
Stochastic Consolidation of Lifelong Memory

Nimrod Shaham∗ and Jay Chandra†

Center for Brain Science, Harvard University

Gabriel Kreiman‡

Harvard Medical School

Haim Sompolinsky§

Center for Brain Science, Harvard University,

Edmond and Lily Safra Center for Brain Sciences,

the Hebrew University of Jerusalem

(Dated: August 24, 2021)

Abstract

Humans have the remarkable ability to continually store new memories, while maintaining old

memories for a lifetime. How the brain avoids catastrophic forgetting of memories due to inter-

ference between encoded memories is an open problem in computational neuroscience. Here we

present a model for continual learning in a recurrent neural network combining Hebbian learn-

ing, synaptic decay and a novel memory consolidation mechanism. Memories undergo stochastic

rehearsals with rates proportional to the memory’s basin of attraction, causing self-amplified con-

solidation, giving rise to memory lifetimes that extend much longer than synaptic decay time, and

capacity proportional to a power of the number of neurons. Perturbations to the circuit model cause

temporally-graded retrograde and anterograde deficits, mimicking observed memory impairments

following neurological trauma.
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I. INTRODUCTION

Understanding the principles governing long-term memory is a major challenge in the-

oretical neuroscience. The brain is capable of storing information for the lifetime of the

animal, while continually learning new information, so the brain must face the stability -

plasticity dilemma: keep changing in order to learn new memories, but do so without erasing

existing information. In humans, forgetting curves (retrieval probability vs. age of memory,

sometimes referred to as retention curves), are found experimentally to be gracefully de-

caying with memory age, allowing for non-zero probability of retrieval for memories tens of

years of age [1–4]. While retrieval probability curves monotonically decrease with memory

age, retrievability of specific memories is non-monotonous with age, so that one might be

able to retrieve a childhood memory, but forget events from last week.

Early attractor neural network models of long-term memory suffer from catastrophic for-

getting: when the number of encoded memories is lower than a critical value, memories are

retrievable with high precision, but when it is above that critical value, none of the memo-

ries can be retrieved [5–7]. Incorporating synaptic decay into the circuit enables continual

learning, such that at any point in time recent memories are stable. However, the predicted

forgetting curves exhibit a critical memory age, all memories newer than some age are al-

most perfectly retrievable, while all older ones are destroyed [8–13]. This is in contrast to

the gracefully decaying forgetting curves in humans. Furthermore, the critical age is of the

order of synaptic decay time, hence memories older than this time cannot be retrieved.

One of the main methods of studying the mechanisms of human memory is through memory

disorders. Amnesic patients show a variety of patterns of forgetting. One is anterograde

amnesia-reduced memory retrieval of events encoded after the onset of the disturbance to

the circuit, presumably due to the inability to encode or store new memories. Another pat-

tern is temporally-graded retrograde amnesia - when the probability of retrieval of memories

encoded a short time before the pathology onset is lower than that of older events, giving

rise to non-monotonic forgetting curves (an effect also known as Ribot’s law). Retrograde

amnesia is typically explained by invoking memory consolidation theory, suggesting that

memories must go through a stabilization process that is disrupted by the proximal onset

of the disturbance [14–20]. In addition to possible cellular mechanisms, memory consolida-

tion at the system level is mediated through a rehearsal process - reactivating memories in
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wakefulness or during sleep [21–25].

Several computational models have been proposed for memory consolidation through re-

hearsals [26–34]. However, all reported results were confined to a small number of memo-

ries; none demonstrated memory functionality and forgetting curves in a large circuit with

a number of retrievable memories scaling with the number of neuron. None of the models

obtain the scaling of capacity and memory lifetime with the number of neurons and other

intrinsic parameters.

Here we present a neural network model for lifelong continual learning and memory con-

solidation. Our model continuously stores patterns of activity by Hebbian learning, and

combines synaptic decay with stochastic nonlinear reactivation of memories. Our model

generates intricate and rich memory forgetting behavior. Retrieval probability curves decay

smoothly with memory age (exponentially or even as a power law), with characteristic times

that can be orders of magnitude longer than the synaptic decay time. In addition, due

to the stochasticity of the consolidation process, there is a large variability in the survival

of individual memories of the same age. We show that at any given time, the number of

retrievable memory scales linearly with the number of neurons, exhibiting adequate memory

functionality expected for a robust neuronal circuit with distributed memories. Perturba-

tions of the model circuit give rise to complex patterns of memory deficits,temporally-graded

retrograde and anterograde amnesia, the details of which depend on the size as well as the

nature of the perturbation.

Our theory relates global measures of memory functionality (memory capacity, characteris-

tic memory lifetime) to intrinsic cellular and circuit parameters, such as synaptic decay rate

and reactivation statistics, and provides new insight into how the brain builds and maintains

the body of memories available for retrieval at each point in an animal’s life.

II. RESULTS

A. The model

Our model is based on the sparse version of the Hopfield attractor network model of

associative memory [5, 6]. Memories are sparse ([7, 35–38]), uncorrelated N -dimensional

binary activation patterns (N is the number of neurons) and are stored as fixed points of a

3

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 25, 2021. ; https://doi.org/10.1101/2021.08.24.457446doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.24.457446
http://creativecommons.org/licenses/by/4.0/


recurrent neural network dynamics with binary neurons. We assume that the neural acti-

vation threshold is adjusted dynamically so that the population activity level maintains the

same sparsity as the memories (see Methods, in subsection II H this assumption is modified).

Synaptic dynamics are governed by three processes: Deterministic exponential synaptic de-

cay [8, 11] (first term in eq.(1)), Hebbian learning [39] of new memories (second term in

eq.(1)), and Hebbian consolidation of old memories following their reactivation (third term

in eq.(1)),

Jij(t+ ∆t) = (1−∆t/τ)Jij(t) +
∑
l

ξliξ
l
j δt,l + b

∑
k,{tk}

ξki ξ
k
j δt,tk (1)

Here Jij(t) is the strength of the synapse between neurons i and j at time t (symmetric in i

and j), ξli is the i-th element of the memory introduced first at time t = l and it is given by:

ξli =


1−f√
Nf(1−f)

with prob. f

− f√
Nf(1−f)

with prob. 1− f
(2)

Here f is the fraction of neurons active in a memory state (the sparseness level). Ac-

cording to the above equation, new memories enter in each time interval ∆t and synapses

decay at a rate 1/τ , representing the finite lifetime of synapses [40]. The last term represents

a Hebbian strengthening of old memories following a sequence of reactivation events that

occur for memory k at times denoted by tk (which will be specified below). The factor b de-

notes the size of synaptic modification due to a single consolidation event of an old memory,

assumed to be smaller than the Hebbian amplitude of learning a new memory (i.e. b < 1).

