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Abstract

Fire has been predicted to  be more  severe and frequent in forests  of the Australian Monsoon

Tropics over the coming decades. The way in which groups of ecologically important soil fungi

respond  to  disturbance  caused  by  fire  has  not  been  studied  in  tropical  forest  ecosystems.

Ectomycorrhizal  (EM)  fungi  are  important  tree  symbionts  and  saprotrophic  fungi  drive  soil

nutrient cycles. We analysed both publicly-available environmental DNA sequence data as well as

soil chemistry data to  test  a hypothesis that fire events (1970 - 2017) in a contiguous tropical

forest have altered the composition and diversity of EM and saprotrophic soil fungi. We tested this

hypothesis  by measuring  community-level  taxonomic  composition,  fungal  diversity,  species

richness and evenness.  We determined whether changes in fungal communities were associated

with fire-altered soil chemical/physical properties, vegetation types,  or the direct effect of fire.

Soil fungi differed in abundance and community phylogenetic structure between forest sites that

had experienced fire, and those sites dominated by unburned forest. Communities of EM fungi

were structurally  altered  by fire  at shallow soil  horizons,  as  well  as  by vegetational  changes

between  burned  and  unburned  sites  at deeper  soil  horizons.  In  contrast,  fires  influenced

community composition of saprotrophic fungi by changing soil nutrient levels and altering litter

composition. Pyrophilic, truffle-like EM fungi that rely on mycophagous mammals for dispersal

were abundant at recently burned sites. We conclude that fire impacts EM fungi primarily by
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changing plant communities,  whereas fire impacts saprotrophic fungi by  reducing soil nutrient

levels and altering litter composition.

Graphical abstract

Credit: Sofia Houghton (2-column fitting image. Color to be used in print.)
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1. Introduction

Soils contain some of the most complex and understudied ecosystems in terrestrial biomes,

providing habitat for an estimated 25 % of described species (Decaëns et al., 2010). Most of the

terrestrial carbon on Earth is in soils  (Crowther et al., 2016), and they have been designated a

‘third  biotic  frontier’ after  deep-sea  benthic  regions  and tropical  rainforest  canopies  (Hågvar,

1998).  Healthy  soil  ecosystems  are  undergirded  by  diverse  communities  of  microorganisms

dominated by fungi, bacteria, archaea and other eukaryotes, the taxonomy and function of which

are largely unknown (Baldrian, 2019). Together, the microorganisms of this ‘living terrestrial skin’

drive global biogeochemical cycles and power terrestrial ecosystems (Tecon and Or, 2017).
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Fire is a major driver of disturbance in tropical forests (Silvério et al., 2019), including the

Australian Monsoon Tropics (AMT), which is the most fire-prone region in Australia (Bowman et

al., 2010). In the AMT, fire  frequently intrudes from savanna into notophyll plant communities

and initiates a process of post-fire seral development (Bowman, 2009; Cole et al., 2014). In this

region, fire is a primary determinant of plant distribution, which in turn can influence the structure

of microbial communities (Ettema and Wardle, 2002; Ondei et al., 2016; Sarmiento et al., 2017).

An increase in fire frequency, severity and duration in the AMT is likely over the  next decades

due to anthropogenic climate change (Hubnerova et al., 2020).

Specific functional guilds of microorganisms respond differently to fire according to their

trophic modes. The resilience of tropical ectomycorrhizal (EM) fungi after fire has been attributed

to their ability to draw nutrients from plants (Alem et al., 2020). Fires impact soil microorganisms

through changes in soil pH, water holding capacity, and availability of organic carbon, nitrogen

and phosphorus (Pellegrini et al., 2019; Singh, 1994; Verma and Jayakumar, 2018). Soil enzyme

activity,  which reflects  microbial  metabolism in soil  communities, also decreases immediately

following fires, especially at shallow soil horizons (Certini et al., 2021). How different functional

guilds of fungi respond to fire in a single tropical soil ecosystem has not been studied.

