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» Abstract

13 While many viruses have a single natural host, host restriction can be incomplete, hereby
1 leading to spillovers to other host species. However, such spillover risks are difficult to
15 quantify. As climate change is rapidly transforming environments, it is becoming critical
16 to quantify the potential for spillovers. To address this issue, we resorted to an unbiased
17 metagenomics approach, and focused on two environments, soil and lake sediments from
18 Lake Hazen, the largest High Arctic freshwater lake in the world. We used DNA and
19 RNA sequencing to reconstruct the lake’s virosphere and its range of eukaryotic hosts,
2 and estimated the spillover risk by measuring the congruence between the viral and the
a1 eukaryotic host phylogenetic trees. We show that spillover risk is higher in lake sediments
» than in soil and increased with runoff from glacier melt, a proxy for climate change.
23 Should climate change also shift species range of potential viral vectors and reservoirs

2 northwards, the High Arctic could become fertile ground for emerging pandemics.
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» 1 Introduction

» Viruses are ubiquitous and are often described as the most abundant replicators on Earth
2 [IH3]. In spite of having highly diverse genomes, viruses are not independent “organisms”
28 or replicators [4], as they need to infect a host’s cell in order to replicate. These virus/host
2 relationships seem relatively stable within superkingdoms, and can hence be classified as
w0 archaeal, bacterial (also known as bacteriophages), and eukaryotic viruses [5H7]. However,
a1 below this rank, viruses may infect a novel host from a reservoir host by being able to
» transmit sustainably in this new host, a process known as viral spillover |8, [9]. Indeed, in
13 the past years, many viruses such as the Influenza A [10], Ebola [I1], and SARS-CoV-2
s [12] viruses spilled over to humans and caused significant diseases. While these three
55 viruses have non-human wild animal reservoirs as natural hosts, others have a broader
3 host range, or their reservoir is more challenging to identify. For instance, iridoviruses
w are known to infect both invertebrates and vertebrates [13], and Picornavirales are found
1 in vertebrates, insects, plants, and protists [2]. Such host restrictions (or alternatively,
» spillover risks) are to date poorly defined and hence, difficult to assess without resorting
w0 to expert opinion [14].

a Numerous factors can influence such a viral spillover risk. For instance, viral particles
2 mneed to attach themselves to specific receptors on their host’s cell to invade it [I5HI7].
s3 The conservation of those receptors across multiple species allows these hosts to be more
s predisposed to becoming infected by the same virus [I7, [18]. Indeed, from an evolutionary
s standpoint, viruses are more prone to infecting hosts that are phylogenetically close to
s their natural host [15] [19], potentially because it is easier for them to infect and colonize
w species that are genetically similar [20]. Alternatively, but not exclusively, high mutation

s rates might explain why RNA viruses spill over more often than other viruses [15], as
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s most lack proofreading mechanisms, making them more variable and likely to adapt to a
so new host [17].

51 While more studies are starting to characterize the communities and genomes of viruses
2 in extreme environments [21H23], only few, if any, describe their spillover risk. The High
53 Arctic is of special interest as it is particularly affected by climate change, warming
s« faster than the rest of the world [24-27]. Warming climate and rapid transitions of the
ss environment increase the risks of spillover events by varying the global distributions and
ss dynamics of viruses, and their reservoirs and vectors [28],29], as shown for arboviruses [30]
sv and the Hendra virus [31]. Furthermore, as the climate changes, the metabolic activity
ss of the Arctic’s microbiosphere also shifts, which in turns affects numerous ecosystem
o processes such as the emergence of new pathogens [32]. It has now become critical to
s quantify the risk of these spillovers. An intuitive approach to do this is to focus on the
s cophylogenetic relationships between viruses and their hosts [33-37]. Conceptually, if
&2 both viruses and their hosts cospeciate, the topologies of their respective phylogenetic
s trees should be identical or congruent. On the other hand, the occurrence of spillovers
s« would result in incongruent virus/host phylogenies, so it can be postulated that measuring
es phylogenetic congruency can be used to assess spillover risk.