The resulting connectivity matrix can be written as:

Jij(t) =
∑
l

Al(t)ξ
l
iξ
l
j (3)

Al(t) is the efficacy of memory l at time t. The The ability to recall a memory depends

on the level of noise, which originates from random interference with other memories. Its

variance is proportional to the sum of the squares of all efficacies (see Methods):

∆2(t) =
f

N

∑
n

A2
n(t) (4)

We define the critical efficacy Ac, as the efficacy for which a memory pattern loses its

stability. Ac is proportional to the interference noise ∆, with the proportionality constant

depending only on the sparseness:

Ac = a(f) ·∆ (5)
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Where the factor a(f) can be approximated by (see Supplementary Information (SI) section

1):

a(f) ≈ 1.44

√
2 log

(
1.9

f

)
(6)

For f = 0.01 (which we will use throughout the paper), a ≈ 4.7.

B. Pure forgetting

Without rehearsals, our model is similar to previous models of associative memory with

forgetting [8, 10, 11], in which memory efficacies decay exponentially with age, Al(t) =

exp(−(t − l)/τ) (Fig. 1a). Using eq.(4), the interference noise equals ∆2 ≈ fτ/(2N). For

τ > τ0,where τ0 = 2N/(fa2(f)) (see eq.(5)), Ac increases above unity (the initial efficacy)

and no memory will be retrievable. This global catastrophic forgetting is similar to the be-

havior of the Hopfield model after reaching memory capacity, where the interference effect

is too strong and all memory states lose their stability [5, 6]. If τ < τ0, recent memories

are retrievable, while memories older than a critical age t0 = τ
2

log
(
τ0
τ

)
are forgotten (Fig.

1b). Thus, for short decay times, this model allows for continual learning of recent memories

without global catastrophic forgetting. However, it predicts an unrealistic age-dependent

catastrophic forgetting, where all memories up to a critical age are almost perfectly retriev-

able, and all older memories are completely forgotten. This sharp transition happens despite

the graceful exponential decay of efficacies with age, and results from the collective effects

of memory stability in the network.

In what follows we will show that when stochastic rehearsals are taken into account, the

behavior changes dramatically, generating more realistic memory forgetting trajectories and

allowing for lifelong memories.
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FIG. 1. Pure forgetting. a: A memory efficacy trajectory as a function of time (solid line). The

critical efficacy Ac is plotted as a dashed line. b: Overlap of the network state with a memory

state as a function of the memory age. The overlap is a measure of memory retrievability - after

initializing the network near a memory state, the overlap of the network activity with that memory

after arriving to a steady state will be close to unity for retrievable memories and small compared

to one for irretrievable memories. Here N = 8000, f = 0.01, τ = 2240. The catastrophic age here

is ∼ 1.73τ , resulting in a capacity (number of retrievable memories) of 0.5N . Note the very large

value of τ needed to support this capacity — this will be addressed in later sections.
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C. Nonlinear stochastic reactivation

To specify the statistics of reactivations, we revert to the continuous time version of Eq.

(1) which yields the efficacies dynamics:

dAl
dt

= −1

τ
Al + bRl(t) (7)

With Al(t) = 0 for t < l and Al(l) = 1. The reactivations are modeled as a point process

Rl(t) =
∑
{tl}

δ(t− tl), (8)

where tl are the times at which memory l was rehearsed. To specify the rate of the reactiva-

tion process, we hypothesize that this process is more likely to yield a Hebbian strengthening

of memories with large basin of attraction. The rationale is that during reactivation periods,

the system is more likely to visit memories with large basins of attraction, stay there for

a significant period of time triggering their Hebbian strengthening . In particular, memo-

ries that at some point in time lost their stability and are not attractors of the dynamics

(i.e., have vanishing basin of attraction) will not be reactivated, will experience fast pure

decay, and will be forgotten. Hence we model reactivation events as inhomogeneous Poisson

processes, with mean rate rl(t) ≡ 〈Rl(t)〉

rl(t) = λF (Al(t)/Ac(t)) (9)

where λ denotes the maximal reactivation rate. As in eq.(4) and eq.(5), at all times

Ac(t) = a(f) · ∆(t) . The nonlinear function F denotes the size of the basin of a memory

and depends on the ratio of the memory efficacy over the critical capacity Ac (Fig. 2a).

At any given time, only memories with non-zero basin size (i.e., Al(t) > Ac → F > 0) are

retrievable and might be reactivated. Note that since the interference ∆(t) depends on the

efficacies of all memories (eq.(4)), the reactivation rates of all memories are coupled in eq.

(9) via Ac.

D. The approach to steady state of memory consolidation

It is useful to first consider the average dynamics, replacing the reactivation point process

by its mean rate, eq. (9). For a given Ac, the resulting self-consistent equation for the steady
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state efficacies,

Afp = bλτF (Afp/Ac), (10)

possesses two stable fixed points: one at zero and another one when the two competing pro-

cesses, decay and reactivation, balance each other (Afp, Fig 2a). Due to the rapid saturation

of the function F , for most of the parameter regime Afp ∼ bλτ .

To fully understand the system’s behavior we need to consider the dynamics of Ac itself

as well as the stochastic nature of the process. Initially, when the first memories enter

the system, Ac ∝ ∆ is very small and the memory efficacies consolidate around the value

Afp ∼ bλτ . As more memories are encoded, the interference grows and so does the critical

efficacy (red line in Fig. 2b). When the critical efficacy is large enough, fluctuations in

reactivation times lead some memory efficacies to drop below Ac, making these memories

irretrievable. A steady state is achieved when the flux of memories arriving at the system

and consolidated is balanced by the rate of memories forgetting due to the drop of their

efficacy below Ac. At this stage, Ac reaches a fixed equilibrium value and so does the mean

number of retrievable memories. The specific identity of the retrievable memories varies

with time - some are forgotten while new ones are being consolidated. The distribution of

efficacies at equilibrium (Fig. 2c) consists of two modes: The first is the contribution of the

forgotten memories, below Ac, which diverges at small A as p(A) = τ/A. The second, above

Ac, is a mode around Afp representing the retrievable memories.

