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Abstract

Gaussian spot fitting methods have significantly extended the spatial range where
fluorescent microscopy can be used, with recent techniques approaching nanometre (nm)
resolutions. However, small inter-fluorophore distances are systematically over-estimated
for typical molecular scales (. 50nm). This bias can be corrected computationally, but
current algorithms are limited to correcting distances between pairs of fluorophores.
Here we present a flexible Bayesian computational approach that infers the distances
and angles between multiple markers and has several advantages over these previous
methods. Specifically it improves confidence intervals for small lengths, estimates
measurement errors of each fluorescent marker individually and infers the correlations
between polygon lengths. The latter is essential for determining the full multi-fluorophore
3D architecture. We further developed the algorithm to infer the mixture composition
of a heterogeneous population of multiple polygon states. We use our algorithm to
analyse the 3D architecture of the human kinetochore, a macro-molecular complex that
is essential for high fidelity cell division. We examine the conformational change induced
by microtubule attachment using triple fluorophore marked data and demonstrate for
the first time that in metaphase kinetochore conformation is heterogeneous.

Introduction

The classical Rayleigh criterion limits the resolution of light microscopy to about
200nm for typical wavelengths and numerical apertures. However, this limit can in
principle be pushed arbitrarily close to zero by fitting the point spread function (PSF)
to diffraction limited objects [11], [21]. In this case the localisation accuracy is primarily
limited by the finite signal to noise (S/N) ratio, a consequence of the finite photon
count [19], [29]. By using multiple fluorophores to label diffraction limited objects, inter-
object distances can thus be measured, achieving a localisation accuracy of typically
tens of nm with standard fluorescence microscopes and markers.

Pooling multiple samples can address the limitations of low S/N, but a more funda-
mental problem remains for small inter-fluorophore distances: If the distance between
two fluorescent spots is of the order of spot centre accuracy, the observed (Euclidean)
distance systematically over-estimates the true distance, [5]. This over-estimation, or
inflation, is a consequence of distances being convex functions (see Jensen’s inequal-
ity, [3, Thm 3.1.3]) and can be understood as a consequence of Euclidean distances
having spherical level sets, Fig 1. The Euclidean distance is thus an inconsistent biased
estimator. This bias also impacts polygon shape, for instance measured triangles become
more equilateral (internal angles are biased towards 60◦).
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Fig 1. Schematic of the inflation of distances with diffraction
limited spot measurements. The blue and red arcs together form a
level set of the point spread function of spot 2 at true position X2 (grey).
Thus the observed position of spot 2 is equally likely on any position
on these arcs. The blue arc being longer than the red arc implies that
spot 2 is more likely to be observed further away from spot 1 than their
true distance. On average the observed distance is thus larger than the
true distance.

The over-estimation of pair-wise distances is well understood, with computational
correction methods being available, [5], [6], [13]. In particular, in the case of isotropic
Gaussian measurement errors the likelihood is analytically tractable in 1-3 dimensions,
[5], [6], and has been used across a variety of applications, [20], [10]. In 3D, however,
typically PSFs are anisotropic, with the resolution along the optical axis usually reduced
relative to that in the focal plane. For anisotropic measurement errors no analytical
solution is known; however a Bayesian approach was developed for pair-wise distance
correction [24]. Here we extend this methodology to multiple fluorophores/arbitrary
polygons. Specifically we develop a Bayesian sampling algorithm (using a Markov Chain
Monte Carlo (MCMC) framework) to infer a fixed polygon (referred to as the template)
from observed samples, the polygon nodes being marked with distinct fluorophores and
each sample rotated and translated relative to the template, Fig 2. This polygon based
method has several benefits over pair-wise methods. Firstly, the geometric constraints
are automatically satisfied in our model, e.g. for three fluorophores the triangle inequality
holds. This contrasts to inferring the three lengths independently in a pair-wise fashion,
where the inferred lengths do not necessarily make a triangle. Secondly, geometric
correlations between the lengths can improve individual length confidence (reducing
posterior variances). Thirdly, individual localisation errors of each fluorophore are
inferred; this contrasts to pair-wise analyses where only the error of the displacement
can be inferred.

We also extend the algorithm to enable analysis of heterogeneous datasets, i.e. sam-
ples from a population that comprise multiple polygon states. This allows us to study
conformation changes of macro-molecular complexes in situ, our method being distinct
from proximity sensors such as Förster Resonance Energy Transfer (FRET, [15]). We
apply a two-state version of our algorithm to human kinetochores, macro-molecular com-
plexes that play a vital role during cell division. Kinetochore attachment to microtubules
is critical for the correct positioning of chromosomes in mitosis, microtubule attachment
in fact leading to a conformational change within the kinetochore complex, [24]. By
using our two-state model on triple-labelled kinetochores (re-analysing datasets from [24]
thereby improving the resolution of those results), we demonstrate for the first time that
there is conformational heterogeneity of the kinetochore complex during metaphase. We
infer the sub-population size during metaphase of the unattached conformation.

This paper is organised as follows. Section Materials and methods presents the model
within a Bayesian framework. Section Sampling based inference of model parameters: a
Markov Chain Monte Carlo algorithm gives an outline of the inference algorithm. Full
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details of the algorithms can be found in the Supplementary Data Markov Chain Monte
Carlo samplers for parameter inference. We demonstrate the accuracy of our algorithm on
simulated/synthetic data in section Algorithm performance on simulated data, accurately
inferring polygon side lengths, internal angles, the fluorophore measurement errors and -
in the mixture analysis - the proportions, with which two states contribute to the mixture.
For the single-state method we demonstrate the algorithm’s advantages over existing pair-
wise analyses for triangle (three fluorophore) datasets. In section Analysis of the human
kinetochore: a structured macro-molecular complex we use our algorithm to analyse
the architecture of the human kinetochore from experimental 3D fluorescence imaging
data, [24]. In subsection Experimental data for two-state mixture model we present
results for the analysis of heterogeneous experimental samples assumed to comprise
two states. In Conclusions we outline improvements and the limitations of our current
algorithm.

Materials and methods

To highlight the model’s generality, the model is presented for an arbitrary number
J of distinct fluorophores. We later restrict our analysis to examples with three markers
(J = 3, referred to as triangle correction). We initially assume that there is a single
polygonal state, and then extend this model to mixtures of states in subsection Mixture
of multiple states.

We consider fixed three-dimensional fluorescent images labelled with a number J of
distinct markers that mark different sites within a macro-molecular structure. Here a site
refers to part of the structure where the respective fluorescent labels cluster. In practice,
each marker should be sufficiently tightly localised for the Gaussian spot approximation
to be valid, with a width similar to a diffraction limited object. Fluorescent labels can
be fluorescently labelled antibodies, labelled DNA (FISH), or a genetically encoded
fluorophore such as GFP. The objective is to infer the underlying polygon (size, edge
lengths, angles between edges) from a sample of observed marker positions, where the J
markers are located at the nodes of the polygon. The true marker positions are unknown
because of measurement noise.

Model assumptions. We assume a sample of N measurements of the J sided polygon.
The location and orientation (here jointly referred to as the perspective) of this polygon
are specific to each measurement. Thus, there is a translation and 3D rotation associated
with each measured polygon, see Fig 2. We assume space is uniform, so the (true)
polygons are uniformly distributed throughout space and undergo an isotropic rotation.

We assume that the measurement errors are anisotropic Gaussians with covariance
matrix diag

(
σ2
j;xy, σ

2
j;xy, σ

2
j;z

)
in the given coordinate system (z along the optical axis) for

marker type j ∈ {1, . . . , J}; previous pair-wise methods also assume Gaussian errors, [5]
(isotropic) and [13] (anisotropic). Note, that only the shape of the measurement error is
assumed; σj;xy, σj;z are to be inferred. Errors are fluorophore specific because quantum
efficacy differs between fluorophores (photon count emission), and may also depend on
the imaging conditions and the number of labelled fluorophores at a site. Typical data
consists of spot centres determined by fitting 3D Gaussian profiles to spots in the image
(either individually or using a mixture of Gaussians model).

Polygon parametrisation and inference. The underlying polygon is defined by a
standardised template, with nodes at positions Xj ∈ R3. In the following we refer
to this as the template, and the nodes as the template positions. We write {Xj}j to

denote the set of all template positions ({Xj}j∈{1,...,J}). We use a similar notation for

other parameters. We choose the template such that X1 is at the origin, X2 is on the
non-negative x-axis and X3 is in the x-y-plane with non-negative y. Assume there are
N observations of this polygon, each associated with a perspective - the perspective
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Fig 2. Template and sample perspectives. Inferred true fluo-
rophore positions

{
Xn
j

}
j,n

and template positions {Xj}j for J = 3

fluorophores and N = 2 measurements are shown. Each sample polygon
is generated from the template by a translation and rotation (straight

and circular lines). The observed positions
{
X̃n
j

}
j,n

are omitted for

simplicity.

for a particular measurement n ∈ {1, . . . , N} relative to the template is defined by six
parameters: the first three define a translation Tn ∈ R3 of the true position of marker
j = 1 relative to X1; the next three are the Euler angles of the three-dimensional rotation
Rn ∈ SO (3) of the true marker position relative to the template, with centre of rotation
at marker j = 1, Fig. 2. Thus, the true positions of the markers of each measurement
are given by:

Xn
j = Rn · (Xj −X1) +X1 + Tn. (1)

The observed marker position X̃n
j incorporates (Gaussian) measurement error X̃n

j =

Xn
j + γnj , γnj ∼ N

(
0; τ−1

j

)
independently for all j and n, with (3×3) precision ma-

trix τj = diag
(
σ−2
j;xy, σ

−2
j;xy, σ

−2
j;z

)
. The likelihood for the model parameters {θj}j :={

{Xj}j , {τj}j
}

, j ∈ {1, ..., J}, and perspectives {ϑn}n := {{Tn}n , {Rn}n}, n over the

set of samples {1, ..., N}, reads:

L
[
{θj}j , {ϑ

n}n
∣∣∣ {X̃n

j

}
j,n

]
=

∏
j,n

(2π)
− 3

2 det
(
τ

1
2
j

)
e
− 1

2‖Xnj −X̃nj ‖2τj

 , (2)

where index ranges are suppressed for simplicity, and ‖u‖2τj := uT · τj · u denotes

the squared Euclidean norm of vector u ∈ R3, weighted with τj (here T denotes the
transpose). The predicted true positions Xn

j for marker j, measurement n, is given in
Eq (1). The likelihood thus has a dependence on the hidden perspective variables Tn,
Rn.

The posterior dπ is given, up to proportionality, by multiplying the likelihood

from Eq (2) with the prior, denoted dπ0

[
{θj}j , {ϑ

n}n
]
. We use uninformative priors,

namely translations are homogeneously distributed in space, rotations are isotropic,
measurement errors are flat on the positive half-space and the prior on the template
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positions is (approximately) flat on the marginal of each polygon length |Xj −Xi|. For
details, see section Uninformative priors.

Mixture of multiple states. The above model assumes population homogeneity, i.e.
there is only a single underlying polygon state, positions {Xj}j , from which all observed

polygons,
{
X̃n
j

}
j,n

, arise (up to measurement noise and perspective). This is a strong

assumption, and may be violated in applications. Specifically there may be a mixture of
underlying polygon states with distinct polygon templates and measurement errors for
each state. Here we extend the model to allow for heterogeneity of the (polygon) state; i.e.

measurements originate from one of Z polygon templates
{
X

(ζ)
j

}
j,ζ

for ζ ∈ {1, . . . , Z}.
In addition, the corresponding measurement errors may vary between the states, i.e. we
have

τ
(ζ)
j = diag

((
σ

(ζ)
j;xy

)−2

,
(
σ

(ζ)
j;xy

)−2

,
(
σ

(ζ)
j;z

)−2
)

(3)

extending the notation above. In this case we not only want to infer the template

positions
{
X

(ζ)
j

}
j

and measurement errors
{
σ

(ζ)
j;d

}
j,d

for each state ζ, but also the

proportion p(ζ) ∈ [0, 1] of each state in the mixture. In the application we confine
ourselves to Z = 2.

Analogous to Eq (1) the predicted true positions are in this case:

Xn
j = Rn ·

(
X

(ζn)
j −X(ζn)

1

)
+X

(ζn)
1 + Tn. (4)

Note that the marker positions of the nth measurement derive from the template ζn.
The state-affiliations {ζn}n are hidden variables, which need to be inferred. We use
a generalised Bernoulli-distributed prior (also known as the multinoulli or categorical
distribution) on Z categories for the states, i.e. ζn ∼ Cat(P) independently for each
n, where Cat (P) denotes the categorical distribution with parameters P :=

{
p(ζ)

}
ζ
,

the probabilities of the respective states, ζ ∈ {1, . . . , Z} (hence p(ζ) ∈ [0, 1] and(∑
ζ∈{1,...,Z} p

(ζ)
)

= 1).