Saprotrophic and EM fungi are two functional guilds of fungi in tropical forests that break

down soil organic matter (SOM) (Fernandez and Kennedy, 2016). Gadgil and Gadgil (1975, 1971)

proposed  that  competition  and  inhibition  between  saprotrophic  and  EM  fungi  suppress  the

decomposition  of organic matter and increase the accumulation of organic carbon.  Studies  in

northern-hemisphere coniferous ecosystems based solely on post-fire observations of macrofungal

sporocarps are inconclusive, reporting lower EM diversity (Owen et al., 2019), higher saprotroph

diversity  and proliferation of rare pyrophilous species  (Salo et al., 2019).  Similar studies on the

effect of fire on communities of saprotrophic and EM fungi in tropical forests  have not been

made.
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We used data from culture-independent high-throughput sequencing of soils  provided by

the  Biomes  of  Australian  Soil  Environments  soil  microbial  diversity  database  to  test  the

hypothesis  that  fire  events  (1970  -  2017)  in  a  contiguous  tropical  forest  have  altered  the

composition  and  diversity  of  EM and  saprotrophic  soil  fungi.  BASE  maps  Australia’s  soil

microbial  diversity using culture-independent high-throughput DNA sequencing  (Bissett  et  al.,

2016).  We measured  community-level  taxonomic  composition,  diversity,  species  richness  and

evenness.  We  determined  whether  observed  changes  were  associated  with  the  burn  status

(burned/unburned) of a site, the recency of a fire, and whether these changes were  a result of

altered  soil  chemical/physical  properties  or  vegetation  type  due  to  fire.  Understanding  the

response of soil microbe communities to fire in the AMT may provide management options for

the protection of ecosystems under a changing climate.

2. Materials and methods

2.1. Study site

The Iron Range on Cape York Peninsula, Far North Queensland, is a mountainous coastal

region of the Australian Monsoon Tropics (AMT) dominated by tropical rainforest and notophyll

vine forest (Neldner and Clarkson, 1995; Webb, 1959). Sample sites for this study were selected

to represent a spectrum of seral stages, from unburned to recently burned (Table 1).

2.2. Sampling BASE data

We downloaded 42 fungal amplicon community profiles from unburned and burned sites

from the Biomes of Australian Soil Environments microbial diversity database (BASE), which

were sampled and sequenced according to  Bissett  et  al.  (2016).  The BASE project  took soil

samples  of  1  kg  from the  litter  (0–10 cm)  and  mineral  soil  (20–30)  in  February  2017.  Soil

chemical/physical  properties  including ammonium  (NH4),  nitrate  (NO3),  phosphorus  (P),

potassium (K), organic carbon (C), calcium (Ca) and pH were analysed and DNA was extracted
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from  samples  as  per protocols  of the  Earth  Microbiome  Project

(http://www.earthmicrobiome.org/emp-standard-protocols/dna-extraction-protocol/).  The  ITS1

region of fungal ribosomal DNA was amplified  with the primers ITS1F and ITS4  (Gardes and

Bruns, 1993; White et al., 1990) and sequenced with 300 bp paired-end chemistry on an Illumina

MiSeq.

Table 1 Study sites, fire history and floristic composition. (2-column fitting table.)

Site Fires ceased Vegetation type Dominant trees Dominant grasses

1 2017 Grassy woodland 
Corymbia intermedia, Lophostemon 
suaveolens, Acacia flavescens

Heteropogon contortus, 
Imperata cylindrica

2 1995, one in 2014 Shrubland Dodonoea viscosa None

3 1970, one in 2006 Regenerating closed canopy forest
Dillenia alata,Buchanania 
arborescens,Guioa acutifolia 
Blepharocarya involucrigera

Crytococcum oxyphyllum, 
Entolasia stricta

4 1970 Regenerating closed canopy forest
Atractocarpus sessilis, Buchanania 
arborescens, Acacia midgleyi

None

5 1970 Regenerating closed canopy forest
Phyllanthus praelongipes, Mallotus 
resinosus, Mallotus polyadenos, 
Rinoria bangalensis

None

6 Unburned Regenerating closed canopy forest
Nauclea orientalis, Bucanania 
arborescens, Vitex heligiton

None

7 Unburned
Semi-deciduous mesophyll/notophyll 
forest

Tetrameles nudiflora, Cordia dichotima,
Canarium australianum, Lagerstroemia 
archeriana, Vitex helogiton

None

8 Unburned
Semi-deciduous mesophyll/notophyll 
forest

Cordia dichotima, Tetrameles nudiflora,
Berrya javanica, Paraserianthes toona, 
Mimusops elengi

None

9 Unburned
Semi-deciduous mesophyll/notophyll 
forest

Tetrameles nudiflora, Blepharocarya 
involucrigera, Alstonia scholaris, 
Aleurites moluccana

None

10 Unburned Wet rainforest
Terminalia complanata, Palaquium 
galactoxylom, Garcinia dulcis, 
Syzygium pseudofastigiatum

None

11 Unburned Wet rainforest
Aleurites moluccana, Neonauclea 
glabra, Canarium australianum var.  
australianum, Archidendron hirsutum

None

2.3. Processing of sequence data

ITS1 reads were identified and extracted with ITSx v1.1.3 (Bengtsson-Palme et al., 2013).