66 To test this hypothesis in the context of a changing High Arctic environment, we re-
&7 sorted to a combination of metagenomics and of cophylogenetic modelling by sampling, in
¢ an unbiased manner, both the virosphere and its range of hosts [3], focusing on eukaryotes,
o which are critically affected by viral spillovers [38]. We contrasted two local environments,
7 lake sediments and soil samples of Lake Hazen, to test how viral spillover risk is affected
n by glacier runoff, and hence potentially by global warming, which is expected to increase
2 runoff with increasing glacier melt at this specific lake [24, 25]. While microbial eukaryotes

73 have been identified in Lake Hazen and other Arctic freshwater ecosystems [39-42], the
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72 Arctic multicellular macro-eukaryotes have yet to be sufficiently characterized. We show
s here that the risk of spillovers increases with warming climate, but is likely to remain low

7 in the absence of “bridge vectors” and reservoirs.

» 2 Methods

» (a) Data acquisition

7 An overview of data acquisition and analytical pipeline is shown in figure S1. Between the
2o 10" of May and the 10' of June, 2017, sediments and soil cores were collected from Lake
s Hazen (82°N, 71°W; Quttinirpaaq National Park, northern Ellesmere Island, Nunavut,
22 Canada), the largest High Arctic lake by volume in the world, and the largest freshwater
g3 ecosystem in the High Arctic [25]. Sampling took place as the lake was still completely
s« covered in ice (table S1), as previously described [24]. The sediment accumulation at
&5 the bottom of the Lake is caused by both allochthonous and autochthonous processes.
ss 1he former are characterised by meltwaters that flow between late June and the end of
s August, and run from the outlet glaciers along the northwestern shoreline through poorly
ss consolidated river valleys, while the latter refer to the sedimentation process within the
s lake.

90 To contrast soil and sediment sites, core samples were paired, whenever possible,
o between these two environments. Soil samples were taken at three locations (figure S2;
e (C-Soil, L-Soil, and H-Soil) in the dried streambeds of the tributaries, on the northern
o3 shore, upstream of the lake and its sediments. The corresponding paired lake sediment
o samples were also cored at three locations, separated into hydrological regimes by seasonal
s runoff volume: negligible, low, and high runoff (figure S2; C-Sed, L-Sed, and H-Sed).

o Specifically, the C (for Control) sites were both far from the direct influence of glacial
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or inflows, while L sites were at a variable distance from Blister Creek, a small glacial inflow,
¢ and the H sites were located adjacent to several larger glacial inflows (Abbé River and
o Snow Goose). The water depth at L-Sed and H-Sed was respectively 50 m and 21 m, and
w0 the overlying water depth for site C-Sed was 50 m.

101 Before sample collection, all equipment was sterilised with 10% bleach and 90% ethanol,
102 and non-powdered latex gloves were worn to minimise contamination. Three cores of ~
103 30 cm length were sampled at each location, and the top 5 and 10 cm of each sediment and
4 soil core, respectively, were then collected and homogenized for genetic analysis. DNA was
s extracted on each core using the DNeasy PowerSoil Pro Kit, and RNA with the RNeasy
s PowerSoil Total RNA Kit (MO BIO Laboratories Inc, Carlsbad, CA, USA), following the
w7 kit guidelines, except that the elution volume was 30 pL. DNA and RNA were thereby
ws extracted three times per sampling site, and elution volumes were combined for a total
w9 volume of 90 nL instead of 100 pL.

110 To sequence both DNA and RNA, a total of 12 metagenomic libraries were prepared
w (n = 6 for DNA, n = 6 for RNA), two for each sampling site, and run on an Illumina
2 HiSeq 2500 platform (Illumina, San Diego, CA, USA) at Génome Québec, using Illu-
s mina’s TruSeq LT adapters (forward: AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC, and back-
s ward: AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT) in a paired-end 125 bp configuration. Each
us library was replicated (n = 2 for DNA, n = 3 for RNA) for each sample. Further details,

s such as DNA and RNA yields following extractions, can be found in Colby et al. [24].

w (b) Data preprocessing and taxonomic assignments

us A first quality assessment of the raw sequencing data was made using FastQC v0.11.8 [43].
o Trimmomatic v0.36 [44] was then employed to trim adapters and low-quality reads and

