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Abstract 33 

Background: 34 

3D imaging, such as X-ray CT and MRI, has been widely deployed to study plant root structures. 35 

Many computational tools exist to extract coarse-grained features from 3D root images, such as 36 

total volume, root number and total root length. However, methods that can accurately and 37 

efficiently compute fine-grained root traits, such as root number and geometry at each hierarchy 38 

level, are still lacking. These traits would allow biologists to gain deeper insights into the root 39 

system architecture (RSA). 40 

Results: 41 

We present TopoRoot, a high-throughput computational method that computes fine-grained 42 

architectural traits from 3D X-ray CT images of field-excavated maize root crowns. These traits 43 

include the number, length, thickness, angle, tortuosity, and number of children for the roots at 44 

each level of the hierarchy. TopoRoot combines state-of-the-art algorithms in computer graphics, 45 

such as topological simplification and geometric skeletonization, with customized heuristics for 46 

robustly obtaining the branching structure and hierarchical information. TopoRoot is validated 47 

on both real and simulated root images, and in both cases it was shown to improve the accuracy 48 

of traits over existing methods. We also demonstrate TopoRoot in differentiating a maize root 49 

mutant from its wild type segregant using fine-grained traits. TopoRoot runs within a few 50 

minutes on a desktop workstation for volumes at the resolution range of 400^3, without need for 51 

human intervention. 52 

Conclusions: 53 

TopoRoot improves the state-of-the-art methods in obtaining more accurate and comprehensive 54 

fine-grained traits of maize roots from 3D CT images. The automation and efficiency makes 55 
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TopoRoot suitable for batch processing on a large number of root images. Our method is thus 56 

useful for phenomic studies aimed at finding the genetic basis behind root system architecture 57 

and the subsequent development of more productive crops. 58 

Keywords 59 

Root system architecture, Phenotyping, 3D Imaging, Topology, Computer Graphics  60 

Introduction 61 

Roots are the primary means by which the plant absorbs water and nutrients, and they provide 62 

anchorage to the plant. These functions are largely determined by the root system architecture 63 

(RSA) [10, 2, 8], which describes both the geometry of individual roots and their hierarchical 64 

relationships. Quantifying RSA enables efforts to discover the genetic control of root traits, 65 

which can lead to improved crop productivity while minimizing adverse environmental effects 66 

[8]. However, RSA is difficult to study owing to roots’ poor accessibility as the “hidden” half of 67 

the plant. Traditionally, roots are excavated from the soil, washed, and then measured by hand 68 

using devices such as rulers, calipers, and protractors. This process is not only labor-intensive 69 

but also prone to human errors. More importantly, many aspects of RSA, particularly those 70 

pertaining to lateral roots of higher order, are almost impossible to measure by hand. 71 

 72 

Advances in 3D imaging, including X-ray CT, MRI, and optical imaging [20, 27, 15], have 73 

allowed root shapes to be captured digitally either after excavation or in situ. The availability of 74 

such imaging data has paved the way for recent efforts towards computational quantification of 75 

root system architecture [23, 19, 28]. However, most image-based root phenotyping methods 76 

only compute overall traits such as the volume, depth, convex hull volume, total root length, and 77 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.24.457522doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.24.457522
http://creativecommons.org/licenses/by/4.0/


4 

 

root number [33, 6, 14, 5]. Though useful, these traits which are aggregated over the whole root 78 

system do not capture the branching structure or the hierarchical organization of individual roots, 79 

which provide a much more comprehensive description of RSA. Recently, a system for multi-80 

view scanning and subsequent computational analysis, known as DIRT/3D [12], was proposed to 81 

measure detailed traits of maize root crowns. The system can report 18 traits that concern the 82 

geometry of the stem (e.g., diameter and depth), the upper whorls (e.g., inter-whorl distance) and 83 

their individual nodal roots (e.g., length, angle and diameter). An inherent challenge for multi-84 

view reconstruction, due to occlusion, is resolving densely packed roots. As a result, DIRT/3D 85 

does not provide a full root hierarchy of the root crown beyond the nodal roots.   86 