Quality filtering and construction of operational taxonomic unit (OTU) tables were performed in
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QIIME2 v2020.11 (Bolyen et al., 2018) with the  dada2 denoise-single, phylogeny align-

to-tree-mafft-fasttree, diversity  core-metrics-phylogenetic and  feature-

classifier classify-sklearn functions.  OTUs were generated from sequences  with 97 %

similarity, and taxonomy was assigned using the UNITE v8.2 fungal database (Abarenkov et al.,

2010).  Fungal  community  diversity  was  calculated  from  the  ITS  dataset  rarefied  to  5,000

sequences per sample, based on rarefaction curves of Shannon’s diversity index.

2.4. Statistical analyses

Soil chemistry data for each site were analysed to establish whether nutrient content was

correlated  between  samples  exposed  to  fire  at  different  time  points  and fungal community

structure. A distance matrix of nutrient profiles for each site was constructed in R v3.6.3 (R Core

Team,  2020) based  on  Bray-Curtis  dissimilarities  (Bray  and  Curtis,  1957) with the  function

vegdist in Vegan v2.5-6 (Oksanen et al., 2020) and visualized with non-metric multidimensional

scaling (NMDS) (function  metaMDS). Soil chemical/physical properties were analysed  for  NH4,

NO3, P, K, C, Ca and pH. To establish whether fire history and other factors structured soil fungal

communities, we  constructed distance matrices from OTU tables based on unweighted UniFrac

(Lozupone and Knight, 2005), which measures OTUs in terms of their phylogenetic relatedness

and presence or absence between samples. We built PERMANOVA (adonis) forward models in R

to assess variance between categorical variables related to soil chemical/physical properties and

determine  the  significance  and  hierarchy  of  influence  for  sample  depth,  burn  status

(burned/unburned),  vegetation  type  (shrubland,  grassy  woodland,  regenerated  closed  canopy

forest,  semi-deciduous  notophyll  forest,  wet  rainforest),  year  of  most  recent  fire  and year  of

cessation of frequent fires. We visualized Bray-Curtis distances based on soil chemical/physical

properties at  each sample site  with NMDS (metaMDS) in  Vegan to assess differences between

fungal communities in terms of soil chemical/physical properties.
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Sequences that represented ectomycorrhizal and saprotrophic fungi were identified  with

the FUNGuild v1.1  (Nguyen et al., 2016) Python script on  an ITS OTU table rarefied to 5,000

sequences and with singletons removed. Only ‘probable’ and ‘highly probable’ assignments were

retained. To detect linear correlations between sample alpha diversity and soil chemical/physical

properties, we generated Shannon’s diversity (entropy) values (Shannon, 1948) for all samples in

QIIME2 (qiime diversity alpha) and  Pearson’s correlation coefficient, which measures the

strength of a linear relationship between two variables, with rcorr in the R package Hmiscv4.4-2

(Harrell,  2021).  We used redundancy analysis  (RDA) in R  with the package GGORD  (Beck,

2017) to extract and summarise the variation in response variables (sample fungal community

composition,  individual  taxa)  and  explanatory  variables  (burn  status,  soil  chemical/physical

properties) based on Hellinger-transformed OTU tables to give lower weights to rare taxa. Krona

v2.7.1  (Ondov et  al.,  2011) was used to  visualise the proportional  taxonomic  composition of

fungal communities.

3. Results

3.1. Sequence data

After DADA2 quality filtering in QIIME2, we retained 722,732 ITS sequences from 42

samples, which clustered into a total of 6960 fungal OTUs, from which we identified 165 EM and

654 saprotrophic taxa.