We use a Dirichlet distributed (hyper-) prior:

P ∼ Dir (1, . . . , 1) , (5)

i.e. there is no prior preference for any state in the mixture, (see Eq (S3.10) for the
distribution).

Thus, the likelihood function of the extended model reads:∏
j,n

det
(
τ

(ζn)
j

) 1
2 · e

− 1
2‖Xnj −X̃nj ‖2τ(ζn)

j

 , (6)

where Xn
j is the state-dependent Eq (4), while the prior of the extended model is: ∏

ζ∈{1,...,Z}

dπ0

({
θ

(ζ)
j

}
j
, {ϑn}n

) ∏
n∈{1,...,N}

p(ζn)

×
δ

 ∑
ζ∈{1,...,Z}

p(ζ)

− 1

 ·
 ∏
ζ∈{1,...,Z}

dp(ζ)

 , (7)

where p(ζ) are valued in [0, 1], and
{
θ

(ζ)
j

}
j

=

{{
X

(ζ)
j

}
j
,
{
τ

(ζ)
j

}
j

}
. Note, that this

reduces to the basic single-state version described before when Z = 1.
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In practice, we found for mixture models that uninformative priors, Eq (7), can result
in poor convergence. There were two issues. Firstly, if a state is “lost” during a step in
the Markov chain, (i.e. state ζ ′ does not occur, ∀n : ζn 6= ζ ′), then its reappearance can
require a substantial number of steps. For that reason, we impose that each state has to
occur at least three times (i.e. 3 ≤ |{n ∈ {1, . . . , N}| ζn = ζ ′}| for all ζ ′ ∈ {1, . . . , Z}).
In all examples considered here, the posterior was far away from this boundary. The
second issue is when a polygon state is rare, then both the posterior shape/size of the
rare state polygon, and its proportion p(2) will have low confidence (assuming the rare
state is ζ = 2). To improve posterior proportion confidence we used a joint inference
methodology, utilising two datasets where the second dataset was assumed to comprise
homogeneous (pure) samples of the ζ = 2 state. By utilising samples to define the
pure state, we capture all the correlations of that state, which would be hard to define
through priors. This purity condition could be relaxed, we only require that a state
occurs at a significant fraction in at least one dataset. We call the respective dataset
the state-informing dataset. The above constraint on each state occurring at least three
times is imposed across the datasets and thus trivially satisfied. The likelihood for
joint inference is the product of the likelihoods for each dataset, either the multi-state
likelihood for mixed datasets or the single-state likelihood for the pure datasets.

On these joint inference models, we sometimes utilised box priors on one or more of the
states to improve convergence. Specifically, the triangle side lengths are independently
constrained to a box and the precisions are Gamma distributed. For a box prior on state
ζ = 1, the following factors are included in the prior,∏

i,j

χ∣∣∣X(1)
j −X

(1)
i

∣∣∣∈[l(1)ij;0−L;l
(1)
ij;0+L

]
 ·

∏
j,d

Γ

τ (1)
j;d ; 5,

1

5 ·
(
σ

(1)
j;d;0

)2


 , (8)

where the parameters l
(1)
ij;0 ≥ 0 and σ

(1)
j;d;0 > 0 are specified by prior knowledge (analysis

of previous data or structural data), and the box size 2L is taken as 24nm. The second
and third parameter of the Γ distribution are the shape and scale parameters. The
values for L and the shape parameter are a particular choice for our examples.

Sampling based inference of model parameters: a Markov Chain Monte
Carlo algorithm. To infer the model parameters - the template and measurement
errors {θj}j and the sample specific perspectives {ϑn}n (and for the multi-state model, the

state affiliations {ζn}n and proportions
{
pζ
}
ζ

as well) - we use a Bayesian computational

method. Specifically, the posterior distribution of the parameters given the data is, up
to proportionality (for the single state model)

dπ

[
{θj}j , {ϑ

n}n

∣∣∣∣{X̃n
j

}
j,n

]
∝ L

[
{θj}j , {ϑ

n}n

∣∣∣∣{X̃n
j

}
j,n

]
· dπ0

[
{θj}j , {ϑ

n}n
]
, (9)

with the likelihood from Eq (2) and prior π0 from Eq (S1.1). There are a range of
algorithms that can be used to sample from this posterior. We use a Markov Chain
Monte Carlo (MCMC) methodology, [14, Ch 1], [18, Ch 1], whereby a Markov chain is
constructed that has a stationary distribution equal to the posterior distribution. Once
converged, the chain can be used to sample from the posterior.

In the single-state model we sequentially update each of the parameters separately:
the perspectives, {Rn}n, {Tn}n, for each polygon sample n, the template positions,
{Xj}j , and the precisions, {τj}j , for each marker j, respectively. For {Xj}j , {R

n}n
and {Tn}n, random walk samplers are used, while for {Tn}n and {τj}j we use Gibbs

samplers.
In the multi-state model we sequentially update the perspectives just as in the single-

state model, while each template position X
(ζ)
j and precision τ

(ζ)
j is updated sequentially
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for each marker j and state ζ. The state proportions
{
p(ζ)

}
ζ

are updated jointly to

always satisfy their normalisation condition. For each of the
{
X

(ζ)
j

}
j,ζ

, {Rn}n, {Tn}n

and {ζn}n random walk samplers are used, while for {Tn}n,
{
τ

(ζ)
j

}
j,ζ

and
{
p(ζ)

}
ζ

we

use Gibbs samplers. See subsection Markov Chain Monte Carlo samplers for parameter
inference for algorithm details.

Results

Algorithm performance on simulated data. We test our polygon inference algo-
rithm on simulated data for both the single-state and the multi-state models, confirming
that our algorithms reproduce the true original parameters of the simulations. For
the single-state model there are existing methods for length correction: the pair-wise
Bayesian Euclidean Distance Correction Algorithm (BEDCA, [13]), and the analytic
length correction based on [5]. The latter is only applicable to isotropic measurement
errors and comes in two variations, a maximum likelihood estimate developed in [5]
(”MLE” below) and a full posterior probability version (”means” below; see Implemen-
tation of pair-wise correction methods). We compare our triangle algorithm to these
methods (where applicable). Note we use a flat prior on the measurement errors in all
methods for fair comparison. We confine ourselves to J = 3 markers, referring to our
method as the triangle correction (method). For the multi-state model we use Z = 2
states.

Testing the single-state model on simulated data. We illustrate our algorithm on simulated
data with (true) triangle lengths and measurement errors similar to those observed
in biological complexes, [24]. We simulate data with J = 3 markers and N = 400
independent measurements, using the core model described in subsection Polygon
parametrisation and inference, see supplementary section Simulated data for details. True
parameters and the corresponding inferred values are shown in Table 1 for six examples;
see Fig 3 for the posterior distributions of the inferred lengths and internal angles. Our
correction algorithm typically gives inferred values that are in good agreement with
the true values. These examples clearly confirm that the Euclidean distance estimator
1
N

(∑N
n=1

∣∣∣X̃n
j − X̃n

i

∣∣∣) is subject to significant length inflation.

All correction methods have similar performance for sufficiently large lengths (relative
to the measurement error) and isotropic (Gaussian) measurement errors, Example 1,
sides |X2 −X1| , |X3 −X1|. For small lengths, less or similar to the measurement error,
all correction methods suffer from relatively large inference errors, length |X3 −X2| in
our example with true value 15nm, (see Small lengths are increasingly difficult to infer
for an explanation). Problems with the maximum likelihood estimate from [5] (“MLE”
in Table 1) were reported previously, [20], with results becoming error-prone for lengths
similar to, or smaller than the measurement error. For these short lengths we find this
method tends to report misleading results with overconfident error-estimates (Example 1
in Table 1). For pair-wise inferences the likelihood with isotropic measurement errors is
analytically tractable (Eq (6) in [5]); we can thus determine the posterior (assuming the
same flat priors we use for the pair-wise method) and therefore calculate the posterior
mean (“means” in Table 1). This estimate, and the pair-wise based Bayesian inference
method [13] give near identical results (as expected as they share the same assumptions
apart from the extra degree of freedom of [13] for anisotropic measurement errors). For
the small length |X3 −X2|, the pair-wise based posterior has a long thick tail towards
zero, see Fig 3a,c, indicating large uncertainty. The triangle correction has a posterior
mean much closer to the true value and has substantially smaller variance, Table 1,
Example 1. This is because information is essentially shared between the three lengths,
allowing inference of the smaller length to be improved. There is an associated increase
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in the uncertainty of the other two lengths relative to the pair-wise correction, Table 1,
Example 1.

Examples 2-6 in Table 1 are for anisotropic measurement errors. There are only
two methods available for anisotropic errors: our triangle correction and the pair-wise
Bayesian method [13]. These two methods give consistent results, but the triangle
method typically has lower posterior variance, particularly for the short lengths. For a
true length of zero, Example 6, the triangle method is substantially better (provided
the other two lengths are large). The triangle correction improves on pair-wise based
inference in the following ways:

• It can infer small lengths with higher confidence, Examples 1–6. A triplet of
fluorophores can thus be utilised to improve inference of a small distance by
placing a third fluorophore distant from the two fluorophores of interest (50-
200nm). This is because correlations between the lengths confer information
on the smallest length. This is demonstrated for the small length |X3 −X2| in
Examples 2–6, where the examples with the more distant auxiliary marker j = 1
and the more co-linear triangle geometries exhibit the largest benefits.
• It infers the triangle (more generally the polygon) and therefore reconstructs the

entire geometry of the markers, including the internal angles. Reconstructing
polygons from pair-wise estimates, assuming independence of the inferred lengths,
can lead to violations of the triangle inequality (see scatterplots in Fig 3), and
more generally polygon based constraints.
• Using three or more fluorophores allows measurement errors to be inferred

individually for each marker. For pair-wise methods these are not accessible, as
only the error of the displacement Xj −Xi can be estimated. This follows since
the system of equations σ2

ij;d := σ2
j;d + σ2

i;d for j 6= i ∈ {1, . . . , J} can be solved

uniquely for each σ2
i;d for J = 3, but not for J = 2 (there are J unknowns for

1
2J (J − 1) constraints). See Table S14.1 for marginal posteriors parameters of
Examples 1, 2.

Testing the two-state model on simulated data. To test the multi-state mixture algorithm,
we determined inference accuracy of the states and composition of a mixture of Z = 2
triangle states on simulated triangle data (J = 3). We demonstrate joint inference from a
mixed dataset and a pure dataset. The first has a mixture of the two states, Nmix = 600
measurements (Z = 2 states, J = 3 markers), with proportions p(1) and p(2) = 1− p(1)

for the states ζ = 1, ζ = 2, where state ζ = 2 is the minor population (p(2) ≤ p(1)). This
data is simulated from the multi-state model of subsection Mixture of multiple states
(see supplementary section Simulated data for simulation details). The second dataset is
a pure population comprising only state ζ = 2. We simulate Ninform = p(1) ·Nmix from
the single state model for the pure dataset. Thus, there are the same number of samples
in the pure dataset as samples of the dominant ζ = 1 state in the mixed dataset.

We impose an additional prior on the ζ = 1 state to limit exploration of the parameter
space during burnin; this reduces the convergence time. Specifically, we use the prior
from Eq (8), i.e. a box prior on the triangle side lengths and gamma-distributed priors

on the measurement errors. The parameters l
(1)
ij;0 and σ

(1)
j;d;0 are chosen so the means

of the priors are equal to the true values of the simulated data. We confirmed that
the boxes are sufficiently large so that the prior has negligible impact on the posterior.
Specifically, the bulk of the marginal length posteriors are well within the boundaries
of their box (in fact, in all our examples, the weight of a Gaussian fit to the joint
posterior of the three lengths that was outside the box never exceeded 5%). However,
the priors on the measurement errors are not weak and can increase confidence on less
informative datasets. The effect of this prior on the posterior (of the experimental
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Single-state simulated Example 1: with isotropic measurement error:

a)

b) c) d)

Single-state simulated Example 2: with anisotropic measurement error:

e)

f) g) h)
Fig 3. Posterior distributions for single-state simulated Examples 1, 2.
Marginal inferred posteriors for lengths and internal angles. For each example
the top row (a,e) shows the marginal posteriors of the three triangle lengths
as inferred by each of the correction methods. The bottom left images (b,f)
show the inferred internal angles using the triangle correction presented here.
The bottom centre images (c,g) show a scatter plot of the joint distribution as
obtained with the triangle correction. The bottom right images (d,h) show the
naive attempt to achieve a joint distribution of the three triangle lengths from
the BEDCA method [13] by assuming independence. Samples that violate the
triangle inequality are shown in red (about 7% of the samples in Example 1, 22%
in Example 2), otherwise the colour represents the sum of all measurement errors,

specifically

√
1
2

(∑
i 6=j;d∈{x,y,z} σ

2
ij;d

)
, to indicate the correlation between inferred

lengths and errors. The plots show random sub-samples of the total sample size,
to improve visibility. See Table 1 for the posterior means and standard deviations.
See section Additional supplementary images for the corresponding Markov chain
evolution of the parameters of the triangle inference.