Ac increases as the amplitude b and number of reactivations per decay timescale λτ

increase, due to increased interference (Fig. 2d). For moderate reactivation strength, Ac is

well below both the encoding strength A(0) = 1 and the consolidation fixed point as seen in

the examples in Figs. 2b,c. As reactivation strength grows, Ac increases and approaches 1,

affecting adversely the consolidation process, as will be seen in the next section.
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FIG. 2. Stochastic memory dynamics.a: Blue: basin of attraction size F as a function of memory

efficacy A. Orange dashed: the negative of the deterministic decay term in eq. (7). Importantly,

F is zero for A < Ac. Here λτ = 5, Ac = 0.4.

b: Memory efficacies vs. age of the system. Memories enter with efficacy A(0) = 1, rehearsal

efficacy b = 0.3. Most of them increase towards Afp ≈ bλτ ≈ 1.5, and fluctuate around it. Large

enough fluctuations can take efficacies below Ac (e.g, cyan curve at age/τ ≈ 40, yellow curve at

age/τ ≈ 120). Some memories are alive for a very short time (e.g., green curve) and some for

very long (e.g., red, blue curves). c: Distribution of memory efficacies after saturation of Ac. d:

Equilibrium values of Ac as a function of bλτ for different λτ values. Here τ = 160, N = 8000.
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E. The forgetting curve

Importantly, in our model, the time of forgetting of memories at a given age is highly

variable, ranging from a fraction of the decay time τ (for unfortunate memories that weren’t

rehearsed fast enough after learning), and up to hundreds of τ for well-rehearsed memories

( Fig. 2b). Nevertheless, on average, memory retrievability decreases with memory age,

and this is captured by the forgetting curve - the probability of retrieving a memory as a

function of its age, after a steady state has been reached (Fig. 3a and Fig. 3b). This curve

exhibits an exponential tail with a long time constant, denoted as the consolidation time τc

- a direct result of the long time required for a large fluctuation in reactivation rates to form

such that consolidated efficacies decrease from around Afp to Ac (SI). The consolidation

time enhancement factor τc/τ can reach several orders of magnitude, allowing memories to

survive for very long times compared to the intrinsic timescales of the system (as shown in

Figs. 3c, d).

For fixed consolidation parameters λτ and b, consolidation time normalized by τ decreases

with τ due to increased interference (Fig. 3d). For fixed τ , consolidation time increases

sharply with λτ and b (Fig. 3c).

However, increasing these parameters may adversely affect the consolidation process. When

bλτ is of order 1, most of the memories experience consolidation, as is the case in Fig. 3a

. However when bλτ � 1, Ac is close to the encoding efficacy (Fig. 2d). This causes a

significant number of memories not to get consolidated. Therefore, the forgetting curve

exhibits an initial fast decay with a characteristic time τ , in addition to the slow decay time

τc (Fig. 3b). To quantify this effect, we measure the consolidation probability of memories,

pc, defined as the chance of a memory efficacy to reach Afp, and therefore become part of

long-lived memories. pc decreases as a function of the reactivation strength from pc = 1, for

bλτ < 1, to zero for strong reactivation (Fig. 3d). The consolidation probability pc together

with τc are the key consolidation parameters.
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FIG. 3. a,b The forgetting curve. The probability of retrieval as a function of memory age.

Blue dots: full network simulation results (see Methods). Red solid lines: results of a mean field

approximation (Methods). An exponential fit with characteristic decay time ≈ 18τ is shown in

green (dash-dot line) in a, and a double exponential fit with characteristic decay times ≈ τ and

≈ 38τ in b. The retrieval probability for pure forgetting is shown in black (dashed line). In a

N = 8000, τ = 160, λτ = 5, b = 0.3. In b same parameters as a except b = 0.25, λτ = 10.

c: Blue (left y axis): Consolidation probability vs. bλτ for different λτ values. Green (right y

axis): Consolidation time τc normalized by synaptic decay time τ vs. bλτ for different λτ values.

Here τ = 160. d: Consolidation time τc normalized by synaptic decay time τ vs. τ for different

λτ values. Blue curve: λτ = 5, b = 0.3. Green curve: λτ = 10, b = 0.25.
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F. Capacity increases as power law with network size

We define the network’s memory capacity as the number of memories retrievable (memo-

ries with A > Ac) in the equilibrium phase after long encoding time (Fig. 4). The capacity

can be evaluated as the area under the forgetting curve. Hence, it can be approximated as

(1− pc)τ + pcτc, where pcτc is the contribution from consolidated memories and fraction of

memories that are consolidated and the first term is the contribution from unconsolidated

memories. As seen previously, τc increases with bλτ , while pc decreases with bλτ - less mem-

ories are consolidated, but the consolidated ones live longer. Maximal capacity is achieved

when bλτ ≈ A(0) = 1, which is the maximal value that allows for 100% of the memories to

get consolidated.

To assess the efficiency of information storage in the network it is important to evaluate the

dependence of the capacity on the network size, N . In previous ’pure forgetting’ models

[8, 10] the synaptic decay time was assumed to scale linearly with N , resulting in memory

capacity t0 which is proportional to N . The same holds for our model. However, this scaling

results in extremely large, biologically implausible, synaptic decay times for large networks.

Here we assume that τ is a property of individual synapses and is independent of network

size. Under this condition, the capacity in the pure forgetting model increases only loga-

rithmically with N , Fig. 4c.

Interestingly, we find that in our model, the capacity scales as a power law of the number

of neurons, with a power that approaches unity for large λτ values (Fig. 4c, d). To approx-

imate the power analytically (for the parameter range where pc ≈ 1), we first approximate

Ac, assuming that the main contribution to the interference noise comes from consolidated,

retrievable memories (SI, sec.3):

Ac ≈
√
f · a2(f)pcτc

N
bλτ (11)

Now, under the assumption that pc ≈ 1 and that the mean rehearsal rate is λτ , we get (SI):

capacity ≈ τc ≈ τ
1

1+0.5λτ

(
N

fa2(f)

) λτ
2+λτ

(12)

Figures 4c and d show the approximation gives a reasonable fit to the dependence of the

capacity on N . Note the significant increase in capacity compared to the pure forgetting

model.