3.2. Soil chemistry

PERMANOVA indicated that sample depth (P=0.001) and burn status, i.e. whether or not

a site had been burned (P = 0.012) had the most influence on fungal communities (Table 2).

Interactions between variables were associated with differences in soil chemistry. Depth interacted

with burn status (P = 0.001), vegetation type (P = 0.001), year of cessation of frequent fires (P =

0.010) and year of last fire (P = 0.010).  NMDS  showed that samples clustered primarily with
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sample depth and burn status (Figure 1). The greatest variability in soil chemistry was in outlier

samples from unburned mesophyll/notophyll rainforest.

Table  2 PERMANOVA of relative influence on soil chemical/physical properties of sampling depth, burn
status  (burned/unburned),  vegetation  type  (shrubland,  grassy  woodland,  regenerating  closed  canopy
forest, semi-deciduous notophyll forest, wet rainforest), year of  most recent fire  and year of cessation of
frequent fires. Sampling depth and burn status were important factors associated with differences in soil
chemistry between sites. (Single-column fitting table.)

Df F model R2 P

Depth 1 26.5986 0.352 0.001

Burn status (burned/unburned) 1 6.5186 0.086 0.012

Vegetation type 4 1.0067 0.053 0.410

Year of most recent fire 2 0.0288 0.001 0.979

Year of cessation of frequent fires 2 0.0288 0.001 0.980

3.3. Fungal community diversity and effects of soil nutrient levels

Shannon’s  diversity  index (entropy)  was  higher  for  saprotrophic  fungi  than  EM fungi

(Figure 2), particularly in the litter layer (0–10 cm) at unburned forest sites. Shannon’s diversity

index of saprotrophic fungi  correlated linearly with all measurements of  soil  physical/chemical

properties. Diversity of EM communities correlated only with NH4 (Table 3). In general, NO3, P,

Ca and pH were higher in unburned than in burned sites. Increased diversity of saprotrophic fungi

correlated with levels of soil  NH4,  NO3,  P,  K and  Ca,  and there was a  marginally significant

correlation with pH. Lower diversity of EM communities at several unburned sites was associated

with elevated soil nutrient levels relative to burned sites, although this trend was less evident for

K levels (Figure 3). At unburned sites, saprotrophs were more diverse at 0–10 cm depth if levels

of NO3, P, K and Ca were elevated. Saprotrophic diversity was more variable at 20–30 cm depth,

where nutrient levels were lower.
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Figure 1 Non-metric multidimensional scaling showing differences between soil chemistry of samples from 
sites with different vegetation types and burn status (burned/unburned). Based on a Bray-Curtis distance 
matrix of nutrient variables for soils at each each site including ammonium (NH4), nitrate (NO3), phosphorus
(P), potassium (K), organic carbon (C), pH and calcium (Ca). Samples clustered primarily according to 
sampling depth (A) and burn status (B). The greatest variability in terms of soil chemistry was in outlier 
samples from unburned mesophyll/notophyll rainforest. (1.5-column fitting image. Color to be used in 
print.)

Table 3 Pearson’s correlation coefficient testing linear relationships between Shannon’s diversity (entropy) 
of soil fungal communities and soil chemical/physical properties. P values <0.05 indicated by bold type. 
Diversity values for EM fungi correlated linearly with levels of soil NH4, but a relationship with soil chemistry
was reflected more strongly in saprotroph diversity, which was highly correlated with levels of NH4 as well 
as with NO3, P, K, Ca and pH. (Single-column fitting table.)

Ectomycorrhizal Saprotrophic

Pearson’s correlation P Pearson’s correlation P

Ammonium 0.330 0.035 0.326 0.035

Nitrate -0.018 0.913 0.464 0.002

Phosphorus 0.041 0.799 0.422 0.005

Potassium 0.186 0.243 0.511 0.001

pH level -0.236 0.138 0.299 0.055

Calcium -0.137 0.393 0.388 0.011
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Figure 2 Average Shannon’s diversity values and Simpson’s evenness (similarity of abundance between 
species) for EM and saprotrophic soil fungi at burned and unburned sites and at two sampling depths. Bars
indicate standard error. In general, EM fungi were more diverse and less even at burned versus unburned 
sites, whereas saprotrophic communities were more diverse and less even at unburned sites. Average 
Shannon’s diversity of EM fungi at unburned sites was lowest at deeper soil horizons, and EM communities
at these sites had the highest average evenness values of all site types, indicating a late-successional 
community structure. (Single-column fitting image.)