 87 

To our knowledge, DynamicRoots [32] is the only published and validated root phenotyping 88 

method that produces a full branching hierarchy and root traits associated with each hierarchy 89 

level in 3-dimensions. DynamicRoots is designed for a time-series of root systems grown in 90 

transparent gel [17]. These seedling-stage root systems tend to have a relatively simple geometry 91 

and structure, which makes it possible to obtain high quality 3D reconstructions using multi-view 92 

imaging [39]. DynamicRoots first employs graph analysis on the voxelized root system at each 93 

time-point to identify the root branches. Hierarchical relations among the branches are first 94 

determined by the length of the branches and then refined by the time function obtained by 95 

aligning root architectures across time. However, DynamicRoots makes two assumptions that 96 

limit its application to other types of root images. First, the input shapes can only have a mild 97 

amount of topological errors, including disconnected root components (e.g. due to limits in 98 

resolution), root branches forming loops due to touchings (e.g. due to limits in resolution and 99 

noise), and voids of space surrounded by the surface of the root (e.g. due to high optical density 100 
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of the root). Second, the time series must be dense enough to observe the correct root hierarchy. 101 

Neither assumption may hold for other imaging setups, such as X-ray CT or MRI scans of 102 

complex roots, which may lead to numerous topological errors after image segmentation and 103 

have few, and often a single, time point available.  104 

 105 

In this work, we present TopoRoot, a method for obtaining the complete root hierarchy and 106 

computing the associated traits from a single 3D X-ray CT scan of excavated maize root crowns. 107 

TopoRoot adopts a multi-step approach to treat the topological errors in the input image, and it 108 

computes the hierarchy and traits using a high-fidelity skeleton representation of the root system 109 

architecture. Our method builds on state-of-the-art algorithms from computer graphics and 110 

introduces customized heuristics tailored to the image features and the maize root structure. 111 

 112 

On a set of X-ray CT scans of 45 excavated maize root crowns where manual measurements of 113 

nodal root counts were made, TopoRoot shows dramatic improvements in accuracy compared to 114 

DynamicRoots. As a demonstration of the utility of TopoRoot, several of TopoRoot's fine-115 

grained traits showed an ability to differentiate between two groups of genetically differentiated 116 

species within this data set.  On another set of 495 maize root images simulated by 117 

OpenSimRoot [24] with varying age, complexity, and noise level, TopoRoot exhibits improved 118 

accuracy in a variety of coarse-grained and fine-grained traits over GiaRoots [33] and 119 

DynamicRoots.  120 

 121 

TopoRoot is completely automated and has only a few parameters to set. On a standard desktop 122 

computer, TopoRoot runs within a few minutes for images at the resolution range of 400^3. This 123 
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makes TopoRoot suited for batch processing a large set of images in a high-throughput analysis 124 

pipeline. The software package is freely distributed on GitHub with our test dataset. 125 

Material and Methods 126 

Data preparation 127 

Fig. 1 128 

 129 

Picture of the X-ray setup. (A) Each maize root crown was clamped and placed on a turntable, 130 
which was rotated for 3 minutes while radiographs were collected at a rate of 10 frames per 131 
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second. (B) efX-CT software was used to reconstruct the scan into a 3D grayscale volume 132 
(pictured). 133 

The main data set used for validation consists of 59 maize roots which were planted in June 2020 134 

at Planthaven Farms in O’Fallon, Missouri (latitude 38.84871204483824, longitude -135 

90.68711352048403) in silt loam soil. Fields received fertilization with ammonium nitrate. Seeds 136 

were planted using jabtype planters into 3.65-m long rows (~25.4-cm within row spacing) on 137 

0.9144-meter row-to-row spacing. The maize plants (Rt1-2.4 MUT) that had mutation on the 138 

Rootless1 gene are known to have decreased nodal root counts [16] compared to their wild-type 139 

counterparts (Rt1-2.4 WT). After 54-57 days of growth, the roots were excavated using the 140 

Shovelomics protocol [34] in September 2020 and washed to remove soil. We used an X5000 X-141 

ray imaging system and efX-DR software (NSI, Rogers, MN) to collect X-ray computed 142 

tomography (XRT) data (pictured in Figure 1). The X-ray source was set to a voltage of 70kV, 143 

current of 1700µA, and focal spot length of 119μm. Samples were clamped and placed on a 144 

turntable for imaging at a magnification of 1.17X and 10 frames per second (fps), collecting 145 

1800 16-bit digital radiographs over a 3 minute scan time. efX-CT software was used to 146 

reconstruct the scan into a 3D volume at 109μm voxel resolution. This volume was exported as a 147 

16-bit RAW volume. Following imaging, manual counts were collected for the nodal roots. Each 148 

sample was dissected starting at the highest node (stalk end) moving downward to the root tips. 149 

Only attached roots were counted towards the total number of developed roots at each node. 150 