12

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 25, 2021. ; https://doi.org/10.1101/2021.08.24.457446doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.24.457446
http://creativecommons.org/licenses/by/4.0/


0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
bλτ

0.1

0.2

0.3

0.4

0.5

0.6
ca

pa
ci

ty
/N λτ=5

λτ=10

λτ=10

pure forgetting

a b

c d

2 3 4 5 6 7 8 9 10
λτ

0.5

0.6

0.7

0.8

0.9

po
w

er
simulation

λτ/(2+λτ)

25 50 75 100 125 150 175 200
τ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ca
pa

ci
ty

/N

λτ=5

λτ=10

pure forgetting

3.0 3.5 4.0 4.5 5.0
log(N)

2.5

3.0

3.5

4.0

4.5

lo
g(

ca
pa

ci
ty

)

λτ=10

λτ=5

pure forgetting

FIG. 4. Memory capacity. a: The number of retrievable memories divided by N as a function

of bλτ for different average number of rehearsals per characteristic decay time (λτ) values. The

dashed line shows the capacity of the pure forgetting model. Here N = 8000, τ = 160. b:

The number of retrievable memories divided by N as a function of τ for different λτ values. c:

Capacity vs. N (logarithmic, base 10), solid lines show simulation results, dashed lines are analytical

approximation. Here τ = 160, b = 0.3. d: The power of N vs. λτ (black), and the analytical

approximation (red). Here τ = 160, b = 0.3.
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G. Inhomogeneity in initial memory encoding

So far we have assumed that all memories are encoded initially by Hebbian plasticity with

the same amplitude A(0) = 1 (eq. 1). In reality, memories might differ in their encoding

strength, for instance, due to factors such as attention, or emotional context. Thus, it is

important to explore the effect of a distribution of initial encoding strengths. As long as most

of the initial efficacies are in the neighborhood of bλτ , the global memory properties such as

Ac, forgetting curve, and capacity are not affected drastically. However, individual memories

with initial efficacy below Ac are forgotten, while memories with A(0) larger than bλτ have

slightly enhanced consolidation properties, as is confirmed in Fig. 5a for an exponential

distribution of A(0) with mean 1.

To better elucidate the effect of inhomogeneity in A(0), we consider in Figs. 5b and c the case

of a Bernoulli distribution, A(0) = {1, a0} with equal probability. For small a0 compared to

bλτ = 1.5, the consolidation probability for memories with A(0) = a0 decreases drastically

and vanishes for a0 below Ac ≈ 0.39 (Fig. 5b). When a0 increases above 1, consolidation

probability of these memories increases until it reaches 1 for a0 ≈ bλτ . On the other hand,

memories with A(0) = 1 are only moderately affected by changing a0. The mean lifetime of

memories with A(0) = a0 < 1 drops considerably (Figure 5c and a). This is, however, due to

averaging the lifetime of all memories including those that did not consolidate. Importantly,

in our model, memories with small a0 that did reach the neighborhood of the fixed point

have the same long lifetime as other consolidated memories, independent of the original

encoding strengths as shown by the dashed lines in Fig. 5c.
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(time from insertion to forgetting) as a function of a0. Same scenario and coloring as in a. Dashed

lines are averaged lifetimes of consolidated memories only.

Parameters: N = 8000, f = 0.01, λτ = 5, b = 0.3

15

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 25, 2021. ; https://doi.org/10.1101/2021.08.24.457446doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.24.457446
http://creativecommons.org/licenses/by/4.0/


H. The effects of structural perturbations on memory function

In this section we analyze the effect of damage to the circuit on memory storage and

retrieval. In previous sections, we assumed for simplicity that the neuronal firing threshold

is automatically adjusted to guarantee a fixed mean activation level, f (see Methods). Here

we assume that the firing threshold is fixed since we anticipate that part of the effect of

perturbation is the disruption of the level of activity. Importantly, in the case of constant

threshold, the dependence of Ac on ∆ is not linear. It has a non-zero value for small

∆ reflecting the requirement for the encoding efficacy to be large enough for neurons to

cross the threshold. Above some critical ∆, Ac rises abruptly, causing all memories to lose

stability, due to over-activation of the network when the noise level is high (Fig. S4). At

equilibrium ∆ is below but close to the critical value (for the presented parameter range).

In this scenario, the properties of the unperturbed system are similar to those of the fixed

activity scenario, with a memory capacity that depends on the threshold value. For the

presented results we used the threshold value 0.36 which maximizes capacity in unperturbed

conditions (See SI).

1. Noisy synaptic dynamics

We first consider perturbations of the synaptic learning and consolidation processes by

adding white noise χ to the synaptic dynamics, for all t ≥ tonset,with a diffusion coefficient

D,

dJij
dt

= −1

τ
Jij +

∑
l

ξliξ
l
j (δ(t− l) + bRl(t)) + χij(t),

〈χij(t)〉 = 0,

〈χij(t)χkl(t′)〉 = D2δ(t− t′)δikδjl

(13)

The effect of this noise is approximately an additive contribution to the total variance of

local fields

∆2(t) ≈ 1

N

∑
l

A2
l (t) +

τD2

2N
(1− exp (−2(t− tonset)/τ)) (14)

After the noise onset, ∆ increases rapidly above its critical value, causing a sharp increase in

Ac, and the blocking of rehearsals for all memories. This in turn causes a rapid decrease in
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magnitude of stored memory efficacies, leading to a decrease in ∆ below the critical value and

a decrease in Ac to a value which is between the value before the onset and the value just after

the noise onset. This new equilibrium value of Ac, with reduced capacity, occurs over ∼ τ

(Fig. 6a). Although overall reduction in capacity may be mild for moderate D values, there

is a large reduction in the retrieval probability of memories that were encoded around the

perturbation onset time, due to the sharp transient increase in Ac. In contrast, memories

that have already been consolidated suffer only a mild reduction in survival probability

(relative to unperturbed memories of the same age). Likewise, newly entered memories have

s high probability of consolidation, since they experience the equilibrium value of Ac and

their retrieval probability is similar to the unperturbed case (Fig. 6b).

2. Random synaptic silencing

Another perturbation we consider is the death of a fraction of the synapses. We model the

effect of the synaptic death by multiplying the connectivity matrix Jij by a binary random

dilution {0, 1} matrix:

Jij → CijJij, Cij =

1 with prob. 1− p

0 with prob. p
(15)

Unlike the additive noise considered above, synaptic dilution process is multiplicative, re-

ducing both the effective efficacy of each memory (by a factor 1 − p), and the interference

noise ∆ (by factor
√

1− p), and in general reduces the signal to noise ratio (Methods).