3.4. Fungal diversity and community structure and effects of historical burning

Whether  or  not  a  site  had  been  burned  most  influenced  the  community  structure  of

saprotrophic fungi at both sampling depths, and of EM fungi at 20–30 cm below the soil surface

(Table 4). The number of years that had elapsed since the most recent fire had most influence on

EM community structure 0–10 cm below the surface (P=0.005). Vegetation type was the second

most important factor for EM fungi at 20–30 cm (P=0.011). Saprotrophic soil fungi at 0–10 cm

depth were secondarily influenced by vegetation type (P=0.010). The influence of years since the

most recent fire was marginally significant (P = 0.080) at 20–30 cm depth. An interaction was
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detected between vegetation type and the number of years since the most recent fire at 20–30 cm

depth on the community structure of saprotrophic soil fungi (P=0.007).

EM communities had higher average Shannon’s diversity indices and lower evenness at

burned compared to unburned sites (Figure 2). Saprotrophic communities were more diverse and

less even at unburned sites. Notably, the average Shannon’s diversity of EM fungi at unburned

sites was lowest at deeper soil horizons (20-30 cm). EM communities at unburned sites had the

highest average evenness values of all site types. NMDS of fungal community dissimilarity (Bray-

Curtis) showed that samples clustered primarily according to burn status and depth (Figure 4).

EM communities were more like each other at burned than at unburned sites. Soil saprotrophs

were more similar at unburned sites than at burned sites.
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Figure 3 Shannon’s diversity (entropy) for ectomycorrhizal and saprotrophic soil fungi plotted against soil 
physical/chemical properties (levels of NO3, NH4, P, K, Ca & pH) at burned and unburned sites and at two 
sampling depths. Lower diversity of EM communities at several unburned sites was associated with 
elevated soil nutrient levels relative to burned sites, however this trend was less evident for K levels. At 
unburned sites, saprotrophs at 0-10 cm depth were more diverse if NO3, P, K and Ca were present at 
elevated levels, whereas at a depth of 20-30 cm saprotrophic diversity was more variable and levels of 
those nutrients were lower. (2-column fitting image. Color to be used in print.)
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Table 4 Results of PERMANOVA testing whether the burn status of a site (burned/unburned) and 
vegetation type (shrubland, grassy woodland, regenerating closed canopy forest, semi-deciduous notophyll
forest, wet rainforest) were associated with changes in the community composition of ectomycorrhizal and 
saprotrophic soil fungi. Depth of sampling was a primary influence on community composition of EM 
(P=0.019) and saprotrophic (P=0.045) fungi, and datasets were split according to depth. All sites were 
included in the first analysis, as well as interactions between factors. Influence of years since most recent 
fire, years since cessation of frequent fires and interactions with vegetation type were subsequently 
analysed for burned sites only. P values <0.05 are shown in bold type. (2-column fitting table.)

Depth (cm) Factor F model R2 P

E
ct

o
m

yc
o

rr
h

iz
al

0–10

Years since most recent fire 1.93 0.22 0.005

Burn status 1.32 0.07 0.046

Veg type 0.81 0.17 0.635

Burn status:Veg type 0.73 0.20 0.797

Years since cessation of frequent fires 1.19 0.15 0.177

Years since most recent fire:Veg type 0.93 0.24 0.512

20–30

Burn status 1.37 0.07 0.007

Veg type 4.26 0.52 0.011

Burn status:Veg type 3.32 0.53 0.019

Years since most recent fire 1.01 0.13 0.552

Years since cessation of frequent fires 0.77 0.10 0.505

Years since cessation of frequent fires:Veg type 5.99 0.67 0.027

S
ap

ro
tr

o
p

h
ic

0–10

Burn status 1.67 0.08 0.004

Veg type 2.19 0.35 0.010

Burn status:Veg type 1.80 0.37 0.031

Years since most recent fire 1.01 0.13 0.549

Years since cessation of frequent fires 0.95 0.12 0.507

Years since cessation of frequent fires:Veg type 2.06 0.41 0.086

20–30

Burn status 1.39 0.07 0.046

Veg type 1.22 0.23 0.164

Burn status:Veg type 1.01 0.25 0.239

Years since most recent fire 3.28 0.32 0.080

Years since cessation of frequent fires 1.10 0.14 0.299

Years since most recent fire:Veg type 5.22 0.63 0.007

3.5. Abundance of specific fungal taxa at sites with constrasting nutrient profiles

Relationships were detected between the abundance of some EM OTUs and levels of soil