120 bases using the following parameters: phred33, ILLUMINACLIP:adapters/TruSeq3-PE-2.
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121 fa:3:26:10, LEADING:3, TRAILING:3, SLIDINGWINDOW:4:20, CROP:105, HEADCROP:15,

122 AVGQUAL:20, MINLEN:36. A second round of quality check was performed with FastQC
123 to ensure that Illumina’s adapter sequences and unpaired reads were properly removed.
e Reads assembly into contigs was done de novo with both SPAdes v3.13.1 [45] and metaS-
s PAdes v3.13.1 [46] for DNA, and with Trinity v2.9.0 [47], rnaSPAdes v3.13.1 [48], and
12 metaSPAdes for RNA. The choice of an assembly tool was based on (i) the number of
17 contigs generated, (ii) the taxonomic annotations, (iii) the time of assembly, and (iv) the
s contig lengths (see electronic supplementary material). In all cases, the pipelines were
120 used with their default settings.

130 Once assembled, a high-level (superkingdom) taxonomic assignment was determined
1 based on BLASTn v2.10.0 [49] searches. Those were performed at a stringent 1079
132 F-value threshold against the partially non-redundant nucleotide (nr/nt) database from
133 NCBIv5 [50] (ftp.ncbi.nlm.nih.gov/blast/db/nt*tar.gz; downloaded on June 17, 2020).
134 We chose this threshold to increase the significance of our hits, as our preliminary results
135 showed less ambiguity with smaller E-values, starting at a 10712 cut-off. The proportions
135 of taxonomic annotations (“Archaea,” “Bacteria,” “Eukaryota,” or “Viruses”) were cal-
37 culated, and a 95% consensus was taken to assign a superkingdom rank for each contig.
133 When no such 95% consensus could be determined, the contigs were classified as “Other.”
139 To refine the taxonomic assignment of “viruses,” GenBank’s viral nucleotide sequences
1o v238.0 [51] were retrieved (ftp.ncbi.nlm.nih.gov/genbank/gbvrlxseq.gz; downloaded on
1w 23" of July, 2020), concatenated, converted into FASTA with seqret v6.6.0 [52], and
12 used to create a local database for BLASTn alignments. For each sampling location, after
13 combining the DNA and RNA contigs classified as viral in the previous step, BLASTn
s searches were again conducted at the same stringent 1071 E-value threshold, and the

s accession numbers of all the High-scoring Segment Pairs (HSPs) were used to retrieve
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s their corresponding taxonomy identifiers (IDs) and their full taxonomic lineages with the R
17 package taxonomizr v0.5.3 [53]. The viral contigs were also mapped with Bowtie2 v2.3.5.1
s [54], using default settings to compare BLASTn and Bowtie2 efficiencies in refining these
1o taxonomic annotations. As searches were found to be more sensitive with BLASTn than
10 with Bowtie2 (see electronic supplementary material), only BLASTn results are shown
151 hereafter, as our goal was to find as many similar sequences as possible in more than
152 one species to eventually infer the virosphere from the virome. Eukaryotic contigs were
153 processed as above, based off the nr/nt database. To increase specificity considering that
152 > 100 hits were found per contig, results were filtered by keeping a maximum of 12 HSPs

0719 per contig, for which lineages were obtained.

155 'whose E-value < 1
156 All samples were filtered to remove non-eukaryotic and uncultured hosts as well as
157 viral and eukaryotic sequences with no taxonomy information. The ViralZone [55] and
158 International Committee on Taxonomy of Viruses (ICTV) [56] databases were consulted
159 to obtain host range information on each viral family. These taxonomic assignments were
160 then used to retrieve their phylogenetic placements according to the Tree of Life (ToL)
161 (tolweb.org), hence generating two trees: one for known viruses and one for known eu-
12 karyotes. For this, we used the classification and class2tree functions from the R
163 package taxize v0.9.99 [57, 58]. In each environment, vertices of the viral and eukary-
14 Otic trees were then put in relation with each other according to the Virus-Host DB
165 (downloaded on the 29" of September, 2020) [59]. These relations were saved in a bi-
166 nary association matrix (0: no infection; 1: infection), one for each environment. To