Finally, 14 scans were removed from the analysis due to excessive soil present in the imaging 151 

and missing whorls. The remaining 45 scans and their manual nodal root counts provide 152 

validation for TopoRoot’s computed values. 153 

It is generally difficult to obtain manual measurement of fine-grained root traits beyond counting 154 

the nodal roots. To validate other fine-grained traits produced by our method, we supplement the 155 
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real data set with a systematically created set of simulated root images. We adopt OpenSimRoot 156 

[24], a highly customizable 3D root growth simulation software that has been widely used in 157 

modeling and visualizing root growth [11, 31, 7]. We used OpenSimRoot to create 55 maize 158 

roots ranging in days of growth from 30 to 40 days, numbers of nodal roots ranging from 31 to 159 

69, number of whorls from 5 to 6, and lateral root branching frequency from 0.3 to 0.7 cm / 160 

branch. The diameter of the stem was set to be 2 cm, starting diameter for nodal roots is 0.3 cm 161 

(gradually decreasing to 0.1 cm after 10 days of growth), lateral roots is 0.04 cm, and fine lateral 162 

roots is 0.02 cm. OpenSimRoot provides a detailed hierarchy for each of the simulated roots, 163 

from which we obtain the ground-truth traits.  164 

Fig. 2 165 

 166 

Iso-surfaces (at level 0) of simulated maize root images with increasing amounts of noise (e). 167 
The example is at 40 days of growth. The closeups show fine lateral roots. With increased noise, 168 
the roots exhibit less regular geometry and more topological errors (e.g., disconnections and 169 
loops). 170 
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For each simulated root, we create a 512^3 image by computing the signed distance field from 171 

the surface of the root using the method of [35] with the inside of the surface having positive 172 

values and the outside having negative values. To simulate various levels of image noise, we 173 

randomly perturb the distance value at each voxel, with the amount of perturbation ranging from 174 

0 to 0.08 cm in 0.01 increments. This results in 9 images at increasing noise levels for each of the 175 

55 roots, and thus 495 images in total. Figure 2 shows images of one simulated root (at day 40) 176 

at different noise levels. Note that the amount of geometric irregularity and topological noise 177 

(e.g., disconnected components and loops) increase with the noise level.  178 

Thresholding 179 

Although the X-ray images have good contrast between roots and air, due to the spatial variation 180 

in the contrast, limited resolution and noise, there is typically no common threshold that can 181 

accurately capture both thicker (e.g., nodal) and thinner (e.g., lateral) roots. To obtain the best 182 

result, our method therefore asks the user to provide three thresholds, visualized in Figure 3. The 183 

shape threshold provides the best balance between capturing thick and thin roots, but it may 184 

contain many topological errors (e.g., disconnected thin roots and merged thick roots). We 185 

additionally ask for a kernel threshold (the lowest value that avoids merging of thick roots) and a 186 

neighborhood threshold (the highest value that avoids disconnecting thin roots), such that the 187 

increasing ordering of the three thresholds are neighborhood, shape, and kernel. Our method will 188 

attempt to fix topological errors at the shape threshold guided by the neighborhood and kernel 189 

thresholds. For this data set, we set the shape threshold to be 0, kernel threshold to be 0.03 and 190 

neighborhood threshold to be -0.15. 191 

Fig. 3 192 
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193 
Iso-surfaces n, s, and k, as visualized for an X-ray image of a maize root. The red closeup shows 194 
a fine lateral root which is connected in n, but disconnected in s and which has disappeared in k. 195 
The light blue closeup shows two nodal roots which are merged together in n and s, but separated 196 
in k. 197 

Overview 198 

Our pipeline takes as input a 3D grayscale image with three thresholds (shape, kernel and 199 

neighborhood) and produces a hierarchy and associated traits in four steps (Figure 4):  200 

1. Topological simplification: Most topological errors on the iso-surface at the shape 201 

threshold are removed by combining a global optimization algorithm [38] and a heuristic 202 

that fills in the hollow space inside the stem and other thick roots. 203 

2. Skeletonization: A geometric skeleton capturing the branching structure is computed by 204 

first running an existing skeletonization algorithm [36, 37] and then removing cycles on 205 

the skeleton using a minimum-spanning tree. 206 

3. Inferring hierarchy: Each skeleton branch is associated with a hierarchy level using a 207 

heuristic that favors a shallow hierarchy while encouraging longer branches at lower 208 

levels. 209 

4. Computing traits: A suite of root traits, such as the count, lengths, angles, thickness, and 210 

tortuosity, are computed from the skeleton at each level of the hierarchy. 211 
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These steps are detailed in the next sections.  212 