.
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Table 1. Single-state simulated examples (N = 400).

(lengths and errors in nm) |X2 −X1| |X3 −X1| |X3 −X2| σ12;xy σ12;z σ13;xy σ13;z σ23;xy σ23;z

Example 1 with isotropic measurement error:
true value 50 60 15 21.2 21.2 29.2 29.2 29.2 29.2

direct measurement 59.1± 1.0 73.2± 1.3 49.2± 1.0 / / / / / /
Churchman MLE, [5] 50.5± 1.5 58.9± 2.5 33.2± 3.5 20.9± 0.9 29.3± 1.5 23.7± 1.6

Churchman means, [5] 50.2± 1.5 58.2± 2.7 27.0± 9.3 21.1± 1.0 29.7± 1.6 25.6± 2.6

BEDCA, [13] 50.2± 1.6 58.0± 2.8 27.1± 9.2 21.2± 1.2 21.0± 1.5 30.2± 1.9 29.2± 2.1 25.4± 2.6 26.0± 2.9

triangle, uninformative prior 51.8± 2.1 58.2± 3.6 12.3± 6.7 20.3± 1.5 23.0± 2.2 31.3± 2.6 29.2± 2.7 30.5± 1.6 31.9± 1.9

Example 2 with anisotropic measurement error:
true value 50 60 15 14.1 28.3 18.0 36.1 18.0 36.1

direct measurement 58.2± 0.9 70.0± 1.2 43.3± 1.0 / / / / / /
BEDCA, [13] 50.6± 1.2 60.5± 1.4 16.1± 7.0 14.0± 0.9 28.7± 1.6 17.7± 1.2 36.1± 2.0 17.2± 1.9 36.7± 1.7

triangle, uninformative prior 50.9± 1.1 60.4± 1.5 14.7± 3.0 13.6± 0.8 29.3± 1.6 18.3± 1.2 34.7± 1.9 18.1± 0.9 37.2± 1.4

Example 3 with anisotropic measurement error:
true value 45 60 15 14.1 28.3 18.0 36.1 18.0 36.1

BEDCA, [13] 45.9± 1.2 59.9± 1.4 12.2± 6.4 14.4± 0.9 27.8± 1.6 17.5± 1.0 34.3± 2.0 17.3± 1.5 35.5± 1.5

triangle, uninformative prior 46.2± 1.1 59.8± 1.4 15.4± 1.8 14.2± 0.8 27.7± 1.5 17.4± 1.0 34.9± 1.9 16.9± 0.6 35.3± 1.3

Example 4 with anisotropic measurement error:
true value 60 60 15 14.1 28.3 18.0 36.1 18.0 36.1

BEDCA, [13] 58.2± 1.0 57.9± 1.4 13.4± 6.7 13.0± 0.8 27.2± 1.6 16.5± 1.1 38.6± 2.1 17.1± 1.7 38.6± 1.6

triangle, uninformative prior 58.4± 1.0 57.4± 1.4 15.1± 3.9 12.8± 0.8 27.5± 1.5 17.2± 1.1 38.8± 1.8 16.9± 1.1 38.7± 1.5

Example 5 with anisotropic measurement error:
true value 15 15 15 14.1 28.3 18.0 36.1 18.0 36.1

BEDCA, [13] 16.4± 5.3 18.8± 6.8 9.08±5.42 13.6± 1.7 29.0± 1.4 16.5± 2.1 35.7± 1.7 19.4± 1.1 37.3± 1.4

triangle, uninformative prior 17.5± 4.4 17.8± 4.4 7.77±5.15 13.4± 1.5 28.8± 1.4 17.2± 1.3 36.1± 1.5 19.7± 1.0 37.5± 1.4

Example 6 with anisotropic measurement error:
true value 60 60 0 14.1 28.3 18.0 36.1 18.0 36.1

BEDCA, [13] 60.5± 1.1 60.9± 1.3 10.1± 5.8 14.0± 0.9 28.1± 1.7 17.0± 1.0 34.8± 1.9 16.9± 1.3 35.8± 1.4

triangle, uninformative prior 60.6± 1.0 60.9± 1.1 3.5± 2.9 13.9± 0.8 28.2± 1.6 17.6± 0.9 33.1± 1.7 18.1± 0.5 36.4± 1.3

Rows are the original (true) value, and the posterior means (or MLE) ± standard deviations in subsequent
rows for stated method. ’Direct measurement’ refers to the (uncorrected) Euclidean distance
1
N

(∑N
n=1

∣∣∣X̃n
j − X̃n

i

∣∣∣), which is known to overestimate distances [6]. ”Churchman means” refers to the

posterior mean using a flat prior on the length and measurement error, dlijdσij . We quote the pair-wise
variances to compare to the pair-wise algorithm (for triangle we have individual fluorophore measurement

errors to give pair-wise variance using σij;d :=
√
σ2
j;d + σ2

i;d).

For inferred posterior distributions of the lengths see Fig 3.

examples studied in subsection Experimental data for two-state mixture model) is
explored in supplement Effect of priors in two-state model.

Simulated examples and the corresponding inferred parameters (triangle lengths and
state proportions) are summarised in Table 2. The (marginal) posteriors for the state
proportion p(2) are shown in Fig 4, demonstrating clear localisation of the posterior
around the true value with posterior standard deviations of the order of 6% (for these
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Table 2. Two-state simulated examples (anisotropic measurement error).

(lengths and errors in nm)
∣∣∣X(1)

2 −X(1)
1

∣∣∣ ∣∣∣X(1)
3 −X(1)

1

∣∣∣ ∣∣∣X(1)
3 −X(1)

2

∣∣∣ ∣∣∣X(2)
2 −X(2)

1

∣∣∣ ∣∣∣X(2)
3 −X(2)

1

∣∣∣ ∣∣∣X(2)
3 −X(2)

2

∣∣∣ p(2)

Example 1:
true value 45 85 45 50 60 15 0%

triangle, Eq (8) prior 45.7± 0.9 85.3± 1.1 45.1± 1.3 50.7± 0.9 60.6± 1.0 17.1± 2.1 (1.99± 1.74) %

Example 2:
true value 45 85 45 50 60 15 10%

triangle, Eq (8) prior 46.1± 1.0 85.6± 1.7 44.8± 2.1 52.0± 0.8* 63.5± 1.1* 18.9± 2.1 (9.95± 5.45) %

Example 3:
true value 45 85 45 50 60 15 20%

triangle, Eq (8) prior 46.0± 1.1 83.3± 2.3 41.7± 3.3 51.0± 0.9 61.3± 1.2 18.1± 2.1 (18.4± 7.1) %

Example 4:
true value 45 85 45 50 60 15 30%

triangle, Eq (8) prior 43.7± 1.4 88.0± 2.6 48.0± 3.3 50.0± 1.0 59.8± 1.3 14.7± 2.6 (30.8± 6.0) %

Example 5:
true value 45 85 45 50 60 15 40%

triangle, Eq (8) prior 44.4± 1.4 89.1± 2.9 49.5± 3.4 49.8± 1.1 59.6± 1.3 14.1± 2.7 (40.3± 6.0) %

Example 6:
true value 45 85 45 50 60 15 50%

triangle, Eq (8) prior 45.0± 1.6 88.5± 3.9 48.0± 4.8 49.7± 1.1 59.8± 1.4 14.3± 2.7 (49.5± 7.5) %

Rows are the true values and posterior means and standard deviations for respective examples,
columns the two triangle states (lengths) and the state proportion p(2) in the mixture. Note,
Example 2 has posterior means significantly different from the true value by more than two standard
deviations, denoted by * (p = 0.8% and p = 0.2% for the inferred versus the true values of∣∣∣X(2)

2 −X(2)
1

∣∣∣ and
∣∣∣X(2)

3 −X(2)
1

∣∣∣, respectively).

sample sizes and parameter values). Thus, the state proportion posteriors are only well
separated from zero for true proportions above 10%; for 20% and above there is clear
evidence for the presence of the minor population. All lengths are inferred correctly,
except the true values of two lengths in Example 2 lie in the posterior tail. Since we
are inferring 42 parameters in Table 2, it is expected that some deviations will occur.
Reruns of Example 2 on new datasets gave posteriors consistent with the true values.
Inferred measurement errors (omitted for brevity) were all consistent with the true values

(for both ζ ∈ {1, 2}: σ(ζ)
1;xy = σ

(ζ)
2;xy = 10nm, σ

(ζ)
1;z = σ

(ζ)
2;z = 20nm and σ

(ζ)
3;xy = 15nm,

σ
(ζ)
3;z = 30nm).

Analysis of the human kinetochore: a structured macro-molecular complex.

The experimental system: human cell division. To test performance of our algorithms
on experimental data, we used three-fluorophore 3D images of human kinetochores from
hTERT-immortalised retinal pigment epithelial (RPE) cells, imaged during metaphase
of cell division with a confocal spinning-disk microscope, [24]. Kinetochores are a
macro-molecular complex that orchestrate chromosome movements during cell division,
playing a vital role in congression and segregation dynamics [22]. Kinetochores interface
between the spindle and chromosomes, binding to both DNA (through the histone
CenpA) and microtubules, and thus connecting chromosomes to the spindle machinery.

August 22, 2021 11/37

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 22, 2021. ; https://doi.org/10.1101/2021.08.22.457266doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.22.457266
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig 4. Two-state simulated examples. Posterior state proportions
for the simulated two-state model with varying state proportions p(2).
Original (true) values are marked with black vertical lines, posteriors of
each simulated dataset indicated in legend.

It is multi-functional, being a force generator and a sensor for erroneously connected
microtubules [25]. During S-phase of cell division, chromosomes are duplicated– these
duplicates are held together by condensins near the kinetochores, giving the familiar
’X’ shape of mitotic chromosomes. These duplicated chromosomes are called sister
chromatids, or simply sisters. At the start of mitosis (M-phase), after nuclear envelope
breakdown, kinetochores are not bound to microtubules. As mitosis progresses, kine-
tochores attach to microtubules emanating from the spindle poles, and ideally sister
kinetochores attach to opposite poles to form a bi-orientated state, Fig 5. Bi-orientated
chromosomes congress to the cell mid-plane, in essence a holding configuration whilst any
remaining chromosomes are captured and bi-orientated, Fig 5. Microtubule attachment
is sensed by the kinetochore, feeding into the spindle assembly checkpoint (SAC), [25],
that delays anaphase (segregation of chromosomes to daughter cells) until erroneous
attachments are no longer detected. Once all kinetochores are bi-orientated the spindle
check-point is satisfied and the cell enters anaphase, sister chromatids separating into
distinct daughter cells.

A key constituent of kinetochores is the Ndc80 complex that binds to microtubules,
Fig 5B. The Ndc80 complex has a hinge about 16nm from the N terminus, which allows the
complex to be either fully straightened or folded back (jackknifed). This conformational
change is observed upon microtubule binding, [24]; specifically, the microtubule binding
site (N terminus, denoted Ndc80N) moved ≈ 25nm within the kinetochore between
microtubule binding conditions (attached) and depolymerised microtubule conditions
(unattached), Fig 5B, states 1. and 2. The Ndc80 complex thus goes from a straightened
configuration when attached, to jackknifed, or folded, when unattached. Relative to
a 3rd fluorophore, we thus have two distinct triangular states. These triangles were
reconstructed from a pair-wise analysis in [24]. By analysing three-fluorophore data
with our triangle correction algorithm, the triangle states associated with attached and
unattached can be determined.