17 simplify downstream computations without losing any information, only eukaryotic hosts

168 associated to at least one virus were kept in the non-viral tree.
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e (c) Spillover quantification

o To quantify viral spillovers based on the viral and eukaryotic hosts identified, we employed
i the Random Tanglegram Partitions algorithm (Random TaPas) [60]. This algorithm com-
12 putes the cophylogenetic signal or congruence between two phylogenetic trees, the viral
73 and the host trees, with the normalised Gini coefficient (G*). When congruence is large,
s or “perfect,” the two trees are identical and hence, there is strong cophylogenetic signal —
s and absence of spillover. On the other hand, weak congruence is evidence for the existence
s of spillovers. Random TaPas quantifies congruence in two ways: a geodesic distance (GD)
w7 [61], or a Procrustes distance (Procrustes Approach to Cophylogeny: PACo) [62], the lat-
s ter measuring the distance between two trees geometrically transformed to make them
w9 as identical as possible. To partially account for phylogenetic non-independence when
180 measuring congruence, Random TaPas further implements a resampling scheme where
1w N = 10 subtrees of about 20% of the total number of virus/hosts links are randomly
12 selected. This selection is used to generate a distribution of the empirical frequency of
183 each association, measured by either GD or PACo.

184 Each empirical frequency is then regressed against a uniform distribution, and the
155 residuals are used in two ways: (i) to quantify co-speciation, which is inversely propor-
s tional to spillover risk; and (ii) to identify those virus/host pairs that contributed the
17 least to the cophylogenetic signal, i.e., the most to spillover risk. This risk is finally
s quantified by the shape of the distribution of residuals (for GD or PACo), with G* that
10 takes its values between 0 (perfect congruence, no spillover) to 1 (maximal spillover risk),
o with a defined threshold of 2/3 indicating a “large” value of G* or large incongruence.
11 To account for phylogenetic uncertainty, the process is repeated n = 1,000 times, each
102 replicate being a random resolution of the multifurcating virus/host trees of life into a

103 fully bifurcating tree.
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« 3 Results and Discussion

s (a) Plant and fungal viruses are overrepresented

s Based on our most sensitive annotation pipeline (see electronic supplementary material),
107 viruses represented less than 1% of all contigs, and our samples were dominated by bac-
s teria, with low proportions of eukaryotes (proportions of bacterial and eukaryotic contigs
190 being respectively > 89.2% and < 6.4%, in 11 out of 12 samples) (see electronic supple-
20 mentary material). These results could be due to our extraction process, which might
21 have been biased towards microbial nucleic acids. For instance, an overrepresentation
22 of bacteria was also found in a shotgun-metagenomics based study that also used soil
203 extraction kits [63]. To assess the impact of this potential bias, the extraction process
200 should be taken into consideration by future studies.

205 RNA viral contigs of all kinds (i.e., dSRNA, +ssRNA, and -ssRNA viruses) were
206 found to be significantly more abundant than DNA viral contigs in all samples, as 70.5%
207 to 87.9% of viral families had a RNA genome (binomial tests, P < 2.48 x 10~7; figure ,
28 table . This dominance of RNA viruses is not unexpected, as fungi biomass for instance
200 surpasses that of bacteria in Arctic environments by 1-2 orders of magnitude [64], and
20 eukaryotes are known to be the main targets of RNA viruses [2, [5HT].

211 Our results are however difficult to compare with previous studies in the High Arctic,
212 as most were solely based on DNA metagenomics sequencing [22} 65], [66], probably because
23 RNA viruses are thought to be unstable [23], or due to inadequate sampling strategies
20 to extract RNA viruses [67]. Two studies have been able to recover RNA viruses but
25 one had not intended to characterise the RNA viral community, rather randomly finding
26 sequences related to ssRNA viruses [68], and while the other also identified RNA and DNA

217 viruses from RNA-seq, the environments were slightly different: although they included a
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218 freshwater lake, more abundant in ssDNA phages, the Baltic Sea contains varying levels of
20 salinity [69] unlike Laze Hazen. Nonetheless, our results and those of this previous study
20 [69] both show that it is possible to recover RNA viruses from RNA-seq metagenomics.