Fig. 4 213 

 214 
The pipeline of TopoRoot for computing fine-grained traits from a 3D X-ray image. Beginning 215 
from a 3D grayscale image (A), TopoRoot first simplifies the topological complexity of the iso-216 
surface (B), then it creates a geometric skeleton capturing the branching structure (C), from 217 
which a hierarchy is obtained (D) and the traits are subsequently computed. 218 

Topological simplification 219 

As shown in Figures 1 and 2, iso-surfaces of input images often contain numerous topological 220 

errors, including disconnections, loops, and voids. These errors make it challenging to infer the 221 

branching structure of the root system. We use a recent algorithm [38] to maximally remove 222 

topological errors. Given the iso-surfaces at three thresholds (shape, kernel and neighborhood), 223 

the algorithm attempts to remove all topological features on the iso-surface at the shape threshold 224 

that are not present on either of the other two iso-surfaces. The algorithm allows both addition 225 

and removal of contents to the shape’s iso-surface, and it tries to minimize these geometric 226 

changes to achieve topological simplification. This algorithm can effectively connect broken 227 

branches (if they are contiguous at the neighborhood threshold) and split merged branches (if 228 

they are separate at the kernel threshold), as shown in Figure 5A and 5B. 229 
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A common issue in XRT scans of dried roots is that the interior space of the stem and some thick 230 

root branches often appears to be hollow. Since our subsequent analysis of the hierarchy relies on 231 

a skeleton representation of the root architecture, we need to fill in such hollow space so that the 232 

resulting skeleton captures the solid cylindrical shape of the roots (instead of only the walls). 233 

However, identifying such interior space is not straight-forward. In the ideal scenario, at the 234 

shape threshold, the wall of the stem or root branch completely separates the interior space from 235 

the outside space, making the interior space a topological void and hence easy to detect. But 236 

oftentimes the iso-surface at the shape threshold exhibits “tunnels” on the wall of the stem or 237 

branch (see Figure 5A, top-left purple box), which connect the interior space with the outside 238 

and making it impossible to identify as a topological feature. Applying the algorithm of [38] does 239 

not fill in the hollow space. On the contrary, it may merge nearby small tunnels into larger 240 

tunnels to reduce the number of topological loops (see Figure 5B, top-left).  241 

Fig. 5 242 

 243 
Topological simplification applied to a root image. (A): The input iso-surface at the shape 244 
threshold contains numerous topological errors such as disconnections (red box) and loops (cyan 245 
box), and tunnels exist on the stem wall (highlighted in the purple box) that connect the hollow 246 
interior space to the outside. (B): Applying the algorithm of [38] resolves the disconnections and 247 
loops (red and cyan boxes), but the hollow space inside the stem remains connected to the 248 
outside through tunnels (highlighted in the purple box). (C): By applying the filling heuristic 249 
prior to calling [38], the stem’s interior is filled in without introducing new topological errors. 250 
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We develop a simple heuristic to identify and fill the hollow interior spaces. Our assumption, 251 

based on observation of our data, is that such spaces usually become topological voids at the 252 

lower, neighborhood threshold (see Figure 6A). These voids, however, are usually smaller than 253 

the hollow space at the shape threshold, and hence need to be expanded before filling in. To do 254 

so, we first erode the set of all voxels above the neighborhood threshold, noted as 𝑉!, onto the set 255 

of voxels above the shape threshold, noted as  𝑉", while preserving the topology of 𝑉!. The 256 

erosion is prioritized by the intensity, such that voxels having lower intensity are eroded earlier. 257 

The eroded voxel set, denoted as 𝑉! ', consists of 𝑉" and a minimal set of voxels needed to achieve 258 

the topology of 𝑉!, denoted as 𝑉# (colored red in Figure 6B). We then fill each void of 𝑉! ', as 259 

well as those voxels in 𝑉# adjacent to these voids (see Figure 6C). Since filling may introduce 260 

additional topological errors, such as loops or new voids, we call the heuristic prior to applying 261 

the algorithm of [38]. This produces a topologically simple root shape with filled stems and 262 

branches (see Figure 6C). 263 

Fig. 6 264 

 265 
Filling the hollow space inside the stem and thick branches. (A) A cross section of a stem, 266 
showing voxels at or above the shape threshold (white, denoted by 𝑉") and voxels at or above the 267 
neighborhood threshold (gray, denoted by 𝑉!). Note that the hollow interior of the stem is 268 
connected to the outside space in 𝑉", but it forms a void disconnected from the outside in 𝑉!. (B) 269 
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The result of a topology-preserving erosion of 𝑉! onto 𝑉", denoted by 𝑉!$, which consists of 𝑉" 270 
(white) and additional voxels (red) needed to retain the topology of 𝑉!. (C) The voids of 𝑉!$, as 271 
well as any voxels that are in 𝑉!$ but not in 𝑉"	(denoted 𝑉#) are filled in.  272 