After the dilution onset, Ac barely changes (due to the weak dependence of Ac on ∆ in

the constant threshold scenario), while all the efficacies are reduced, causing a reduction of

retrievability that spreads over the entire age range ( Fig. 6c and d) and a new equilibrium

is achieved slowly.

Interestingly, neural adaptation (modeled here as a decrease in the neural activation thresh-

old) can reduce the memory loss due to silencing (also reported in [41–43]), by reducing

the minimum efficacy required for activation, i.e., Ac, thereby recovering some of the gap

between memory efficacies and Ac (Fig. 7 ).

Thus, our model predicts a qualitative difference in the effects of the two types of per-

turbations: synaptic dilution affects memories of all ages, causing a reduction in capacity
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that develops over a long time and can be partially compensated for by threshold adapta-

tion, while additive synaptic noise results in a deficit largely confined to the time of the

perturbation onset, and fast convergence to a new equilibrium.
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FIG. 6. Perturbations and memory deficits. a: The ratio between the capacity with and without

injected noise vs. the diffusion coefficient D. b: Retrieval probability vs. memory age with noisy

synaptic dynamics (D = 6). Noise onset was before: 5τ (green), 10τ (blue), 20τ (purple), 40τ

(brown). The control (black) is simulated with noiseless dynamics. c: The ratio between the

capacity with and without synaptic dilution vs. the silenced synapses fraction p. d: Retrieval

probability vs. memory age for random synaptic dilution (p = 0.1). Coloring as in b. e: Same

as c, but with p = 0.2. Memories of all ages are affected, with some non-monotonicity caused by

the small efficacies of newly learned memories, dropping more easily below Ac. f: Combination of

synaptic dilution and noisy synaptic dynamics, D = 6 and p = 0.1. Coloring as in b.

Parameters: N = 8000, τ = 160, λτ = 10, b = 0.25
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FIG. 7. Effect of threshold adaptation. Blue bars show capacity with threshold optimized for the
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Parameters: N = 8000, τ = 160, λτ = 10, b = 0.25
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I. Distribution of synaptic decay times

Experiments showing that the time scale of synaptic and spine turnover is variable [40],

and observations of power law memory retention curves in some memory studies [1–4, 44]

encourage consideration of the properties of synaptic dynamics with heterogeneous decay

time constants, yielding,

Jij(t) =
1

Nf(1− f)

∑
l

Aijl (t) (ξli − f)(ξlj − f) (16)

where the efficacies Aijl (t) contributed by each synapse obey

dAijl
dt

= − 1

τij
Aijl +Rl(t) (17)

The mean efficacy of each memory is the average over these contributions,

Al(t) =
〈
Aijl (t)

〉
τij

(18)

where 〈..〉τij denotes the average over the distribution of synaptic time constants. Likewise,

the noise term is proportional to the sum of second moments of the efficacies:

∆2(t) =
f

N

∑
n

〈
(Aijn (t))2

〉
τij

(19)

As an example, we show the case where the decay time constants are power law (Pareto)

distributed , i.e., P (τ) ∝ τ−(α+1) ; τ ≥ τ0, α > 0 (Methods). In the absence of rehearsals

(pure decay), there will be a global catastrophic forgetting for α ≤ 1, where the mean

of the decay rate, and therefore the interference noise, diverges. For α > 1 there will be a

catastrophic age dependent forgetting, as in the case with a uniform decay time scale (See [13]

SI). With stochastic nonlinear rehearsals, for large p the forgetting curve is approximately

exponential, similar to the single τ case (Fig. 8b). This is because the dominant contribution

comes from the shortest time τ0. Interestingly, for intermediate values (1 < α < 1.8),

the forgetting curves have an approximately power-law decay (Fig. 8a). In this regime,

the retrieval probability is affected by contributions from a broad range of time constants:

neither the minimal τ nor outliers with very large values are dominant.
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III. DISCUSSION

A. Consolidation time scale

We have proposed a stochastic self-amplified memory consolidation mechanism and

showed that it leads to smooth forgetting curves that extend much longer than the synaptic

decay time. Our model provides estimates for the global long-term memory properties such

as the capacity of the network, the shape of the forgetting curve and the average lifetime

of memories. Translating synaptic decay time to realistic times is hard. In rodents, spine

turnover time is estimated to be of the order of several weeks in the hippocampus and up

to a year in the cortex [40, 45–48]. In humans, these times may be longer given the lower

metabolic rate [49, 50]; however, there are no direct experimental data. In addition, the

model synaptic decay time τ is in units of the mean inverse rate of encoding of episodic

memory, which is hard to estimate, but it is likely to be of the order of weeks. Thus,

assuming a human spine turnover time of the order of months yields τ of the order of tens

of months, which could lead to mean memory lifetime of several years. At present, these

estimates are speculative.

B. Memory deficiencies

We have considered two types of perturbations to the memory circuit: synaptic death and

increased synaptic noise. Both types of damage result in reduced retrievability of memories

introduced prior to the damage onset, a phenomenon known in the literature as retrograde

amnesia [14–17]. Due to the consolidation effect in our model, the amnesia is temporally

graded: memories learned just before the noise onset are more severely affected than older

ones, because they didn’t have enough time to consolidate, and were more fragile at the

onset time. This effect is more prominent in the case of increased synaptic noise than

synaptic dilution, due to the sharper drop in basins of attraction size after the noise addi-

tion. Perturbations cause a drop in retrieval performance of new memories entering after the

perturbation onset, a manifestation of anterograde amnesia. This effect is temporally graded

as well, being more severe for memories introduced just after the onset, and is especially

prominent deficit in the additive noise case. Another interesting difference is the approach

to a new equilibrium, which is fast in the case of additive noise but slow in the dilution. In
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addition, threshold adaptation can compensate part of the memory dysfunction caused by

dilution, but not by additive noise.

Our model also allows for exploration of transient perturbations (SI), where the damage

lasts for a finite time window [51]. In this case there is again a temporally-graded retrograde

amnesia. Interestingly, new memories introduced after the end of the event not only regain

retrievability, but can even improve their retrievability compared to control. This is due to

the increased forgetting rate during the event, which results in lower interference noise and

increased rehearsal rate after the event end.