nutrients  (Figure  5).  Russula3,  Pezizaceae,  Pyronemataceae  and Agaricales5,  6 were present  in

higher abundance in soil with elevated levels of N, P, K and Ca. Entoloma and Tomentella were

associated  with  elevated  pH,  whereas  Sebacina,  Chloridium and  Thelephoraceae  1  were

associated with lower pH. Saprotrophic taxa associated with elevated N, P, K and Ca included

Bionectria,  Leohumicola  and  Archaeorhizomyces  6.  Lower  levels  of  these  nutrients  were
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associated with Geminibasidium 1, 2 and 3 and Apiosporaceae. Increased pH was associated with

the  saprotrophic  taxa  Clavaria,  Idriella and  Phallaceae,  and  lower  pH  with  Hygrocybe,

Sakaguchia, Chaetosphaeria and Thelephoraceae 2.

Figure  4  Non-metric  multidimensional  scaling showing  differences in  fungal  community  composition
between burned and unburned sites at two sampling depths for ectomycorrhizal and saprotrophic fungi.
Matrix based on Bray-Curtis distances. P values refer to PERMANOVA test for significance in differences
in taxonomic community structure between burned and unburned sites at each sampling depth. Samples
clustered primarily according to burn status and depth. EM communities were more similar to each other at
burned over unburned sites. Soil saprotrophs were more similar at unburned sites than at burned sites.
(Single-column fitting image. Color to be used in print.)

Figure 5  Redundancy analysis  (RDA)  summarising variation in  response variables (fungal  community
composition and individual taxa) and explanatory variables (soil chemical/physical properties) at burned
and unburned sites. Blue dots represent individual fungal operational taxonomic units. Taxon and site dots
appearing closer to arrow tips were associated with higher levels of that soil chemical/physical variable,
whereas taxon and site dots appearing opposite to an arrow were associated with lower levels. An angle of
90 degrees indicates little or no correlation. Based on Hellinger-transformed OTU tables to give lower
weights to rare taxa. (2-column fitting image. Color to be used in print.)
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3.6. Abundance of specific fungal taxa at sites with constrasting fire histories

We assigned ecological guild and trophic mode for 165 EM and 654 saprotrophic soil taxa

from 1,696 assigned OTUs with FUNGuild v1.1 (Nguyen et al., 2016). The basidiomycete taxa

Russula, Hemileccinium, Lactifluus, Amanita, Mycosymbioces and Thelephoraceae were dominant

at unburned sites and sites burned prior to 2015 (Figure 6). Ascomycota were present in increased

abundance and taxonomic diversity, including Meliniomyces and the truffle taxon Ruhlandiella, at

sites  burned immediately prior  to  sampling in 2017. Species  richness of EM fungi decreased

linearly from the time of last fire, from 72 OTUs at unburned sites to 12 at sites burned in 2014.

The exceptions to this trend were sites that were most recently burned, which had 58 EM OTUs.

Species richness was at least twofold higher for saprotrophs over EM at all sites, and up to

6  times  higher  at  unburned  sites  (Figure  6).  Unburned  sites  were  dominated  by

Archaeorhizomyces  (Ascomycota) and  Hygrocybe  (Basidiomycota). Dominant saprotrophic taxa

at  burned  sites  included  Geminibasidium,  Hygrocybe,  Thelephoraceae  (Basidiomycota)  and

Umbelopsis  and  Mycosymbioces  (Ascomycota).  A similar  trend of  decreased  species  richness

from the time of last fire was also evident for saprotrophs, from 465 OTUs at unburned sites to 31

at sites burned in 2014, with 145 OTUs at sites that were most recently burned.