The kinetochore comprises multiple copies of constituent proteins; there are an
estimated 200–250 Ndc80 molecules ( [28], HeLa cells) and it attaches a bundle of around
20 microtubules [2]. As discussed in [24], our results refer to this ensemble, which is a
diffraction-limited spot in each channel. However, the kinetochore is highly structured.
This high ordering within the kinetochore means that the changes in the triangular state
reflect conformational changes of the Ndc80 molecule itself.

As cell division progresses and each sister chromatid pair achieves bi-orientation,
the cell’s 46 kinetochores change from unattached (in prometaphase) to all attached
at the end of metaphase, immediately before anaphase. Hence, there is expected to
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Kinetochore

Kinetochore microtubules

Chromosome

A.

B.

10

Ndc80 jack-knife

NDC80 complex

CenpC

MIS12
complex NDC80 N-terminus

NDC80 C-terminusNnf1

1.2.

1.

2.

1.1.

Fig 5. Spindle and kinetochore organisation. A. Schematic of
the spindle with most chromatids congressed at the cell mid-plane and
a late congressing chromatid. Chromatids are bi-orientated with mi-
crotubule attachments to both spindle poles, except the top chromatid
pair which has only one kinetochore attached to the right spindle pole
(termed monotelic). B. Detail of monotelic and bi-orientated sister pairs.
The kinetochores are in states 1. (attached) or 2. (unattached), shown
below. State 1. - attached to microtubules. Molecular detail of the
Ndc80 complex showing its attachment to the side of a microtubule at
its N-terminal binding site. The Ndc80 is attached to the Nnf1 and
Mis12 complexes at its C-terminus, which binds CenpC through an
unstructured linkage. Shown are the positions of the four fluorophores
examined in this paper. State 2. - unattached Ndc80. The Ndc80 com-
plex is hinged, and in the unattached state the Ndc80 complex jackknifes
bringing the N and C termini closer together. A kinetochore has about
200–250 Ndc80 complexes and is bound to around 20 microtubules in
mature attachment.
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be a minor proportion of kinetochores in metaphase that are still in the unattached
state, i.e. the population is heterogeneous. However, there is no direct evidence of this
conformation change occurring during cell division, or confirmation that the kinetochore
population is conformationally heterogeneous. The presence of unattached kinetochores
can be inferred by observing if check-point proteins (such as Mad, Bub) are recruited, [7].
However, the check-point is a downstream integration of attachment and inter-sister
tension signals, [27], so is only an indirect indicator of attachment state. Here, we use our
mixture model to determine if we can detect that minor population in the unattached
conformational state and to estimate its proportion.

Experimental data for single-state model. We consider five examples of triangular fluores-
cence data from [24] for marked human kinetochore proteins, analysing three fluorophore
triplets amongst the four fluorescent markers shown schematically in Fig 5. These
include fluorophores near the N and C termini of the Ndc80 complex, a fluorophore
on Mis12, a protein that binds Ndc80, extending its rigid arm, and CenpC. There are
two conditions - standard growth conditions (DMSO) and under nocodazole treatment
where microtubules are fully depolymerised; kinetochores are thus in an unattached
configuration. We applied an additional quality control step on the data over that
employed in [24], requiring that for both sister kinetochores all three fluorophores were
observed and that there were at least ten sister pairs in each cell. This was found to
reduce the biological variation within an experiment. The same experimental datasets
were analysed in [24] with BEDCA; results are similar to the pair-wise results presented
here - differences arise because of the extra quality-control filter and the less-informative
priors used on the measurement errors in this paper (see supplement S5).

We tested our method on experimental data in three ways: i. confirming zero length
is inferred for proteins that are triple labelled (the CenpC–CenpC distance, Example 1),
ii. comparing consistency for the posterior length that is common to different triplets
(specifically Ndc80C–Ndc80N), iii. comparing with the pair-wise method of [13], see
Table 3.

Firstly, for the triple-labelled CenpC experiment, Example 1 in Table 3, all three
lengths of the triangle have posterior marginals that are against the boundary (zero),
practically identical to the pair-wise algorithm (see Fig S13.2), giving a resolution of
2–3nm (although this is sample size dependent). Since all three lengths are small here,
there is no benefit in using three markers. Secondly, the distance between Ndc80C and
Ndc80N is labelled in two triangles with both DMSO and nocodazole treatments, allowing
two comparisons. In DMSO, the Ndc80N–Ndc80C agree (Examples 2 and 4, p = 30%, see
supplement Computation of p values for definition of p), posteriors are given in Figs 6, 8.
Similarly, the Ndc80N–Ndc80C distance agrees in nocodazole, (Examples 3, 5, p = 48%),
posteriors in Figs 7, S13.3. For the smaller lengths, Ndc80N–Ndc80C in nocodazole,
the posterior under the pair-wise correction has a thick tail towards zero, whilst the
triangle correction retains a substantial peak, Fig S13.3. This is analogous to the thick
tails seen in simulated data for small length inference. Thirdly, the results from the
triangle correction are typically consistent with the pair-wise correction method of [13],
Table 3. Exceptions are the Nnf1–Ndc80C length (p = 1.0%) and the Ndc80C–Ndc80N
length (p = 1.9%) in the DMSO-treated Nnf1–Ndc80C–Ndc80N, showing a weakly
significant difference, see Example 4 in Table 3. Examining the posteriors, Fig 8, reveals
that the short Nnf1–Ndc80C length from the pair-wise algorithm is approximately
flat between 0nm and 27nm. In contrast, the triangle correction’s length posterior is
approximately Gaussian, with substantially smaller posterior variance. The tighter
inference of the Ndc80N–Ndc80C distance by the triangle correction is a consequence of
length correlations within the inferred triangle. Generating triangles from the pair-wise
marginal length posteriors, assuming independence, results in substantial violation of
the triangle inequality, Fig 8d. In fact, even the pair-wise posterior means violate the
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Table 3. Single-state analysis of experimental datasets.

Example 1, CenpC–CenpC–CenpC, N = 1250, C = 32:
(lengths and errors in nm) CenpC–CenpC CenpC–CenpC CenpC–CenpC

BEDCA, [13] 2.9± 1.9 4.4± 2.9 4.7± 3.0

triangle, uninformative prior 3.2± 2.1 4.2± 2.7 4.4± 2.7

Example 2, CenpC–Ndc80C–Ndc80N (DMSO), N = 72, C = 3:
(lengths and errors in nm) CenpC–Ndc80C CenpC–Ndc80N Ndc80C–Ndc80N

BEDCA, [13] 45.7± 3.2 86.7± 2.5 54.2± 2.9

triangle, uninformative prior 43.2± 2.6 86.5± 2.6 49.0± 3.2

Example 3, CenpC–Ndc80C–Ndc80N (nocodazole), N = 118, C = 5:
(lengths and errors in nm) CenpC–Ndc80C CenpC–Ndc80N Ndc80C–Ndc80N

BEDCA, [13] 53.1± 8.1 62.1± 3.9 11.6± 7.2

triangle, uninformative prior 55.1± 3.5 60.9± 3.6 13.1± 6.7

Example 4, Nnf1–Ndc80C–Ndc80N (DMSO), N = 570, C = 18:
(lengths and errors in nm) Nnf1–Ndc80C Nnf1–Ndc80N Ndc80C–Ndc80N

BEDCA, [13] 15.2± 8.3 71.6± 0.8 50.4± 1.0

triangle, uninformative prior 30.0± 1.2 71.5± 0.8 47.5± 1.0

Example 5, Nnf1–Ndc80C–Ndc80N (nocodazole), N = 238, C = 8:
(lengths and errors in nm) Nnf1–Ndc80C Nnf1–Ndc80N Ndc80C–Ndc80N

BEDCA, [13] 15.3± 9.3 21.0± 11.4 12.7± 7.7

triangle, uninformative prior 16.2± 8.4 16.8± 9.5 12.6± 7.4

Examples 1–5 with fluorophore labels, number of kinetochores (N) and number of cells
(C). Means and standard deviations of the inferred length posteriors are given,
comparing the triangle inference presented in this paper with the pair-wise method
of [13]. The pair-wise and triangular algorithms were run on the same dataset; the
pair-wise results differ slightly to those reported in [24] because of differences in the
priors. For the number of kinetochores and cells, see Table S14.2.

triangle inequality in this case, indicating it is not possible to construct a joint triangle
distribution that preserves the pair-wise length marginals (see Triangle length means
never violate the triangle inequality for why no triangle distributions exists that has
(marginals with) means violating the triangle inequality).

The higher confidence of the triangle correction on small lengths reveals that the
Nnf1–Ndc80C distance likely increases to twice its length in DMSO compared to noco-
dazole (Examples 4, 5 in Table 3). This suggests a possible gain of alignment/order, i.e.
the ensemble of Ndc80-Nnf1 complexes increase their alignment with each other upon
kinetochore attachment to microtubules (see [24] for further discussions).

Triangle correction allows analysis of the measurement errors of each fluorophore
individually - see supplementary Table S14.3 for the means and standard deviations of
the inferred marginal posteriors. Results are consistent between the examples, if we
look at the same fluorophores, molecular structures and treatments. In this data, the
CenpC fluorophore (in Examples 2, 3 in Table 3) exhibits the smallest error, having
about half the error of some of the other markers. Treatment can also have an effect on
the measurement errors.

Experimental data for two-state mixture model. Here we analyse heterogeneity of the con-
formational state of DMSO treated metaphase cells using the data on the CenpC–Ndc80C–Ndc80N
and the Nnf1–Ndc80C–Ndc80N triangles that was previously analysed in Examples 2–5,
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Experimental single-state Example 2: CenpC–Ndc80C–Ndc80N, DMSO:

a)

b) c) d)
Fig 6. Marginal posteriors of the CenpC–Ndc80C–Ndc80N experiment
in DMSO treatment (Example 2 in Table 3). Panels are the same as in
Fig 3. Constructing a joint distribution from the three pair-wisely inferred lengths
assuming independence yields 1% violations of the triangle inequality (red dots in
panel d)).

Experimental single-state Example 3: CenpC–Ndc80C–Ndc80N, nocodazole:

a)

b) c) d)
Fig 7. Marginal inferred posteriors of the CenpC–Ndc80C–Ndc80N
experiment in nocodazole treatment (Example 3 in Table 3). Panels are
the same as in Fig 3. Constructing a joint distribution from the three pair-wisely
inferred lengths assuming independence yields 39% violations of the triangle
inequality (red dots in panel d)).
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Experimental single-state Example 4: Nnf1–Ndc80C–Ndc80N, DMSO:

a)

b) c) d)
Fig 8. Marginal inferred posteriors of the Nnf1–Ndc80C–Ndc80N ex-
periment in DMSO treatment (Example 4 in Table 3). Panels are the
same as in Fig 3. Constructing a joint distribution from the three pair-wisely
inferred lengths assuming independence yields 71% violations of the triangle
inequality (red dots in panel d)).

Table 3. As can be seen in Table 3 (and reported previously in [24]), these triangles
are distinctly different in attached (DMSO) and unattached (nocodazole) conditions.
However, DMSO treated metaphase cells are likely to comprise a mixture of bi-oriented
kinetochores (major population, attached) and a minor population of unattached kineto-
chores that would be in the ”jackknifed state”, potentially similar to nocodazole treated
kinetochores. The existence of such a population has not been confirmed. Here, we use
our triangle mixture algorithm to determine if we can detect such a population.

Firstly, we tested the algorithm’s ability to detect minor populations on real data
by creating an artificial mixture using the Nnf1–Ndc80C–Ndc80N fluorophore triplet
(Example 1, Table 4). We first split the kinetochores from DMSO treated cells (Example 4,
Table 3) into two parts, N = 382 and N = 188 kinetochores. The first group is analysed
using the single-state model to generate priors for the lengths and measurement errors,
Eq (8) (and supplement Inference results on subset of Nnf1–Ndc80C–Ndc80N). The
second group is pooled with a specified proportion of kinetochores from nocodazole
treated cells. The resulting mixed dataset contains a known infused proportion of

p
(2)
infused of jackknifed states, in addition to any sub-population in a nocodazole-like state

already present. We analysed this mixed dataset with the two-state model, using the
remainder of the nocodazole dataset as a pure sample of the jackknifed state ζ = 2. The
CenpC–Ndc80C–Ndc80N datasets (Examples 2–3, Table 3) were of insufficient size to
enable a similar analysis to be performed.