The predictions of our model should be contrasted with the pure decay model where similar

perturbations reduce the capacity (maximal age for retrievable memories), but don’t intro-

duce any non-monotonicity in the forgetting curve, which is still a step function, but with a

reduced width.

C. Relation to previous models

In the classical theory of systems memory consolidation [14–16, 18], the interaction be-

tween the hippocampus (HC) and the cortex plays a central role, with HC storing memories

for short period of time, and following rehearsals, memories are transmitted to the cortex

for long-term storage. In the recent Multiple Trace Theory (MTT) [18, 27] autobiographic

memories are stored for long term memory in both HC and cortex and consolidated through

rehearsals that establish multiple memory traces in HC. This model shares some key ele-

ments with our theory, such as ongoing, life-long consolidation of memories and rehearsals

which make memories more robust to perturbations. However, it is unclear how MMT can

scale to large numbers of stored memories. In addition, in [27] the rehearsal statistics (new

trace formation) don’t depend on the robustness of the memories, nor the model takes into

account interference between memories.

A few studies used neural network models where rehearsals are modeled as random visits

of learned memories [29, 31, 34], or implicit rehearsals (via memory traces embedded in the

noise correlations [28]). Yet, none of these papers demonstrated consolidation in a large

network with a number of consolidated memories scaling with network size. They also con-

sider rehearsals of a finite batch of previously encoded memories rather than with life-long

learning. Benna and Fusi [13] studied memory storage with complex synapses, where a con-
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solidation process is implemented in the dynamics of synapses, with a cascade of synaptic

characteristic times. They show that their mechanism gives rise to a power-law decay of

the signal-to-noise ratio (SNR, equivalent to Al(t)/∆(t) in our model) with age. However,

this model still exhibits a deterministic catastrophic age-dependent forgetting, such that all

memories older than a critical age are non-retrievable, whereas all newer memories are al-

most perfectly retrievable. A recent phenomenological model [44] derives a power-law form

for memory retention curves with a power of 1 or smaller. A power close to 1 for intermedi-

ate ages is consistent with our result for a distribution of synaptic decay time. However, at

present, it is unclear whether the experimental paradigms and time scales in which a power

law is observed are relevant to life long episodic memory.

Fiebig and Lansner [33] proposed a three component model, each with different synaptic

decay rate, which performs continual learning with self-generated rehearsals. Similar to our

work, they study the effects of perturbations and show similarities to human data. However,

this work does not provide an analysis of the model, and does not explore the dependence on

the different parameters such as network size and synaptic decay time and rehearsal rates.

Comparison with our results is hampered also by the fact that synaptic decay in their model

is an active process, dependent on memory arrivals among other factors.

D. Limitations and future work

In this paper we don’t explicitly model the rehearsals process - how the system moves

between activation states and visits different attractors. Possible mechanisms could be desta-

bilization of attractors by adaptation [34, 52] or transitions induced by random initialization

processes [29]. These mechanisms will generate a rate of rehearsals per memory that depends

on its basin of attraction size, as in our model, but whether the rate is simply proportional

to the basin’s size as we assume is yet to be tested.

Our model can be extended in a variety of ways, including more biologically plausible neu-

ronal and synaptic integration. Additionally, our framework allows for analyzing the effect

of other types of perturbations, such as post-traumatic stress disorder amnesia [53, 54].
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E. Conclusions

The stochastic nonlinear rehearsal mechanism proposed in our work is, to the best of our

knowledge, the first large-scale memory model that gives rise to realistic gracefully decaying

forgetting probability curves, with exponential or power law tails depending on synaptic

decay rate distribution. Our model’s capacity scales as a power law of the number of neurons,

with a power that approaches unity for a large mean number of rehearsal events per synaptic

decay time. Our model predicts that the onset of perturbation to the circuit, in the form

of synaptic noise, leads to non-monotonic memory deficits affecting more strongly memories

encoded around perturbation onset time, which have not yet a chance to consolidate. The

richness of the model behavior in normal and diseased conditions provides a theoretical

framework for predictions and testing against empirical data on human memory.
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V. METHODS

A. Network model

As described in section II, memories are modeled as sparse, uncorrelated N dimensional

activation patterns (N is the number of neurons), and the synaptic dynamics are governed

by three processes: deterministic synaptic decay with rate 1/τ , Hebbian learning of new

memories, and rehearsal of old memories, which is the central novelty of our model. In

continuous time, eq. (1) becomes:

dJij
dt

= −1

τ
Jij +

∑
l

ξliξ
l
jδ(t− l) + b

∑
k

ξki ξ
k
jRk(t) = −1

τ
Jij +

∑
l

ξliξ
l
j (δ(t− l) + bRl(t)) (20)

The rehearsals are modeled as a point process

Rl(t) =
∑
{tnl }

δ(t− tnl ) (21)

Inserting the ansatz (3), we get that Al obeys the differential equation:

dAl
dt

= −1

τ
Al + bRl(t) (22)

With Al(t) = 0 for t < l and Al(l) = 1.

The single neuron dynamics are binary, and given by:

σi(t+ dt) = Θ(hi(t)− θ) (23)
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where σ(t) is the state of neuron i at time t, Θ(x) is the Heaviside step function, hi(t) is the

local field (total input received by neuron i at time t):

hi(t) =
∑
j

Jijσj(t) (24)

and θ is a threshold, set at every time step such that the total activation of the network is

maintained and equal to fN (practically, in full simulations, at each time step we choose

the fN neurons with the largest local fields and set their state to one, and all the others are

set to zero).

1. Mean field equations, basins of attraction

We would like to find the relation between memory stability, measured by the memory

pattern’s basin of attraction size, and the efficacy of the memory and all other memories

in the system. First, we define two useful quantities: f l+ is the probability of a neuron to

be active in the current state given that it is active in the memory pattern ξl. f l− is the

probability of a neuron to be active in the current state given that it is not active in the

memory pattern ξl. In other words, f l+ is the fraction out of the neurons active in memory

state l that are active in the current state. f l− is the fraction out of the neurons not active

in memory state l that are active in the current state. We will omit the l dependence of f±

from now on. In terms of these quantities,

f =
1

N

N∑
i=1

σi(t) = ff+ + (1− f)f− (25)

For clarity, in this section instead of the memory patterns definition we use above (eq.