Figure  6 (following  page)  Taxonomic  composition  and  abundance  of  ectomycorrhizal  (EM)  and
saprotrophic soil fungi at sites with different fire histories. Numbers inside circles in grey represent numbers
of OTUs detected (species richness). Species richness of EM fungi decreased linearly from the time of last
fire, from 72 OTUs at unburned sites to 12 at sites burned in 2014. (2-column fitting image. Color to be
used in print.)
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4. Discussion

Saprotrophic and EM fungi showed major community-level changes in response to fire,

which  interacted  with  and  modified  these  functional  guilds  in  different  ways.  Fire  induced

compositional changes in the dominant vegetation, which altered EM composition through the

replacement of mycorrhizal hosts. The changes to EM composition were largely independent of

alterations to soil chemistry. By contrast, the community composition, diversity and evenness of

saprotrophic fungi changed after fire in response to reduced soil nutrient levels. We also detected

fire-dependent shifts in the composition of saprotrophic fungi in litter at shallow soil horizons.

4.1. Fire impacts ectomycorrhizal fungi by changing plant communities 

EM fungi are important tree symbionts in forest ecosystems. The taxonomic community

composition and abundance of EM fungi differed between burned and unburned forest soils. EM

fungi were strongly influenced by the dominant vegetation. In general, EM communities were less

diverse and more even at unburned sites, which indicated a late-successional community structure

dominated by a  small  number of taxa including  Russula  and  Amanita.  Successional  shifts,  in

which  EM  community  composition  progresses  from post-fire  tree  stand  initiation  to  canopy

closure, are well-documented (LeDuc et al., 2013; Longo et al., 2011). 

The more recently a site had been burned, the lower the species richness of EM fungi,

which was congruent with reports from temperate forests in the Northern Hemisphere (Kipfer et

al., 2011; LeDuc et al., 2013; Rincón et al., 2014). An increase in EM species richness at sites

burned  immediately  prior  to  sampling  contrasts  with  other  studies  that  showed  immediate

negative effects of fire on EM diversity. One explanation may be that ascomycete EM taxa were

more diverse and abundant at burned sites relative to unburned sites. If fire had occurred the year

prior to sampling,  Ruhlandiella (hypogeous fungi, or truffles), which are dispersed primarily by

mycophagous mammals  (Claridge, 2002; Dundas et al., 2018), were the most abundant of this

pyrophilic group. Ruhlandiella are known to fruit abundantly after bushfires (Kraisitudomsook et
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al.,  2019; Warcup, 1990). Reduction of undergrowth by fire also has the potential  to increase

mammalian access to the soil, which increases foraging and dispersal activity. Increased activity

of  pyrophilic  taxa  such as  Ruhlandiella  and those  dispersed  by mycophagous mammals  may

explain the short-term, post-fire increase in EM diversity.

4.2. Saprotrophic fungi are impacted by fire-driven nutrient shifts

This  study  showed that  forest  fire  alters  the  structure of  saprotrophic  communities

primarily by changing nutrient levels in the soil and by altering the composition of the litter layer

through changes in plant community composition. Saprotrophic fungi were more diverse and less

even at unburned sites, where levels of soil nutrients were higher.  Unlike EM fungi, saprotroph

diversity was influenced by levels of all soil nutrients measured, including a weak yet measurable

influence of pH. Strong positive correlations between diversity of saprotrophic fungi and the soil

quality indicators N, P and NH4 have been reported  (Chen et al., 2021), as well as increases in

saprotrophic biomass and diversity in response to experimental addition of N to soils (Clocchiatti

et al., 2020). In a global study, Ca was found to be the strongest predictor of soil fungal diversity

(Tedersoo et al.,  2014). In this study in the AMT, we found Ca, NO3, P and K  were strongly

correlated with saprotroph diversity.

Soil  saprotrophs  showed  marked  changes  in  species  richness  in  response  to  fire.  In

recently-burned areas, the species richness of soil saprotrophs was almost double that measured at

most other burned sites. Fungal saprotrophs were dominated by Geminibasidium (Basidiomycota)

and Meliniomyces (Ascomycota) in recently burned areas. We found higher species richness and

Shannon’s diversity of saprotrophic over EM fungi regardless of a site’s fire history. Salo et al.

(2019) described  an  increase  in  saprotrophic  fungal  diversity  immediately  after  fire,  with

saprotrophic succession in soil  more rapid than in wood. In Australian Mountain Ash forests,

distinctive communities of soil fungi appeared in the year after fire disturbance, followed by much

longer  seral  phases  dominated  by  non-pyrophilic  species  (McMullan-Fisher  et  al.,  2002).  As
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outlined by Verma and Jayakumar  (2012), low-intensity fires in 2017 may have increased the

amount of organic material available, leading to a rise in saprotrophic diversity.