There was good agreement between the infused proportion of nocodazole kinetochores,

p
(2)
infused, and the inferred proportion of nocodazole-like states, p(2); means and standard

deviations are given in Table 4 and marginal posteriors in Fig 9. For infused proportions

larger than p
(2)
infused = 20% the weight of the marginal posterior of p(2) moves away from

zero indicating the presence of the minor population. The plot of inferred proportion
against infused proportion shows the expected linear relationship, Fig 9b. The lengths
and measurement errors are inferred accurately at the lower infusion levels (compared to
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a) b)

0 0.1 0.2 0.3 0.4 0.5

p
infused
(2)

0

0.1

0.2

0.3

0.4

0.5

p
(2

)

Fig 9. Two-state experimental examples. Two-state mixture inference
example with infusion of kinetochores from nocodazole treated cells into a DMSO
dataset. (a) the posterior minor state proportion p(2) for various infusion levels

p
(2)
infused. (b) plot of the posterior minor state proportion p(2) against the infusion

level p
(2)
infused. Each point is based on a single realisation of the mixture. The

posterior mean is plotted with error bars showing the standard deviation. The

black line is 1:1 relationship p(2) = p
(2)
infused.

the single state triangle correction results, subsection Experimental data for single-state
model). However, there is a systematic trend in the inferred Nnf1–NN length in state
ζ = 1 towards lower values, thus becoming more similar to the length estimated for the

jackknifed state, ζ = 2. At p
(2)
infused = 40% this length becomes significantly different

from the state inferred in infusion-free DMSO (Example 3 in Table 4), (p = 1.0%). This
indicates limitations of this approach; datasets need to be informative enough, e.g. by
using sufficiently high sample sizes, or by using sufficiently strong priors on state ζ = 1.

Secondly, we analysed the two DMSO triplet datasets with the two-state model, using
the nocodazole dataset (assumed pure) to inform the minor population state (ζ = 2).
We used flat priors (see supplement S1) since the attached states are in the vast majority
in the heterogeneous population, Fig 9b. The smaller dataset, Example 2, Table 4
(CenpC–Ndc80C–Ndc80N with Nmix = 72, Ninform = 118 kinetochores) has a state
proportion p(2) posterior with a mode at zero and a tail extending beyond 15%, see Fig 9.
Thus, it is inconclusive as to whether a minor population exists. However, for the larger
dataset, Example 3, Table 4 (Nnf1–Ndc80C–Ndc80N with Nmix = 570, Ninform = 238
kinetochores) the proportion p(2) posterior separates away from zero, Fig 9 with inferred
proportion p(2) = (3.47± 2.06) %. Although inconclusive, the CenpC–Ndc80C–Ndc80N
proportion is consistent, Table 4. We thus have strong evidence for DMSO treated
cells in metaphase being heterogeneous with respect to Ndc80 conformation. A model
comparison indicated a probability p = (77.9± 4.0) % in favour of the multi-state model
compared to the single-state model. See supplement Model comparison: Two-state vs
single-state model for details.

Although with our method the mixture proportions
{
p(ζ)

}
ζ

can be inferred accurately

(verified in simulated data, synthetic mixtures), unfortunately there is insufficient
information in our examples to identify the state ζn of an individual kinetochore n, see
supplementary Fig S12.1.

Conclusion

Here we have presented a Bayesian methodology to infer the 3D polygon geometry of
J ≥ 2 fluorophores within a macromolecular complex, for markers that localise to distinct
regions within the complex and are spot-like when imaged. The algorithm corrects
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Table 4. Two-state experimental examples.

Example 1, Nnf1–Ndc80C–Ndc80N, synthetic heterogeneous mixture (DMSO kinetochores infused with jackknifed kinetochores):
state 1: state 2:

(lengths and errors in nm) Nnf1–NC Nnf1–NN NC–NN Nnf1–NC Nnf1–NN NC–NN p(2) p
(2)
infused sample sizes

triangle, Eq (8) prior 29.4± 2.1 71.0± 1.5 45.8± 1.8 16.7± 8.4 16.8± 9.5 13.0± 7.6 (2.20± 2.16) % 0.00% 188, 238 (14)

triangle, Eq (8) prior 30.2± 2.0 70.0± 1.6 44.3± 1.9 15.5± 8.3 16.5± 9.8 13.4± 7.7 (4.79± 4.03) % 10.5% 210, 216 (14)

triangle, Eq (8) prior 28.8± 2.2 68.4± 1.7 44.3± 2.0 16.2± 8.9 16.5± 9.4 12.7± 7.6 (13.7± 6.9) % 19.7% 234, 192 (14)

triangle, Eq (8) prior 29.7± 2.2 68.8± 1.8 43.4± 2.2 15.7± 8.6 15.8± 9.2 13.9± 7.9 (22.6± 7.9) % 29.9% 268, 158 (14)

triangle, Eq (8) prior 28.4± 2.3 66.8± 1.9 42.7± 2.3 17.5± 9.1 16.9± 9.9 14.3± 8.2 (41.4± 7.5) % 40.1% 314, 112 (14)

Example 2, CenpC–Ndc80N–Ndc80C, DMSO treated:
state 1: state 2:

(lengths and errors in nm) CC–NC CC–NN NC–NN CC–NC CC–NN NC–NN p(2) p
(2)
infused sample sizes

triangle, uninformative prior 42.9± 2.7 86.6± 2.6 49.2± 3.3 55.1± 3.5 61.0± 3.7 13.2± 6.8 (3.67± 3.64) % 0.00% 72, 118 (8)

Example 3, Nnf1–Ndc80C–Ndc80N, DMSO treated:
state 1: state 2:

(lengths and errors in nm) Nnf1–NC Nnf1–NN NC–NN Nnf1–NC Nnf1–NN NC–NN p(2) p
(2)
infused sample sizes

triangle, uninformative prior 30.4± 1.2 71.7± 0.8 47.7± 1.0 14.0± 8.0 15.7± 9.3 12.3± 7.4 (3.47± 2.06) % 0.00% 570, 238 (26)

Three examples of inference of two states in a mixed state population using the experimental data of Table 3.
Inferred posterior means and standard deviations of the triangle lengths of the two states are shown. Kinetochore
and cell sample sizes are given in column 10 as: mixed dataset Nmix, informing dataset Ninform, (cell number C).
Abbreviations are CC for CenpC, NC for Ndc80C and NN for Ndc80N. In Example 1 the DMSO data is infused

with the stated proportion p
(2)
infused of nocodazole treated kinetochores. In Example 1 the informative prior from

Eq (8) is used. In Examples 2 and 3 the DMSO datasets are analysed for a mixture of states, with the nocodazole
data used as the informing dataset for the minority state. The priors are uninformative. For number of
kinetochores and cells, see Table S14.2.

Fig 10. Two-state inference of synthetically mixed experi-
mental datasets. Inferred marginal posteriors of the (minor) state
proportion p(2) in the two experimental datasets labelled with triplets
CenpC-Ndc80N-Ndc80C and Nnf1-Ndc80N-Ndc80C, Examples 2, 3
respectively of Table 4.

for length and angle bias due to measurement noise, biases that become substantial
when polygon sides are of the order of, or less than, the measurement error. Previous
correction methods ( [6], [5], [13]) were pair-wise methods. Our new method improves
on these in four principal ways:
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• The full information in multi-fluorophore images is used to infer the polygon,
allowing internal angles between the polygon edges and correlations between
edge lengths to be inferred.
• Lengths can be inferred with higher confidence if more than two markers are used.

This is particularly beneficial for short lengths (relative to the measurement
error), and can overcome inference problems previously reported by [20] (in a
single-molecule context). The largest benefits occur when the third marker is
located far away and the three markers are approximately co-linear.
• Using three or more fluorophores allows measurement errors to be inferred

individually for each marker. This could for example be used for quality control
of fluorophores or for quantifying spot expansions (provided the measurement
errors remain approximately Gaussian), such expansions potentially being of
biological relevance.
• The method is highly flexible. Our algorithm allows for anisotropic measurement

errors, typical for 3D imaging, and extends to heterogeneous datasets, inferring
both the majority state and the composition of a mixture of multiple states.

Our algorithm models the full system geometry, which gives it great flexibility, allowing
for further generalisations: For instance non-Gaussian measurement errors or anisotropic
orientations Rn would be easy to implement. Anisotropy of orientations is likely common
in 3D imaging; for example cells may be selected with spindle poles approximately within
a focal plane - since kinetochores have a preference to lie along the spindle axis when
bi-orientated they are then not likely to be orientated isotropically as a population. This
flexible approach does however come with longer run-times compared to the pair-wise
methods ( [13], [5]). The run-time of the single-state simulated Example 1 (N = 400
measurements and 100, 000 Markov chain iterations) was about 2 days. This could be
reduced by using state-of-the-art samplers, e.g. sequential Monte Carlo, Hamiltonian
Monte Carlo, [1, Ch 2,9], a re-parametrisation that captures system structural correlations
(e.g. utilises the relation in S6), or parallelised algorithms [4] (potentially of great benefit
since the perspectives, {Tn}n, {Rn}n, are updated independently).

The two-state algorithm enabled us to analyse heterogeneities in the architecture
of human kinetochores in metaphase, providing direct evidence for a minor population
of kinetochores in an unattached conformation. Our method allows conformations
of macromolecular complexes to be analysed offering a new technique for study of
conformational change in vivo, distinct from conformation (proximity) sensitive readout
approaches. These include for example Double Electron-Electron Resonance (DEER;
e.g. [16]), Förster Resoncance Energy Transfer (FRET; e.g. [15]) and Bimolecular
Fluorescence Complementation (BiFC; e.g. [23]). Our method is a post-processing
method for multi-fluorophore image data and does not need a specialised experimental
setup or specialised fluorophores as these other methods. Our multi-state algorithm
requires a large enough sample size to allow for the statistical analysis (in our examples
tens to hundreds of samples) and a discrete number Z of distinct (polygon) states. For
our examples we needed to provide information on rare state(s) within a heterogeneous
dataset which we achieved by using joint inference on two datasets (adding an informing
dataset). It is likely that the decomposition of heterogeneous populations can be improved,
including identification of individual sample state, by using higher-resolution imaging, e.g.
Super-Resolution Structured Illumination Microscopy (SR-SIM, [17]), Super-Resolution
Radial Fluctuations (SRRF, [9]) microscopy, or by capturing substantially more photons.
On the other hand, our method works at any distance, and while resolution decreases
for shorter lengths, on some examples we get confidences as low as 1nm. This range of
tens of nanometres is important at the molecular scale. For instance the conformation
change of the kinetochore from attached to unattached state involves a reduction of the
CenpC–Ndc80N distance from 85nm to 60nm, which is beyond the scope of DEER or
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FRET. From this perspective our multi-state algorithm complements these experimental
methods, as it bridges the gap between their . 10nm range and the length scale of the
PSF, where distance corrections become negligible.

Supporting information

S1. Uninformative priors. We use uninformative (improper) priors, namely:

dπ0

[
{θj}j , {ϑ

n}n
]

:=

πX

(
{Xj}j

)
·

∏
j

dXj · χσj;xy≥0dσj;xy · χσj;z≥0dσj;z

 ·(∏
n

dTn · dπR (Rn)

)
,

(S1.1)

where χ is the characteristic function, πX

[
{Xj}j

]
is the prior distribution on the

template positions and dπR [Rn] is the probability measure on the rotation matrices
Rn ∈ SO (3) as follows.

Uninformative priors are typically chosen to be flat (uniform); however this is not
re-parametrisation independent, and there are many choices of polygon properties where
a uniform prior can be imposed. Because our interest is in the polygon side lengths, a flat
prior on each length lij := |Xj −Xi| would appear appropriate, giving the (improper)

prior ∝
(∏

i 6=j dlij

)
. However, the marginal prior for any length would in fact not be

flat for J > 2, because of the constraints on the lengths to form a J-polygon. Priors with
approximately flat marginal densities in the lengths can be constructed for the triangle
case (J = 3) using the density (see Flat prior on marginals of lengths for a derivation):

πX

[
{Xj}j

]
∝ 1

l12 · l13 · l23 ·min ({l12, l13, l23})
. (S1.2)

Three priors on the template positions are compared in Fig S1.1, namely
(∏

j dXj

)
,

(
∏
j dXj)

l12·l13·l23 and πX

[
{Xj}j

]
·
(∏

j dXj

)
.

The measure dπR on the rotation matrix Rn is defined, such that for an arbitrary
vector on the R3-unit sphere, v ∈ S3, the image Rn ·v ·dπR [Rn] is uniform on the surface
of S3 (i.e. the Lebesgue measure on that surface, sin(ψ)dψdϕ in spherical polars).

S2. Flat prior on marginals of lengths. Here we show, that the distribution given
in Eq (S1.2) corresponds to a flat prior on the marginals of the lengths in the limit of
unconstrained triangle sizes.