21 All viral genomes confounded, in all samples, known plants and/or fungi viral families
22 were overrepresented compared to those infecting animals and protists, as proportions of
»3 the former ranged between 69.8% to 87.1% (binomial tests, P < 2.48 x 1077; table |1).
24 'This overrepresentation might reflect a preservation bias, due to the constitutive defences
»s found in plants and fungi offered by their waxy epidermal cuticles and cell walls [70], even
»6 if most plant viruses lack a protective lipoprotein envelope as found in animal viruses [71].
27 But irrespective of such a preservation bias, this imbalance could imply a high spillover
28 potential among plants and fungi in the High Arctic for two reasons. First, RNA viruses
20 are the most likely pathogens to switch hosts, due to their high rates of evolution [15] [72].
20 Second, plant biomass has been increasing over the past two decades in the High Arctic

a1 due to regional warming [73], and is likely to keep doing as warming continues.

» (b) Spillover risk increases with glacier runoff

23 Given these viral and eukaryotic host representations, can spillover risk be assessed in
2 these environments? To address this question, we resorted to the novel global-fit model
25 Random TaPas, which computes the congruence between the virus and the eukaryotic
236 host trees, with large and weak congruent topologies indicating low and high spillover
23 risk, respectively. The stability of its results was assessed by running this algorithm three
2 times, and by combining the results for the normalised Gini coefficients (G* € [0,1]), a
20 direct measure of spillover risk (see Methods).

240 When the runoff volume was negligible (the C sites; figure a), spillover risk’s me-
21 dian G* ranged between 0.675 and 0.725, thus exceeding the 2/3 threshold, and was
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22 significantly higher in soil than in lake sediments for both GD and PACo (Dunn test,
23 Benjamini-Hochberg [BH]| correction, P < 0.001). However, in the presence of a low
2 runoff volume (the L sites), spillover risk was higher in lake sediments than in soil for GD,
25 but lower for PACo, with G* € [0.70,0.75] (Dunn test, BH correction, P < 0.001; figure
us [2b). Finally, in the high runoff regime (the H sites), for both GD and PACo, spillover
27 risk was higher in lake sediments than in soil, with values of G* > 0.75 (Dunn test, BH
ug  correction, P < 0.001; figure c). Altogether, these results show that as runoff volume
29 increases from almost non-existent to high, spillover risk increased with runoff, and shifted
20 from higher in soil, to higher in lake sediments.

251 This pattern is consistent with the predictions of the Coevolution Effect hypothesis
22 [74], and provides us with a mechanism explaining the observed increase in spillover risk
3 with runoff. Lake Hazen was recently found to have undergone a dramatic change in
4 sedimentation rates since 2007 compared to the previous 300 years: an increase in glacial
s runoff drives sediment delivery to the lake, leading to increased turbidity that perturbs
256 anoxic bottom water known from the historical record [25]. Not only this, but turbidity
27 also varies within the water column throughout the season [75], hence fragmenting the
s lake habitat every year, and more so since 2007. This fragmentation of the aquatic
0 habitat creates conditions that are, under the Coevolution Effect, favourable to spillover.
w0 Fragmentation creates barriers to gene flow, that increases genetic drift within finite
1 populations, accelerating the coevolution of viruses and of their hosts. This acceleration
2 leads to viral diversification which, should it be combined with “bridge vectors” (such
263 as mosquitoes in terrestrial systems) and/or invasive reservoir species, increases spillover
e risk [74]. Lake sediments are environmental archives: over time, they can preserve genetic
»s material from aquatic organisms but also, and probably to a lesser extent, genetic material

x%6 from its drainage basin. The coevolutionary signal detected in lake sediments reflects
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»7  interactions that may have happened in the fragmented aquatic habitat but also elsewhere
x%s in the drainage basin. Regardless of where the interaction occurred, our results show that
20 spillover risk increases with runoff, a proxy of climate warming (figure .