(2)) we define the patterns in an equivalent, more explicit way:

ξli =

1 with prob. f

0 with prob. 1− f
(26)

, and we normalize the connectivity matrix accordingly.

The overlap between memory pattern l and the system’s state σ

Ml ≡
1

Nf(1− f)

N∑
j=1

(ξlj − f)σj =
1

Nf(1− f)

(
N∑
j=1

ξljσj(t)− f
N∑
j=1

σj(t)

)
=

=
1

Nf(1− f)
(Nff+ −Nf 2) =

1

(1− f)
(f+ − (ff+ + (1− f)f−) = f+ − f−

(27)
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Now, assume that the current state is close to the memory state ξl. The input to neuron

i which is active in memory pattern l (ξli = 1):

h+
i =

1

Nf(1− f)

N∑
j=1; j 6=i

T∑
n=1

An(ξni − f)(ξnj − f)σj(t) =

= Al(1− f)Ml +
1

Nf(1− f)

N∑
j=1; j 6=i

T∑
n=1; n6=l

An(ξni − f)(ξnj − f)σj(t)

(28)

Averaging h+
i over memories realizations gives Al(1− f)Ml, and the variance:

∆2 =
1

N2f 2(1− f)2

N∑
j,j′=1; j,j′ 6=i

T∑
n,n′=1; n,n′ 6=l

AnAn′〈(ξni −f)(ξn
′

i −f)(ξnj −f)(ξn
′

j′ −f)σjσj′〉 (29)

Now, because the system state is close to the memory state ξl, we can assume it is uncor-

related with all other memory states. Hence, there are contributions only from terms with

j = j′, n = n′:

∆2 = f · 1

N

T∑
n=1; n6=l

A2
n (30)

Applying the central limit theorem, we approximate h+
i by a Gaussian variable with mean

Al(1− f)Ml and variance ∆2. Now, f+ is the probability for h+
i to be larger than θ, which

is given by the complimentary error function, H(x) = 1√
2π

∫∞
x

exp(−0.5t2)dt:

f+ = H

(
θ − Al(1− f)Ml

∆

)
(31)

In a similar way (same noise term, mean equals −AlMlf) we find for f− (for f � 1) :

f− = H

(
θ + AlMlf

∆

)
(32)

Note that we didn’t set the threshold θ, but instead demanded a constant population

activation f . Equations (25), (27), (31) and (32) allow us to write an equation for the

overlap dynamics:

Ml(t+ 1) = G(Ml(t), Al(t)/∆(t)) (33)

where

G(Ml, Al/∆) = H
(
θ∗(Ml, Al/∆)− Al(1−f)Ml

∆

)
−H

(
θ∗(Ml, Al/∆) + AlMlf

∆

)
=

= H
(
H−1(f(1−Ml))− AlMl

∆

)
− f(1−Ml)

(34)
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and

θ∗(Ml, Al/∆) = H−1(f(1−Ml))− f ·Ml · Al/∆ (35)

Therefore, the equation for the overlap fixed points is:

Ml = H

(
H−1(f(1−Ml))−

AlMl

∆

)
− f(1−Ml) (36)

Now, we numerically find the fixed points for M at a given A/∆ by running the dynamics

described by eq. (33). Typically (for large enough A/∆), there will be a stable fixed point

at M = 0, a stable fixed point 0 < Ms ≤ 1 and an unstable fixed point 0 < Mus < Ms.

We approximate the basin of attraction size as the distance Ms−Mus. This way, we obtain

the basin size as a function of A/∆, F (A/∆). We check the validity of our approximations

by simulating a full neural network model and checking numerically the basin of attraction

sizes, and find good agreement (SI), which is the basis for the good agreement in retention

curves between the mean field simulations and the full network simulation (Fig. 3a,b) . We

define the critical efficacy Ac as the efficacy for which Ms = Mus (meaning, the non-zero

overlap solution loses stability). This happens approximately when Ms = Mus ≈ 0.85. As

one can see from equation (36), the fixed points depends only on the ratio A/∆ and on f ,

and therefore Ac/∆ is only a function of f , and we can write Ac = a(f)∆. For f = 0.01

(the typical value we use throughout the manuscript) we find numerically that a(f) ≈ 4.7 .

Analytical approximation for a(f) is given in the SI.

B. Numerical simulations

In our simulations, we first numerically solve the coupled stochastic differential equations

for the efficacies (Eq. (7)). Theoretically our model considers infinite number of memories.

However, practically we solve the equations for a finite but large number of memory efficacies,

typically 200τ − 1000τ , chosen such that Ac saturates to its steady state value. We measure

time in units of the lag between the introduction of two consecutive memories (assumed

constant). At every integration time step dt (small compared to all characteristic timescales

of the system, typically dt = 0.05/λ), a rehearsal event might occur for each memory with

Al ≥ Ac. We generate a uniform random number between 0 and 1 and compare it to

λ · F (Al(t)/∆(t) · dt. A rehearsal event of memory l will happen at time t if the uniform

random number is smaller than λ · F (Al(t)/∆(t) · dt. This approximates the statistics of
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a non-homogeneous Poisson process. By averaging over many such realizations (typically

500), we calculate the efficacy histogram, capacity (counting how many efficacies are above

Ac) and retrieval probabilities (by checking the probability for the efficacy of a memory

introduced l time units into the past to be retrievable now). These calculations are referred

to as ”mean field simulations”, and they don’t include generation of random memories and

building the connectivity matrix.

Full network simulation: When simulating the full network model, after generating the

efficacies, we randomly generate memory patterns (binary vectors of dimension N) to be

stored, and build the connectivity matrix according to eq. (3). Then, to measure retriev-

ability, we initialize the network’s state at a memory pattern, and let the binary neurons

dynamics run until they settle to a steady state. Then, we measure the overlap between

the pattern and the steady-state activity. We say a memory is retrievable if the overlap is

≥ 0.85. For measuring the basin of attraction sizes of the memory patterns, we generate an

initial state by randomly flipping the state of units in the memory pattern (conserving the

total activation fN), and run the dynamics until convergence. Then we measure the overlap

between the final state and the memory pattern. We keep increasing the number of flipped

units until the final state has an overlap smaller than ≥ 0.85 with the memory state. We

define the normalized basin size as the maximal number of flips allowing for a large overlap

divided by 2fN , the maximal number of flips. Results are shown in the SI.

C. Noisy synaptic dynamics

The synaptic dynamics in the presence of Gaussian noise is presented in equation (13).