Triangles are specified by the three 3D positional vectors Xj , j ∈ {1, 2, 3}, giving the
unbounded parameter space R9. Consider the stripe subspaces,

Bij;ε (l0) :=

{{
Xj̃

}
j̃

∣∣∣∣max

({
l̃ij̃

}
ĩj̃

)
< a, lij ∈ [l0 − ε; l0 + ε]

}
. (S2.1)

corresponding to length lij := |Xj −Xi| constrained to a small ε-neighbourhood of a
fixed value l0 > 0, and all lengths being less than a > 0. This stripe region is infinite,
because of the translational degrees of freedom, but becomes finite once the translations
are fixed. We want to show that for the prior from Eq S1.2 the probability to be in such
a domain (and constraining X1 to a bounded domain) is independent of the value l0 in
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Fig S1.1. Numerical simulation of the histograms for three possible
priors on the triangle template positions {Xj}j . Marginal densities are

shown on the space of the three triangle lengths (top row; frequency is indicated
by colour and radius) and the associated marginal distribution of a single length

(bottom row). From left to right the prior distributions are
(∏

j dXj

)
, 1
l12·l13·l23 ·(∏

j dXj

)
, πX

[
{Xj}j

]
·
(∏

j dXj

)
. The support is bounded by the triangle

inequality, e.g. the front face is the bounding simplex l23 = l12 + l13. A cut-off
for each of the lengths was used, forcing them to be within [0, 1]. The symmetry
of the prior with respect to re-labelling markers j was used when sampling.

the limit of narrow stripes and unbounded triangles:

lim
a→∞

lim
ε↘0

PX
[{
Xj̃

}
j̃
⊂ Bij;ε

(
l
(1)
0

)
∩
(
A1 × R6

)]
PX
[{
Xj̃

}
j̃
⊂ Bij;ε

(
l
(2)
0

)
∩ (A1 × R6)

]
 :=

:= lim
a→∞

lim
ε↘0

∫A1×R6

χmax(l12,l13,l23)<a·χ
lij∈[l(1)0 −ε;l(1)0 +ε]

l12·l13·l23·min(l12,l13,l23) · dX1dX2dX3∫
A1×R6

χmax(l12,l13,l23)<a·χ
lij∈[l(2)0 −ε;l(2)0 +ε]

l12·l13·l23·min(l12,l13,l23) · dX1dX2dX3

 = 1

∀ij ∈ {12, 13, 23} , l(1)
0 , l

(2)
0 > 0, A1 ∈ A, (S2.2)

where we used A :=
{
A ⊂ R3

∣∣ 0 < ∫
A
dX <∞

}
to confine node X1 to a domain of finite

volume.
We first show, that

dflatlenghts

[
{Xj}j

]
:=

1

l12 · l13 · l23
· dX1dX2dX3 (S2.3)
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gives a flat prior on the lengths space (within the boundaries of the triangle inequality),
i.e.: ∫

A

dflatlenghts

[
{Xj}j

]
∝
∫
Ã

dl12dl13dl23 ∀A ∈ A◦, (S2.4)

with Ã the set of all lengths for which {Xj}j ∈ A and

A◦ :=

A1 ×A ⊂ A× R6
∣∣∀
 X1

X2

X3

 ∈ A1 ×A,R ∈ SO (3) :

 R ·X1

R ·X2

R ·X3

 ∈ A1 ×A


(S2.5)

the set of all rotation symmetric positions with X1 ∈ A1 ⊂ A. It is well-known that - for
two positions X1, X2 ∈ R3 - we can switch from Cartesian to spherical coordinates via:

dX1dX2 = l212 · dX1dl12dΩ, (S2.6)

where dΩ = sin (ψ)·dϕdψ is the differential of the solid angle (for azimuth and inclination
angles ϕ, ψ). On the other hand, we know from the transition from Cartesian to cylinder
coordinates (with the X1–X2-edge as the axis of the cylinder), that dX3 = h3 · dh3dadθ,
where h3 ≥ 0 is the distance of X3 from the cylinder axis, a ∈ R is the coordinate
along the cylinder axis and θ ∈ [0, 2π] is the rotation angle of X3 around the cylinder
axis (relative to some fixed plane containing that axis). Expressing l13, l23 through the
cylinder coordinates a, h3 as well as l12 we have:

l213 = a2 + h2
3 (S2.7)

l223 = (l12 − a)
2

+ h2
3, (S2.8)

yielding:

∣∣∣∣ ∂h3
l13 ∂al13

∂h3
l23 ∂al23

∣∣∣∣ =

∣∣∣∣∣ h3

l13
a
l13

h3

l23
a+l12
l23

∣∣∣∣∣ =
(a+ l12) · h3 − a · h3

l13 · l23
=
l12 · h3

l13 · l23
. (S2.9)

Combining this with our results for dX1dX2 and dX3 we get:

dX1dX2dX3 =
(
l212 · dX1dl12dΩ

)
· (h3 · dh3dadθ) =

= (l12 · l13 · l23) · dl12dl13dl23 · (dX1dΩdθ) , (S2.10)

where the term in the last bracket just gives a constant, thus proving Eq (S2.4).
Without loss of generality, we show Eq (S2.2) for ij = 23, i.e. the marginal over

l23. Note, that the additional factor min (l12, l13, l23)
−1

in Eq (S1.2) versus dflatlengths
merely comes from the lengths space only being occupied within the boundaries of the
triangle inequality (other points are not contained in Ã in Eq (S2.4)). To see how the
extra factor fixes this, we assume an upper cut-off for all lengths a� l0 > 0 and divide
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the marginal integral into different parts depending on which length is shortest:

lim
ε↘0

 1

2ε
·
∫

A1×R6

χmax(l12,l13,l23)<a · χl23∈[l0−ε;l0+ε]

l12 · l13 · l23 ·min (l12, l13, l23)
· dX1dX2dX3

 ∝
∝

∫
(R+

0 )
2

χmax(l12,l13,l0)<a · χ(l12+l13+l0−2·max(l12,l13,l0))

min (l12, l13, l0)
dl12dl13 =

=

a∫
l0

min(a,l0+l12)∫
l12

1

l0
· dl13dl12 +

l0∫
0

min(a,l0+l12)∫
l0

1

l12
· dl13dl12 +

l0∫
0

l0∫
l0−l12

1

l12
· dl13dl12+

+ [same terms with 2↔ 3] =

= 2 ·

 a∫
l0

min

(
a− l12

l0
, 1

)
dl12 +

l0∫
0

min

(
a− l0
l12

, 1

)
dl12 +

l0∫
0

dl12

 = 2 · a+ o (a)

(S2.11)

where the terms in the third row correspond to l0 ≤ l12 ≤ l13, l12 ≤ l0 ≤ l13 and
l12 ≤ l13 ≤ l0 in this order (and then similarly with 2 and 3 swapped). For a→∞ (i.e.
no cut-off of lengths) the l0-dependent terms o (a) become negligible, thus proofing our
claim from Eq (S2.2).

Note firstly, this is only an asymptotic argument and for finite cut-offs there are slight
variations (see Fig S1.1 for a numerical study of the effect of a finite support, a <∞).

Second, the prior on the triangle lengths used here is not unique under the requirement
of flat marginals (e.g. a homogeneous weight on the line l12 = l13 = l23 would also satisfy
this condition). We also want to highlight that the chosen prior on the lengths is scale

invariant, i.e. for a scale parameter α ∈ R \ {0} the ratio
πX [{α·Xj}j]
πX [{Xj}j]

= α−4 is only a

function of α, hence does not depend on the triangle shape.

S3. Markov Chain Monte Carlo samplers for parameter inference. Here we
give the details of the Markov Chain Monte Carlo approach taken to sample from the
posterior, firstly for the single-state model in Eq (9) and secondly for the multi-state
model.

S3.1. Samplers of single-state model. We sequentially update the various parameters,
{Xj}j , {τj}j , {T

n}n , {Rn}n, using the following samplers:

Random walk samplers. Random walk samplers are used for the template positions
and perspective parameters, implemented sequentially for each of the parameters Xj ,
Tn and Rn. We use block updates, blocking together the three coordinates in each of
the vectors Xj , and block together the six parameters in Tn and Rn. For the template
positions Xj and translations Tn the proposals are uniform balls around the current
position. For the rotations Rn the proposal is implemented as follows:

• choose a reference vector r ∈ S3 uniformly from the unit-sphere
• draw a sphere location r̃ displaced from r by choosing it uniformly within a

spherical cap around r (the radius of the cap is given by the step-size (adjusted
during burnin)).

• determine a rotation perturbation R̃n as the “geodesic” rotation that maps r
onto r̃, i.e. the rotation with invariant axis r × r̃ around the angle arccos (r̃ · r)

• the proposed rotation is the combined R̃n ·Rn, where Rn is the current rotation.

During burnin the step-sizes of all random walk samplers are adjusted with a target
rejection rate of ρµ := 77.5% (motivated by [26]). The step-size adjustment procedure
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(given a current step-size of s > 0, current adjustment factor of a > 1, current deviation
δρ ∈ R from target acceptance rate ρµ and a tolerance of ρσ := 7.5%):

• compute the rejection rate (of the random walk update of the respective sampler)
ρ′ since the last step-size evaluation

• compute the new deviation δρ′ :=
ρ′−ρµ
ρσ

• square-root the adjustment factor a, if the deviation δρ has the opposite sign to
that of the previous update, i.e. if sign (δρ) 6= sign (δρ′)

• get the new step-size as s′ := s · a−δρ′

• replace s, δρ for their updated versions s′, δρ′

We initialise with a = 2 and the above five-step procedure was repeated every d
√

(#burnin)e
Markov chain iterations through burnin, and initial step sizes are chosen heuristically in
the range of 10−2 and 10 (in nm for lengths, measurement errors).
Gibbs sampler for the translations Tn. The translations Tn are also updated
using a Gibbs sampler. Here we sample from the target:

R3 3 Tn ∼ N

(τ ′)
−1 ·

∑
j

(
ξnj
)′ ; (τ ′)

−1

 , (S3.1)

where:

R3×3 3 τ ′ :=

∑
j

τj

 , (S3.2)

R3 3
(
ξnj
)′

:= τj ·
(
X̃n
j − (Rn · (Xj −X1) +X1)

)
. (S3.3)

Gibbs sampler for the measurement errors τj . A Gibbs sampler is used for the

precisions τj = diag
(
σ−2
j;xy, σ

−2
j;xy, σ

−2
j;z

)
of the measurement errors of the three markers.

Note that the two components xy, z as well as the three markers j are independent from
each other, so sequential and joint updates coincide. We have a Γ-distribution for each
of the conditional distributions:

R+
0 3 σ

−2
j;d ∼ Γ

−3

2
+ 1 +

N

2
· (#d) ;

∑
n,d′

1

2
·
(
Xn
j;d′ − X̃n

j;d′

)2

 , (S3.4)

where d ∈ {xy, z} and number of dimensions (#d) = 2, 1, respectively.
Initialisation and convergence monitoring. Unless otherwise stated, the variables
of all chains are initialised randomly as follows (independent for each j, n):

Xj : |Xj −Xi| ∼ U ([0, 300nm]) (S3.5)

σj;d :σj;d ∼ U ([0, 200nm]) (S3.6)

Tn :Tn ∼ U
(

[−20000nm,+20000nm]
3
)

(S3.7)

Rn :Rn ∼ πR [Rn] . (S3.8)

These are over-dispersed compared to the anticipated width of the posterior distribution
(confirmed after the run). The total number of iterations per Markov chain for each
example is reported in Table S3.1; sub-sampling (equally spaced) was used to give a
final sample size of no more than 10000 samples.

A multi-chain convergence diagnostic was used (5 independent chains), assessing

convergence by computing the Gelman-Rubin statistic R̂ (uncorrected) separately on
parameters of interest, specifically |Xj −Xi|, σj;d for i, j ∈ {1, 2, 3}, d ∈ {xy, z}, (see [12,
Ch 11.6]). We used a threshold of 1.1; if converged, the five chains were then pooled to
reconstruct the posterior.

The computation time on an ordinary desktop computer is about 1 day for datasets
with N = 200 samples (our Matlab implementation may be further improved for speed).
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Table S3.1. Number of Markov chain iterations in the exam-
ples presented in the main part.

