trial to 

trial variability. This can e.g. reveal changes in excitability of neural populations due to 

attention 92 and ongoing cognitive variables in general 93.  

 

We here characterized the latent states during memory maintenance using biophysically 

informed models, neural fields. Because these models are defined in the time  and  neuron (i.e. 

space) domain, this reduction provides insights in both those domains. This, in turn, can help 

one  understand the relation between representational drift and properties, like criticality94,95.  

Cortical dynamics in critical regimes are characterised by a co-occurrence of different temporal 

frequencies at different spatial scales 96. Both frequencies and spatial scales can be described 

by the connectivity components and principal axes obtained after training a neural field 

model29. In that earlier work, we showed that single trial principal axes predict the 
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characteristic Lyapunov exponents that determine the timescales at which the system returns 

to equilibrium after perturbations, commonly known as critical slowing97,98. The connectivity 

components describe different neural ensembles, i.e. spatial patterns or combinations of 

neurons that maintain cued angles. These change between trials (representational drift). Thus, 

by studying single trial estimates of components and principal axes, one can link critical 

slowing with  ensembles and representational drift. This will be considered elsewhere. 

 

To sum up, we found that stable EFs emerge from high-dimensional ever-shifting neuronal 

activity patterns of neural ensembles in the brain. These EFs were robust across experimental 

trials where the same location was maintained, despite the continually changing neuronal 

activity, something known as the 'representational drift'. Also, the low-dimensional emergent 

electrical fields carry information about working memories.  

 

The stability of the electric field can allow the brain to control the latent variables (e.g., 

oscillations) that give rise to the same memory. We suggest that the electric field does not just 

emerge from the representational drift.  It also helps sculpt and herd that general pattern of 

traffic. In other words, electric fields can act as “guard rails” that funnel the higher dimensional 

variable neural activity along stable lower-dimensional routes. We will test this hypothesis 

elsewhere. The low-dimensional stability in electric fields  might  help the brain perform 

computations, by allowing latent states to be reliably transferred between brain areas, in accord 

with modern engram theory 99.  This is also in accord with the theory of Synergetics 100–103 . 

The electric field can be viewed as a control variable similar to energy 104 and attention signals 

105 that evolves more slowly than the latent variables that represent information.   In other 

words, there might be a  temporal hierarchy comprising the timescales of control parameters 

(e.g. electric field), order parameters (e.g. latent variables 106,107) and enslaved parts (e.g. 

oscillations/spiking 102).  

 

All in all, our results and related work suggest that  the electric field is conserved in memory 

networks and allows latent variables from different brain areas to interact and produce 

behavior. Although the exact neurons forming a neural ensemble differ from trial to trial 

(representational drift), the electric field is stable and contains unique information about the 

remembered stimulus, that seems to be preserved across trials. 
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Supplementary Figure 1. A. Oculomotor spatial delayed response task. Monkeys hold the location of one of six 

randomly chosen visual targets in memory over a brief delay period and then saccade to the remembered location.  

If a saccade was made to the cued angle, the target was presented with a green highlight and a water reward was 

delivered. Otherwise, the target was presented with a red highlight and reward was withheld. B. Deep neural field 

model and connections. This is a biophysical rate model. It is obtained as a simplification of a neural network 

model of coupled excitatory—inhibitory populations. It provides a quantitative way to describe each ensemble’s 

network interactions and patterns of activity across simultaneously recorded sites. The same model can describe 

different ensembles. Each electrode occupies a position on a cortical manifold W parameterized by the variable    

and is connected to all other electrodes with connections whose strength follows a Gaussian profile (coloured 

solid and dashed lines).C. 32-electrode chronic arrays were implanted unilaterally in PFC, SEF and FEF in each 

monkey.   Each array consisted of a 2 x 2 mm square grid, where the spacing between electrodes was 400um. 
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Supplementary Figure 2. A. Results of Canonical Decomposition. Panels show consistency and congruence for 

cued angles at θ=120, θ=240 (top) and θ=300, θ=180 (bottom) degrees. The format of each panel is the same as 

that of panels in Figure 1C. Consistency is shown using magenta bars, while congruence is shown using grey bars. 

B. Variance explained while keeping d=1,..,4 connectivity components.  
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Supplementary Figure 3.  P-values of correlations between single trial EF amplitudes for cued angles at θ=60, 

θ=120, θ=180 (top) and θ=240, θ=300 (bottom) degrees. The format of each panel is the same as Figure 3B.  

Yellow entries in the correlation matrix denote significant p-values, p<.05. 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 4, 2022. ; https://doi.org/10.1101/2021.08.22.457247doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.22.457247
http://creativecommons.org/licenses/by-nc-nd/4.0/


58 

 

 

58 

 

 

 

 

Supplementary Figure 4. Bidomain model for the electric field generated by an active fiber in a semi-conductor 

(see Methods for the meaning of various symbols). 
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Supplementary Figure 5. A. Variance explained after fitting the deep neural field model to real LFPs from 

different trials. Error bars denote standard deviation. Results are shown for different cued angles (angles). B. 

Percentage electrodes with significantly lower correlated EF estimates, REF, for different cued angles.  
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Supplementary Figure 6. Breakdown of decoding accuracy through confusion matrices. Diagonal terms denote 

correctly classified trials. For each set of decoding features, we computed the corresponding train and test 

confusion matrices for each electrode (location on the patch). Then we averaged across electrodes. A. Train (top 

panel) and Test (bottom panel) confusion matrices, using Simulated EFs B. As in A. using Real EFs  and C. 

Neural Activity (predictions of the deep neural field model). 
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Supplementary Figure 7. Permutation tests of decoding accuracy estimates obtained using diagonal LDA. The 

format of this Figure is exactly the same as the format of Figure 5. 
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