270 To our knowledge, this is the first attempt to assess the complete virosphere of both
on DNA and RNA viruses, and their spillover capacity in any given environments, leading us
a2 to show that increased glacier runoff, a direct consequence of climate change, is expected
213 to increase viral spillover risk of Lake Hazen. However, as this is the first study applying
an the Random TaPas algorithm, we do not have yet any comparators in order to gauge the
a5 efficacy of G* in assessing spillover capacity, both qualitatively and quantitatively. Addi-
a6 tional studies including more runs of the algorithm and multiple environmental settings
o7 of the High Arctic would be necessary to further reinforce our results, and to calibrate

s the “true” risk of viral spillovers.

2 (c) Spillovers might already be happening

20 To go one step further and identify the viruses most at risk of spillover, we focused on the
21 model predictions made by Random TaPas. Under the null model, the occurrence of each
22 virus/host association is evenly distributed on their cophylogeny (when sub-cophylogenies
3 are drawn randomly, from a uniform law). Departures from an even distribution are
s measured by the residuals of the linear fit. Positive residuals indicate a more frequent
25 association than expected, that is pairs of host/virus species that contribute the most to
26 the cophylogenetic signal. On the other hand, negative residuals indicate a less frequent
27 association than expected, and hence pairs of host/virus species that contribute little to
28 the cophylogenetic signal, because they tend to create incongruent phylogenies, a signature
20 Of spillover risk.

200 For both soil and lake sediments, the magnitude of the largest residuals tended either to
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201 decrease (Soil; figure [Bla) or to stay the same (Sediment; figure [3p). This means that with
202 increasing runoff, the strength of the cophylogenetic signal may remain steady, or may
203 even weaken. On the other hand, the magnitude of the most negative residuals either
24 remained globally unchanged (Soil; figure a, 6a), or tended to become more negative
205 (Sediment; figure b7 6b). This latter pattern indicates that as runoff increases, the
206 strength of the cophylogenetic signal deteriorates, potentially implying a higher spillover
207 risk in lake sediments.

208 With this, Random TaPas can identify the viruses driving the spillover signal. For
20 both GD (figure 4) and PACo (figure S7), the 5 most negative residuals of each sample
w0 (n = 60) suggest that viruses are most likely to spill over in fungi (n = 19), plants
s (n = 16), and protists (n = 15; including different species of microalgaes), the other 10
32 species being mostly insects (animals: n = 8; oomycetes: n = 2).

303 Altogether, we provided here a novel and unbiased approach to assessing spillover
sos  risk. This is not the same as predicting spillovers or even pandemics, because as long as
w5 “bridge vectors” and/or invasive reservoir species [74] are not present in the environment,
w6 the likelihood of dramatic events probably remains low. But as climate change leads to
o7 shifts in species ranges and distributions, new interactions can emerge [76], bringing in
28 vectors that can mediate viral spillovers [77]. This twofold effect of climate change, both
20 increasing spillover risk and leading to a northward shift in species ranges [78], could
s have dramatic effect in the High Arctic. Disentangling this risk from actual spillovers and
su pandemics will be a critical endeavour to pursue in parallel with surveillance activities,
sz in order to mitigate the impact of spillovers on economy and health-related aspects of

ns human life, or on other species [9].
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Table 1. Abundance of the viral families of the viral HSPs. The host range information was obtained from the §§
ViralZone and International Committee on Taxonomy of Viruses (ICTV) databases. Viruses with no or unknown §§
family were excluded from this table. 22
Count of HSP by site g%

Viral family Known eukaryotic host range Control Low runoff High runoff & 2
C-Soil C L-Soil L1  H-Soil H1 38

dsDNA viruses g'é
Alloherpesviridae  Fish 1 s
Ascoviridae Insects: mainly Noctuids 4 ?_).;'T %
STfAV: Spodoptera species only %%'g,:

Asfarviridae Pigs warthogs bushpigs 9 é%ﬁ
Vector: Argasid ticks g %ﬁ

Baculoviridae Arthropods: Lepidoptora, Hymenoptera, Diptera 3 8§ g
Crustacean: Decapoda (Shrimps) 2o