Single-state simulated examples (see Table 1 for results):
Example 1 2 3 4 5 6

number of MCMC iterations 100000 100000 500000 500000 500000 500000

Two-state simulated examples (see Table 2 for results):
Example 1 2 3 4 5 6

number of MCMC iterations 50000 50000 50000 50000 50000 50000

Single-state experimental examples (see Table 3 for results):
Example 1 2 3 4 5

number of MCMC iterations 100000 100000 100000 100000 500000

Two-state experimental examples (see Table 4 for results):
Example 1 (all) 2 3

number of MCMC iterations 200000 200000 200000

In all examples the first 40% of the iterations is taken as burn-in, and the remaining
60% constitute the posterior samples.

S3.2. Samplers of multi-state model. All parameters already present in the single-state
model from subsection Polygon parametrisation and inference can be inferred using
the same updates, if confining the observed data points to the subset in the currently
updated state ζn = ζ. The new variables {ζn}n and

{
p(ζ)

}
ζ

are updated sequentially

with random walk and Gibbs samplers, respectively.
Random walk sampler for state-affiliations {ζn}n. The hidden state-affiliations
{ζn}n are sampled with a random walk proposal, equiprobable on all states except the
current one (assigned zero probability). To achieve a higher acceptance rate for a new
state-affiliation proposal, the translation Tn for observation n are altered such that the
centre of mass of the triangle (with equal weights for all markers j) of the proposed true
positions

{
Xn
j

}
j

remain unchanged.

Gibbs sampler for state proportions P =
{
p(ζ)

}
ζ
. The state proportions P are

sampled via a Gibbs sampler from a Dirichlet distribution:

{
p(ζ)

}
ζ
∼ Dir ((1 + #1) , . . . , (1 + #Z)) , (S3.9)

where #ζ ′ := |{n ∈ {1, . . . , N}| ζn = ζ ′}| are the number of measurements in the re-
spective states. The Dirichlet probability density for the state proportions

{
p(ζ)

}
ζ

is

Dir (α1, . . . , αZ) ∝

 ∏
ζ∈{1,...,Z}

(
p(ζ)

)(αζ−1)

 , (S3.10)

with the state proportions all constrained within [0; 1] and summing to one.
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Initialisation and convergence monitoring. The parameters were randomly
initialised (independent for each j, n; for Eq (8) priors):

X
(1)
j :

∣∣∣X(1)
j −X

(1)
i

∣∣∣ ∼ U ([l(1)
ij;0 − 12nm, l

(1)
ij;0 + 12nm

])
(S3.11)

X
(2)
j :

∣∣∣X(2)
j −X

(2)
i

∣∣∣ ∼ U ([0, 300nm]) (S3.12)

σ
(1)
j;d :

(
σ

(1)
j;d

)−2

∼ Γ
(

5; τ
(ζ)
j;d;0

)
(S3.13)

σ
(2)
j;d :σ

(2)
j;d ∼ U ([0, 200nm]) (S3.14)

Tn :Tn ∼ U
(

[−20000nm,+20000nm]
3
)

(S3.15)

Rn :Rn ∼ πR [Rn] (S3.16){
p(ζ)

}
ζ

:
{
p(ζ)

}
ζ
∼ Dir

(
1 1 . . . 1

)
(S3.17)

{ζn}n :ζn ∼ Cat
({

p(ζ)
}
ζ

)
, (S3.18)

where Cat
({
p(ζ)

}
ζ

)
is the multinoulli distribution, state ζ being drawn with probability

p(ζ). The values l
(1)
ij;0 and τ

(1)
j;d;0 are identical to the priors in Eq (8) and given for each

example individually in the main text. These are chosen to be overdispersed compared
to the expected posteriors (and confirmed aposteriori), except for the priors for the
lengths and measurement errors of the first state. For the effect of the latter on the
posterior, see supplement S9.

Convergence is monitored as described above for the single-state model, where
additionally each of the p(ζ) has to stay below the Gelman-Rubin threshold of 1.1. The
number of Markov chain iterations for the examples is given in Table S3.1.

S4. Simulated data. To test the algorithm we simulated data based on the model
described in section Materials and methods. For the simulations the template positions{
X

(ζ)
j

}
j,ζ

, the measurement errors
{
σ

(ζ)
j;d

}
j,ζ

and the state proportions
{
p(ζ)

}
ζ

are fixed

as Tables 1, 2. The translations {Tn}n are independently sampled from Gaussians:

Tn ∼ N
(

0; diag (20nm, 1000nm, 1000nm)
2
)
, (S4.1)

and the rotations are sampled from converged chains of a Markov Chain Monte Carlo
algorithm using the same random walk update as described in subsection Samplers of
single-state model.

S5. Implementation of pair-wise correction methods. We compared our method
to existing length inference techniques between two markers, namely by Churchman et
al from [5] and BEDCA, [13]. Here we describe our implementation of these methods:
Churchman et al. [Isotropic measurement errors only]

Maximum likelihood estimate (MLE): we used the in-built Matlab functions simu-
lannealbnd then fminsearch on the 3D likelihood as specified in Eq (6) in [5]. For
error estimates we calculated the Hessian of the likelihood and used its negative for the
inverse covariance matrix of the Gaussian approximation.

Mean and standard deviation of the full posterior: we used the same likelihood
function and assumed flat priors on the lengths |Xj −Xi| and measurement errors σij .
The marginal distributions were computed using numerical integration on a rectangular
grid.
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BEDCA. This is the algorithm used in [13] and [24]; however we used different priors
analogous to the ones used in the triangle method (see Eq (S1.1)). Specifically, measure-
ment errors have flat priors on the positive real axis (dσj;d) and lengths have almost flat
priors on the positive real axis (∝ χlij≥0 · N

(
60; 1010

)
· dlij for length lij = |Xj −Xi|).

Note, the latter gives (approximately) flat priors on the lengths (i.e. the length marginals
for triangles) but if the three lengths are used to form a triangle under an independence
assumption (rejecting those combinations that violate the triangle inequality), the prior
would lack the min ({l12, l13, l23}) term from Eq (S1.2) (see subsection Flat prior on
marginals of lengths for details).

S6. Small lengths are increasingly difficult to infer. Here we give an argument,
why for a given measurement error, shorter true lengths exhibit a much larger inference
error than longer lengths. This phenomenon has been reported in [20] for the length
correction based on [5] before.

There are two stochastically independent processes contributing to the distribution
of the vectors between two markers, Xj −Xi. First, the isotropic distribution of the
observed vectors in space (due to the rotations Rn) and second, the measurement error
(a Gaussian measurement error assumption is not required). Computing the second
moment of the distance we obtain:

En
[∣∣∣X̃n

j − X̃n
i

∣∣∣2] = trace
(

Covn

(
X̃n
j − X̃n

i

))
=

= trace (Σij) + trace


|Xj−Xi|2

3
|Xj−Xi|2

3
|Xj−Xi|2

3

 =

= trace (Σij) + |Xj −Xi|2 , (S6.1)

where the expectation and covariance are taken with respect to the marker specific
random variables (parametrised with n), i.e. measurement errors γnj , rotations Rn

and translations Tn; the template positions Xj and measurement errors σj;d are fixed.
In the second line Σij is the covariance matrix of the measurement error of the dis-
placement (in the setting described in section Materials and methods this would be
Σij = diag

(
σ2
i;xy, σ

2
i;xy, σ

2
i;z

)
+ diag

(
σ2
j;xy, σ

2
j;xy, σ

2
j;z

)
) and the matrix in the last term is

the covariance of the Lebesgue measure on a sphere of radius |Xj −Xi|. Expression (S6.1)
is the 3D analogue to Eq (4) in [6]. To quantify how strongly |Xj −Xi| depends on the
measurement error, we take the derivative of (S6.1):∣∣∣∂√

trace(Σij)
|Xj −Xi|

∣∣∣ =

√
trace (Σij)

|Xj −Xi|
� 1, (S6.2)

when the true length is much smaller than the measurement error. Thus, small changes
in the inferred measurement error lead to very large changes in the inferred true length,
with increasing effect for small lengths. See Fig S6.1 for a graphical depiction.

S7. Computation of p values. For comparisons of posteriors, we define the overlap
probability

p = min (P [lij;method 1 < lij;method 2] ,P [lij;method 1 > lij;method 2]) , (S7.1)

for length lij inferred by methods 1, 2. If both methods had identical posteriors, we
have p = 50%.

S8. Triangle length means never violate the triangle inequality. For any (proper)
probability distribution on the triangle side lengths, lij ≥ 0, i, j ∈ {1, 2, 3}, the length
means necessarily satisfy the triangle inequality (provided they are finite). To prove this,
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Fig S6.1. Posterior distribution for measurement error and
length for 3D simulated data. Posterior based on N = 2000 sam-
ples simulated with an input (true) length of 15nm and input (true)

measurement error of
√

152 + 252nm ≈ 29nm. Plotted is the likelihood
function, Eq (6) from [5]. Probability density is colour coded as key. The
red line is Eq (S6.1) with the second moment (left hand side) estimated
from the data.

we use Jensen’s inequality ( [3, Thm 3.1.3]) in combination with convexity of the max
function to write:∑

j>i

E [lij ]

− 2 max
i,j

(E [lij ]) ≥

∑
j>i

E [lij ]

− 2 · E
[
max
i,j

(lij)

]
=

= E

∑
j>i

lij

− 2 max
i,j

(lij)

 ≥ 0 (S8.1)

S9. Effect of priors in two-state model. For the simulated two-state model and the
experimental two-state model with infused nocodazole cells we used informative priors
on the ζ = 1 triangle state, specifically a box-prior on the side lengths and Gamma-
distributed prior on the precisions of the measurement errors (see Eq (8)). Here we
analyse the impact of this prior relative to a flat prior on the posteriors of the two-state

experimental Example 1 in Table 4 for the cases p
(2)
infused = 20% and p

(2)
infused = 40%;

results are summarised in Table S9.1. For p
(2)
infused = 20% results are very similar (there

is a slightly higher confidence for the stronger state-1-prior). For p
(2)
infused = 40% the data

is less informative, as there are fewer kinetochores n in the first state ζ = 1; thus the
stronger prior has a greater impact, although results are still consistent.

S10. Inference results on subset of Nnf1–Ndc80C–Ndc80N. In subsection Ex-
perimental data for two-state mixture model we split the Nnf1–Ndc80C–Ndc80N (DMSO-
treated) dataset of subsection Experimental data for single-state model into two, one set
was used to determine a prior on state ζ = 1 for the second set that was used in the two-
state model inference. The entire dataset is composed of two independent experiments,
with the chronologically determined split occurring within the second experiment, giving
subsets of N = 382 (in 12 cells; for the prior) and N = 188 kinetochores (in 6 cells; for
the mixture analysis). The results of the single-state model on the first subset are shown
in Table S10.1, rounding them gives the following parameters for an informative prior
for state ζ = 1 in the two-state model (see Eq (8) for notation):
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Table S9.1. Two-state experimental examples. Comparison of the effect of the
“Eq (8) prior” for the two-state model to the flat priors (like for the single-state
model) on the inferred lengths, measurement errors and state proportions.