The dominant vegetation type shaped saprotrophic communities in the litter soil horizon,

which indicated that certain types of organic litter may favour some fungal taxa over others. Wu et

al.  (2011) found that leaf type was one of the main drivers of fungal community biomass and

composition.  Lunghini  et  al.  (2013) reported  higher  fungal  diversity  in  mixed  litter  than  in

monospecific litter. We propose that fire-induced alterations to plant community composition lead

to compositional changes in the litter layer, which in turn select for particular communities of

saprotrophic fungi.

4.3. Soil chemistry was altered by fire

Soil chemistry in the Iron Range has been altered by fire.  Chemical/physical properties

differed between burned and unburned sites and between the litter and mineral soil layers, with

NO3,  P,  Ca and pH generally higher in unburned  than at burned sites. This is congruent with

current knowledge of fire-nutrient dynamics in tropical forests, where soil nutrients are depleted

by recurrent fires (Bowman, 2009a). Conversely, occasional fires can cause a short-term increase

in nutrient availability  at shallow soil horizons via combustion of litter and soil organic matter.

Low wind and high sub-canopy moisture generate fires of lower intensity in AMT forests than in

savannas (Cochrane, 2003; Verma and Jayakumar, 2012). Vegetation changes can influence levels

of soil nutrients, especially N (Evans et al., 2001; Zhou et al., 2018). We found a greater net effect

of burning  on soil chemical/physical properties,  with no discernible patterns attributable to the

different vegetation types studied. This suggests that alteration of nutrient profiles by fire has been

direct,  most likely  through  volatilization of  litter and soil  organic matter  (Verma et al., 2019),

rather than by indirect alterations to plant community composition.

We detected a strong correlation between levels of soil NH4 and the diversity of EM fungi.

There  was no  correlation  between  EM  diversity  and other  soil  chemical/physical  properties
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measured in this study. We propose that host availability and  fire have a greater influence over

rainforest EM community composition than levels of soil NO3, P, K, C, Ca and pH.

4.4. Different fungi at different depths

Vertical partitioning of fungi as observed in this study applies broadly to EM-dominated

soil  ecosystems  in  tropical  and  boreal  zones  (McGuire  et  al.,  2013).  The  type  of  vegetation

structured EM communities in deep soil. The effect of vegetation type was weaker in the shallow

litter layer, which is expected given the affiliation of EM fungi with tree roots. Primary notophyll

rainforest in other areas of North Queensland has higher root biomass and root length compared to

secondary forest  (Hopkins et al., 1996).  Deep soil horizons in unburned forests provide greater

opportunity for EM colonisation of compatible hosts.

5. Conclusions

We support the hypothesis that tropical soil fungi are impacted by burning, which altered

the  abundance  and  phylogenetic  structure  of  EM and saproptrophic communities  in  different

ways. Communities of EM fungi were structurally altered by fire through vegetation changes at

burned and unburned sites. Truffle-like taxa that are reliant on mycophagous mammals were more

abundant at recently burned sites. In general, EM fungi at unburned sites had a late-successional

community structure dominated by a small number of taxa. At burned sites EM diversity was

higher and less even than at unburned sites. The diversity of saprotrophic fungi was impacted by

reduced soil chemical/physical levels after fire. In the litter layer, the community composition of

saprotrophs was influenced by changes in vegetation type.

Globally  between  2007  and  2017,  carbon  sinks  provided  by  terrestrial  ecosystems

removed an estimated 32 % of anthropogenic CO2 emissions from the atmosphere (Le Quéré et

al., 2018). Of these terrestrial sinks, tropical forests are some the largest due to their rapid growth

(Keenan and Williams, 2018). Large savanna-dominated areas of Australia’s tropical north could,
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if  protected  from burning,  support  tropical  forestry  for  carbon  sequestration  (K.  Cook,  pers.

comm.), which may become a serious option for Australia as states begin to commit to net zero

emissions  (NSWDPIA, 2020). Any assessment of native tropical tree species for their utility in

carbon  forestry  should  consider their  mycorrhizal  symbionts  and  their  tractability  for  the

production of inoculum. Australia’s tropical fungi have the potential to serve as a major biological

resource over the approaching decades.
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