Herpesviridae Vertebrates 2 4 2 %g %
Iridoviridae Insects 11 13 159 '%g g
Lavidaviridae Protists infected by Mimivirus 1 8 gl
Marseilleviridae Amoeba 3 g 2 %
Mimiviridae Amoeba 86 105 60 167 82 886 3 g;
Papillomaviridae  Vertebrates 4 5o
Phycodnaviridae  Alga 1 69 1 108 37 1,858 23 %
Pithoviridae Amoeba 1 2 4 2 % g %
Pozviridae Human, vertebrates, and arthropods 2 18 20 173 @ %'B
dsRNA viruses :j—,_ﬁ
Chrysoviridae Fungi 12 9 116 69 5 %
Endornaviridae Plants, fungi, and oomycetes 33 20 115 21 4 212 38
Hypoviridae Fungi 2 4 EX
Megabirnaviridae  Fungi 1 3 s =
Partitiviridae Fungi and plants 206 384 112 304 352 1,140 B
Picobirnaviridae ~ Vertebrates and invertebrates 3 3 36 ?i_’.g
Reoviridae Vertebrates, invertebrates, plants, and fungi 1 4 106 é%
Tntangas do o TOtiUirus: Fungl 4 44 45 1924 10 qQr7 [N} g;
TFertiviicee At 45 24 19 955 5 53
=1
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Victorivirus: Fungi

-ssRNA viruses

Fimoviridae Plant: European mountain ash 6
Mymonaviridae Sclerotinia sclerotiorum fungi 1 3
Phasmaviridae Insects (mosquitos, cockroaches, water striders, 3
psyllids, odonates, and drosophilids)
Phenuiviridae RVFV: rumina.nts, camels, and humans 3 3
Vector: Mosquitoes
+ssRNA viruses
Alphaflexiviridae  Plants and fungi 20 8
Barnaviridae Cultivated mushroom (Agaricus bisporus) 1
Betaflexiviridae Plants and fungi 11 103 1,716
Botourmiaviridae Plants and fungi 52 7
Bromoviridae Plants 2 4
Caliciviridae Vertebrates 6 7 7
Closteroviridae Plants
Deltaflexiviridae  Fungi and plants 2 30
Dicistroviridae Invertebrates 31
Iflaviridae Insects 2 3 3
Luteoviridae Plants 2
Marnaviridae Phytoplankton Heterosigma akashiwo 7 23
Mitoviridae Fungi 66 4 8
Narnaviridae Fungi 59 3 26
Nodaviridae Vertebrates and invertebrates 3 4
Picornaviridae Vertebrates 8
Potyviridae Plants 12
Solemoviridae Plants (few species of Gramineae) 114 54
Tombusviridae Plants 21 9
Virgaviridae Plants
Total 684 723 552 2,604
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Figure 1. Abundance count of the viral families. (a) C-Soil; (b) L-Soil; (¢) H-Soil; (d) C-Sed; (e) L-Sed; and (f) H-Sed sites.

Abundances were logjp-transformed. Viruses with a missing family were excluded from this analysis. The data used for this figure can

be found in table

e
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Figure 2. Normalised Gini coefficients (G*) obtained with Random TaPas (n = 3 runs). The values
are separated by runoff volume: (a) control; (b) low runoff; and (c¢) high runoff. The two global-fit
models used were GD (geodesic distances in tree space) and PACo (Procruses Approach to
Cophylogeny). Significant results (Dunn test, BH correction) are marked with letters from a to j

(a = 0.05). Blue represents the soil and yellow, the lake sediments.
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Figure 3. Largest and smallest residuals per sampling site for (a) soil and (b lake sediments samples.
Residuals were computed by Random TaPas (n = 3 runs) using GD (geodesic distances in tree space).
Significant results (Dunn test, BH correction) are marked with an asterisk (*) (o = 0.05). Red
represents the largest and blue, the smallest residuals. figure S6 further shows these results to be robust
to the distance used to compare trees.
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Figure 4. Distribution of the residuals computed by Random TaPas (n = 1 run) using GD (geodesic distances in tree space). (a)
C-Soil; (b) L-Soil; (¢) H-Soil; (d) C-Sed; (e) L-Sed; and (f) H-Sed sites. Blue residuals represent the soil, and yellow the lake sediments.
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