(lengths and errors in nm) Nnf1–Ndc80C Nnf1–Ndc80N Ndc80C–Ndc80N σNnf1;xy σNnf1;z σNdc80C;xy σNdc80C;z σNdc80N;xy σNdc80N;z p(ζ)

Two-state experimental Example 3, p
(2)
infused = 19.7%:

state ζ = 1:
triangle, uninformative prior 28.5 ± 2.5 68.2 ± 1.8 44.5 ± 2.1 11.0 ± 2.0 29.8 ± 3.9 12.3 ± 1.5 27.1 ± 2.9 9.8 ± 2.2 27.2 ± 3.7 (86.9 ± 7.5)%

triangle, Eq (8) prior 28.8 ± 2.2 68.4 ± 1.7 44.3 ± 2.0 10.5 ± 1.5 26.9 ± 3.8 12.3 ± 1.3 28.2 ± 2.4 10.0 ± 1.5 27.6 ± 3.0 (86.3 ± 6.9)%

state ζ = 2:
triangle, uninformative prior 16.3 ± 9.0 16.4 ± 9.5 12.7 ± 7.7 21.1 ± 2.8 34.0 ± 3.2 14.5 ± 3.0 28.1 ± 2.9 24.5 ± 1.9 29.1 ± 2.9 (13.1 ± 7.5)%

triangle, Eq (8) prior 16.2 ± 8.9 16.5 ± 9.4 12.7 ± 7.6 21.2 ± 2.7 34.6 ± 3.2 14.5 ± 2.9 28.1 ± 2.9 24.6 ± 1.9 28.9 ± 2.9 (13.7 ± 6.9)%

Two-state experimental Example 3, p
(2)
infused = 40.1%:

state ζ = 1:
triangle, uninformative prior 28.1 ± 2.7 67.1 ± 2.0 44.5 ± 2.8 9.7 ± 2.4 14.8 ± 8.6 10.2 ± 2.0 26.5 ± 3.5 5.9 ± 3.6 25.2 ± 6.2 (48.1 ± 8.8)%

triangle, Eq (8) prior 28.4 ± 2.3 66.8 ± 1.9 42.7 ± 2.3 9.7 ± 1.5 20.3 ± 3.8 11.8 ± 1.3 28.6 ± 2.6 9.5 ± 1.5 27.2 ± 3.7 (58.6 ± 7.5)%

state ζ = 2:
triangle, uninformative prior 17.8 ± 9.5 19.0 ± 10.7 13.5 ± 8.1 22.0 ± 3.2 38.2 ± 3.2 11.8 ± 3.5 27.3 ± 3.0 26.8 ± 1.9 31.6 ± 3.2 (51.9 ± 8.8)%

triangle, Eq (8) prior 17.5 ± 9.1 16.9 ± 9.9 14.3 ± 8.2 22.0 ± 2.7 38.7 ± 3.2 12.8 ± 3.6 26.5 ± 3.4 26.2 ± 2.0 30.8 ± 3.4 (41.4 ± 7.5)%

l
(1)
Nnf1–Ndc80C;0 = 30nm (S10.1)

l
(1)
Nnf1–Ndc80N;0 = 72nm (S10.2)

l
(1)
Ndc80C–Ndc80N;0 = 48nm (S10.3)

σ
(1)
Nnf1;xy;0 = 10nm (S10.4)

σ
(1)
Nnf1;z;0 = 20nm (S10.5)

σ
(1)
Ndc80C;xy;0 = 13nm (S10.6)

σ
(1)
Ndc80C;z;0 = 32nm (S10.7)

σ
(1)
Ndc80N;xy;0 = 10nm (S10.8)

σ
(1)
Ndc80N;z;0 = 29nm. (S10.9)

Table S10.1. Subset of Nnf1–Ndc80N–Ndc80N, DMSO, data presented in Exam-
ple 4 of Table 3.

Single-state experimental example Nnf1–Ndc80C–Ndc80N, DMSO, first 382 datapoints:
(lengths and errors in nm) Nnf1–Ndc80C Nnf1–Ndc80N Ndc80C–Ndc80N σNnf1;xy σNnf1;z σNdc80C;xy σNdc80C;z σNdc80N;xy σNdc80N;z

triangle 30.3 ± 1.5 71.8 ± 1.0 48.2 ± 1.3 10.4 ± 1.0 19.8 ± 2.9 13.3 ± 0.8 32.0 ± 1.8 9.7 ± 1.0 29.1 ± 2.3

S11. Model comparison: Two-state vs single-state model. In subsection Experi-
mental data for two-state mixture model we analysed metaphase kinetochores in DMSO
with the two-state model (Examples 2, 3 in Table 4). Here we show, how the model
comparison with the single-state model was carried out: Apart from the state proportions{
p(ζ)

}
ζ
, the single-state model is a nested sub-model of the two-state model (i.e. it

is absolutely continuous) with all state affiliations {ζn}n equal to the same state ζ.
We can therefore compute the Bayes factor of these two models based on our MCMC
samples of the two-state model alone. Let φts and φss denote the model parameters
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of the two- or single-state models, respectively, except for the state affiliations {ζn}n.
Their corresponding parameter spaces are denoted Φts, Φss). The Bayes factor is then
given by:

P
[{

X̃n
j

}
j,n
, φts ∈ Φts, {ζn}n ∈ {1, 2}

N

∣∣∣∣ two-state model

]
P
[{

X̃n
j

}
j,n
, φss ∈ Φss

∣∣∣∣ single-state model

] =

=

P
[{

X̃n
j

}
j,n
, φts ∈ Φts, {ζn}n ∈ {1, 2}

N

∣∣∣∣ two-state model

]
P
[{

X̃n
j

}
j,n
, φss ∈ Φss

∣∣∣∣ single-state model

]
· (N + 1)

∫ 1

0

(
1− p(2)

)N
dp(2)

=

=
1

N + 1
·
P
[{

X̃n
j

}
j,n
, φts ∈ Φts, {ζn}n ∈ {1, 2}

N

∣∣∣∣ two-state model

]
P
[{

X̃n
j

}
j,n
, φts ∈ Φts, {ζn}n ∈ {1}

N

∣∣∣∣ two-state model

] , (S11.1)

where the last identity comes from the fact that when we confine the multi-state model

to the case where all observations are in one state, {ζn}n ∈ {1}
N

, the likelihood times
the prior is the same as its single-state counterpart, apart from the extra factor from

the Dirichlet distribution, χp(2)∈[0,1] ·
(
1− p(2)

)N · dp(2) (note we have the same priors

on lengths and measurement errors in both models). The right-hand ratio in Eq (S11.1)
can be estimated from our MCMC of the two-state model by counting how often the
chain is in the pure state 1. We abbreviate this ratio by ω. Our discussion so far has
assumed a flat prior on the state proportion for the two-state model, χp(2)∈[0,1] · dp(2).
For analysis of a heterogeneous population with a minor sub-population, a flat prior on
the smaller interval [0, α] for α ∈ [0, 1] appears more realistic. In this case the Bayes

factor in Eq (S11.1) changes to: 1−(1−α)N+1

α·(N+1) · ωα.

From the Bayes factor we immediately get the probability of the two-state model
(assuming apriori equiprobable models):

p =

P
[
two-state model, φts ∈ Φts, {ζn}n ∈ {1, 2}

N

∣∣∣∣{X̃n
j

}
j,n
, α

]
P
[
single-state model, φss ∈ Φss

∣∣∣∣{X̃n
j

}
j,n

]
+ P

[
two-state model, φts ∈ Φts, {ζn}n ∈ {1, 2}

N

∣∣∣∣{X̃n
j

}
j,n
, α

] =

=

1−(1−α)N+1

α·(N+1) · ωα

1 + 1−(1−α)N+1

α·(N+1) · ωα
. (S11.2)

This is plotted as a function of α in Fig S11.1 (for Example 3 in Table 4). The p value
in the main text is computed for α = 20%.

S12. Distribution of the state affiliations {ζn}n. In the two-state model we not

only infer the state proportions
{
p(ζ)

}
ζ

but also the state affiliations {ζn}n for each

individual measurement n ∈ {1, . . . , N}. However, the latter do not show a clear bi-
modal distribution (as a histogram of the mean state affiliation for each measurement n)
that would allow a clear assignment of individual measurements to a state, see Fig S12.1.
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Fig S11.1. Model comparison between two-state and single-
state model for Example 3 in Table 4. Dependence of the prob-
ability of the two-state model on the prior parameter α, as given in
Eq (S11.2). The orange line denotes the mean over the five independent
runs, while the shaded area is the ±1σ range for each α.

Fig S12.1. Mean state affiliations {ζn}n for the two-state Ex-
amples 1 in Table 2 and 3 in Table 4. Depicted are the means of
the state affiliations (over all Markov chain samples) for each of the
Nmix measurements.

S13. Additional supplementary images.
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Simulated Example 1 (isotropic measurement error)
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Simulated Example 2 with anisotropic measurement error:
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Fig S13.1. Markov chain traces of each of the parameters
lij = |Xj −Xi|, σi;d for the single-state simulated Examples 1, 2
in Table 1. Traces are plotted post burnin and sub-sampled to give
10000 samples. Five independent chains are overlain in separate colours.
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Experimental single-state Example 1: CenpC–CenpC–CenpC:

a)

b) c) d)
Fig S13.2. Marginal posteriors of the triple labelled CenpC experiment
(Example 1 in Table 3). Panels are the same as in Fig 3. Constructing a joint
distribution from the three pair-wisely inferred lengths assuming independence
yields 62% violations of the triangle inequality (red dots in panel d)).

Experimental single-state Example 5: Nnf1–Ndc80C–Ndc80N, nocodazole:

a)

b) c) d)
Fig S13.3. Marginal inferred posteriors of the Nnf1–Ndc80C–Ndc80N
experiment in nocodazole treatment (Example 5 in Table 3). Panels are
the same as in Fig 3. Constructing a joint distribution from the three pair-wisely
inferred lengths assuming independence yields 57% violations of the triangle
inequality (red dots in panel d)).

S14. Additional supplementary tables.
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Table S14.1. Inferred measurement errors σj;d for single-state
simulated Examples 1, 2 in Table 1 for each marker individu-
ally.

.
(lengths and errors in nm) σ1;xy σ1;z σ2;xy σ2;z σ3;xy σ3;z

Example 1 with isotropic measurement error:
true value 15 15 15 15 25 25

triangle, uninformative prior 15.0± 2.7 13.0± 4.0 13.2± 2.8 18.5± 2.5 27.4± 2.1 25.9± 2.4

Example 2 with anisotropic measurement error:
true value 10 20 10 20 15 30

triangle, uninformative prior 9.8± 1.3 18.3± 2.4 9.3± 1.2 22.7± 1.7 15.5± 1.1 29.4± 1.7

Due to an indistinguishability for the pair-wise methods, these parameters can only be
inferred, if at least three markers J ≥ 3 are used.

Table S14.2. Data sizes of experimental examples.

Single-state experimental examples (see Table 3 for results):
Example triple structure treatment number of kinetochores N number of cells

1 CenpC–CenpC–CenpC 1250 32

2 CenpC–Nd80C–Ndc80N DMSO 72 3

3 CenpC–Nd80C–Ndc80N nocodazole 118 5

4 Nnf1–Nd80C–Ndc80N DMSO 570 18

5 Nnf1–Nd80C–Ndc80N nocodazole 238 8

Two-state experimental examples (see Table 4 for results):
Example triple structure p

(2)
infused number of kinetochores Nmix

mixture dataset

number of kinetochores Ninform

informing dataset

number of cells

1 Nnf1-Ndc80C-Ndc80N 0.0% 188 238 14

Nnf1-Ndc80C-Ndc80N 10.5% 210 216 14

Nnf1-Ndc80C-Ndc80N 19.7% 234 192 14

Nnf1-Ndc80C-Ndc80N 29.9% 268 158 14

Nnf1-Ndc80C-Ndc80N 40.1% 314 112 14

2 CenpC-Ndc80C-Ndc80N 0.0% 72 118 8

3 Nnf1-Ndc80C-Ndc80N 0.0% 570 238 26

The number of kinetochores and number of cells are given after image processing and quality control.
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Table S14.3. Inferred measurement errors σj;d for single-state experimental
Examples 1–5 in Table 3 for each marker individually.

(lengths and errors in nm) σCC;xy σCC;z σNnf1;xy σNnf1;z σNC;xy σNC;z σNN;xy σNN;z

DMSO-treated experimental single-state examples:
Example 1, A488, triangle, uninf. prior 13.1± 0.3 25.4± 0.9 / / / / / /
Example 1, A568, triangle, uninf. prior 9.0± 0.4 20.3± 1.1 / / / / / /
Example 1, A647, triangle, uninf. prior 16.1± 0.4 40.4± 1.0 / / / / / /

Example 2, triangle, uninf. prior 9.4± 3.1 16.5± 7.7 / / 12.1± 1.8 33.6± 4.1 13.0± 2.7 28.2± 6.2

Example 4, triangle, uninf. prior / / 10.6± 0.8 25.1± 2.0 13.1± 0.6 30.7± 1.5 9.5± 0.9 27.6± 2.0

Nocodazole-treated experimental single-state examples:
Example 3, triangle, uninf. prior 13.8± 3.3 16.3± 7.3 / / 18.2± 2.2 35.5± 3.9 18.4± 2.6 39.1± 4.0

Example 5, triangle, uninf. prior / / 20.0± 2.7 32.7± 2.7 15.0± 2.5 26.6± 2.7 23.6± 1.8 31.5± 2.6

Here we abbreviate CC for CenpC, NC for Ndc80C and NN for Ndc80N. The same fluorophores were used
across all examples to mark the various structures of the kinetochore (apart from the triple-CenpC,
Example 1, where A568 is the secondary antibody of the CenpC in the other examples). The table shows
consistency of the inference results of the same fluorophore between different examples. Here, the marker
for CenpC exhibits the smallest measurement error, being up to only half as large as some of the other
markers. Slight differences can be observed for the same fluorophores between DMSO- and
nocodazole-treated cells (Nnf1, Ndc80N).
Due to an indistinguishability for the pair-wise methods, these parameters can only be inferred, if at least
three markers J ≥ 3 are used.
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