It is straightforward to show that a solution to the equation can be written as:

Jij(t) =
∑
l

ξliξ
l
jAl(t) +

t∫
0

e−(t−t′)/τχij(t
′)dt′ (37)

with Al(t) obeying eq. (7) as before. The nonlinear effect of the noise arises through the

self consistent requirement, that the rehearsal rate of memory l is proportional to the basin

of attraction size of this memory, which depends on Al and on ∆. We calculate ∆ with the

injected noise (eq. (14)) the same way we calculated ∆ without noise above. Here there is

a non trivial mixed term involving the average Al(t)χij(t), which we found numerically to

be negligible for the parameter range we are interested in.
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D. Synaptic dilution

The random silencing is done by multiplying the connectivity matrix Jij by a binary

matrix:

Jij → CijJij, Cij =

1 with prob. 1− p

0 with prob. p
(38)

We would like to calculate the effect of the dilution on the memory efficacies dynamics, and

for that we need to find the effect on Al(t) and on ∆(t). Let us calculate the local field near

memory l as before:

hli
+ =

N∑
j=1; j 6=i

CijJijσj(t) (39)

Taking the mean over memories and over Cij realizations (denoted by []) we get:

[
hli

+
]

= (1− p)

〈
N∑

j=1; j 6=i

Jijσj(t)

〉
= (1− p)(1− f)MlAl (40)

Here 〈〉 denotes average over memories realizations. As one can see, the efficacies are scaled

by a factor of 1− p. We assumed here we can neglect correlations between Al and Cij. The

second moment:[(
hli

+
)2
]

=
∑
j,j′ 6=i

[
JijJij′CijCij′σjσ

′
j

]
=
∑
j,j′ 6=i

(
(1− p)δjj′ + (1− p)2(1− δjj′

) 〈
JijJij′σjσ

′
j

〉
(41)

There are two contributions arising from the Cij randomness. Now, when calculating the

local field variance, the term proportional to (1 − p)2 is exactly canceled by the squared

mean, and we are left with:[(
hli

+ −
[
hli

+
])2
]

= (1− p)
∑
j,j′ 6=i

〈
J2
ijσ

2
j

〉
= (1− p)∆̃2 (42)

where ∆̃2 is the local field variance without dilution.

Now, we obtain the efficacies modified dynamics by using these expressions for the signal

and noise to calculate the basins of attraction sizes as before.

E. Non-uniform characteristic decay time

Assuming synapse Jij has a decay rate εij, and all memories have unit initial efficacy.

Memory l appears for the first time at time l. The learning dynamics is:
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Jij(t+ ∆t) = (1− εij∆t)Jij +
∑
l

ξliξ
l
jδt,l + b

∑
k,nk

ξliξ
l
jδt,tnkk

(43)

In continuous time,

dJij
dt

= −εijJij +
∑
l

ξliξ
l
jδ(t− l) + b

∑
k

ξliξ
l
jRk(t) = −εijJij +

∑
l

ξliξ
l
j (δ(t− l) +Rl(t)) (44)

Rk(t) = b
∑
{tnk}

δ(t− tnk) (45)

Assuming all synapses starts at zero value, the solution can be written as:

Jij(t) =
∑
l

ξliξ
l
j

t∫
0

dt′e−εij(t−t
′) (δ(t− l) +Rl(t)) =

∑
l

ξliξ
l
jA

ij
l (t) (46)

Let us define efficacies

Aijl = Θ(t− l)
t∫

0

dt′e−εij(t−t
′) (A0δ(t− l) +Rl(t)) (47)

Aijl obeys the differential equation:

dAijl
dt

= −εijAijl +Rl(t) (48)

With Aijl (t) = 0 for t < l and Aijl (l) = 1.

Given that the decay rates have a probability density ρ(ε), let us define:

Ak(t) =
〈
Aijk (t)

〉
εij

=

∫
dερ(ε)

Θ(t− l)
t∫

0

dt′e−ε(t−t
′) (A0δ(t− l) +Rl(t))

 (49)

and

Aijk (t) = Ak(t) + δAijk (t) (50)

Jij(t) =
∑
l

ξliξ
l
jAl(t) +

∑
l

ξliξ
l
jδA

ij
l (t) (51)

Including normalization and sparseness considerations,

Jij(t) =
1

Nf(1− f)

(∑
l

(ξli − f)(ξlj − f)Al(t) +
∑
l

(ξli − f)(ξlj − f)δAijl (t)

)
(52)
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Now let us calculate the mean local field on neuron i in a state near memory state k, and

assume ξki = 1:

hki =
∑

j 6=i Jijσj = (1− f)MkAk + 1
Nf

∑
j 6=i(ξ

k
j − f)δAijk (t)σj+

+ 1
Nf(1−f)

(∑
l 6=k, j 6=i(ξ

l
i − f)(ξlj − f)σjAl(t) +

∑
l 6=k, j 6=i(ξ

l
i − f)(ξlj − f)σjδA

ij
l (t)

)
(53)

Taking an average over the memories realizations and the decay rates, we get:

〈
hki
〉
ξ,ε

= (1− f)MkAk (54)

And the variance:〈(
δhki
)2
〉
ξ,ε

=
f

N

∑
l 6=k

〈
(Aijl )2

〉
ε

+
(〈

(Aijk )2
〉
ε
− A2

k

) 1

N2f 2

∑
j 6=i

〈
(ξkj − f)2σ2

j

〉
ξ

(55)

The second term does not include summation over all memories, and therefore it is

negligible for large N values (the first term is O(1) while the second is O(N−2). This leads

to eq.(19).

a. Power law τ distribution For each synapse we generated synaptic decay character-

istic times from a power law (Pareto) distribution with density:

P (τ0) =

α · τ
−(α+1)
0 τ0 ≥ 1

0 τ0 < 1
(56)

In this distribution, for α < 1 the mean diverges. We scaled the resulting τ ij0 values by a

uniform factor: τ ij = 2ω ·N · τ ij0 . We fixed ω value for the average number of rehearsals per

mean decay time R0, and used it to set the λ parameter by dividing R0 by the empirical

average of the generated decay times. Next we solved the stochastic differential equations

(48) numerically. The rehearsals are generated with time dependent rates proportional to

the basin of attraction size, now as a function of the average and variance of the memory

efficacies over all synaptic timescales.
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