Not all topological errors will be removed at the end of this step. In particular, the algorithm of 273 

[38] will retain those topological features (e.g., loops) that exist on all three thresholds (shape, 274 

kernel, and neighborhood). Removing these larger-scale errors often requires more careful 275 

analysis of the root architecture, for example, to prevent breaking a root in the middle. We shall 276 

address these remaining issues in the next step of our pipeline and with the help of a geometric 277 

skeleton. 278 

Skeletonization 279 

To obtain the root hierarchy and associated traits, our method relies on a representation of the 280 

root system as a curve skeleton - a connected set of curves lying in the center of the root 281 

branches and capturing the branching structure. While there are many algorithms for computing 282 

skeletons of 3D shapes, we adopt the methods of [36, 37] because of their scalability to high-283 

resolution iso-surfaces, robustness to noise, and the final representation as an embedded graph 284 

(with vertices and edges) which is more convenient for connectivity analysis than voxel-based 285 

skeletons. These methods have been previously adopted in skeleton-based phenotyping of 286 

sorghum panicles [9]. Specifically, given the topologically simplified iso-surface produced by 287 

the previous step, [37] computes a 2-dimensional centered structure known as the medial axis, 288 

and [36] further reduces the medial axis to 1c-dimensional curves. The resulting skeleton is also 289 

associated with shape attributes, including the thickness and the width of the tubular cross-290 

sections, which are useful in our subsequent analysis. An example is shown in Figure 4C (also in 291 

Figure 7A).  292 
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Fig. 7 293 

 294 
Removing cycles on the curve skeleton. (A) A curve skeleton computed by the methods of [36, 295 
37], where color indicates the thickness of the roots (redder curves lie in thicker roots). (B) A 296 
skeleton junction (in the boxed region in (A)) caused by merging between two roots in the iso-297 
surface, which leads to a cycle in the skeleton. (C) The cycle is removed by detaching a skeleton 298 
segment from the junction.  299 

As mentioned earlier, some topological errors remain after topological simplification. These 300 

errors manifest as disconnected components and cycles (a path of edges which begin and end at 301 

the same vertex) on the curve skeleton. To reduce the number of components to one, we simply 302 

take the largest connected component on the skeleton. To remove cycles in that component, we 303 

observe that cycles are usually caused by merging of distinct roots, which take place at junctions 304 

(vertices with degree three or higher) on the skeletons (Figure 7B). Our goal is to identify 305 

junctions that correspond to merging between roots, as opposed to natural branching of roots, 306 

and resolve the cycles by detaching skeleton segments from such junctions (Figure 7C). This is 307 

achieved by computing the minimum spanning tree (MST) on a weighted graph, as described 308 

below. 309 

As we are primarily concerned with the junctions of the skeleton, we construct an abstract graph 310 

where each node represents either a junction vertex or a continuous skeleton segment between 311 
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junctions (Figure 8A, 8B). A graph edge connects a node representing a skeleton junction with 312 

another node representing a skeleton segment incident to the junction. Removing a graph edge 313 

corresponds to detaching a skeleton segment from a junction (Figure 8C, 8D).  314 

Fig. 8 315 

 316 
Illustration of our cycle-breaking algorithm. (A) A curve skeleton (red) of a synthetic root 317 
system (blue) that contains a cycle. (B) A graph that represents each skeleton junction or 318 
segment by a node (yellow circle) and connects two nodes representing a junction and an 319 
incident segment by an edge (black line). 𝑒 is a graph edge, 𝑣& is the node 𝑒that represents a 320 
skeleton junction, 𝑢&the other node of 𝑒 which represents a skeleton segment, and 𝑒is the unit 321 
vector of the tangent direction of the skeleton segment represented by node𝑢& towards the 322 
junction node 𝑣&. (C) The MST of the graph removes the cycle by excluding an edge (green 323 
box). (D) The corresponding skeleton segment is detached from the skeleton junction. 324 

The MST is the subset of edges such that all graph nodes remain connected and the sum of edge 325 

weights is minimal. An MST is always free of cycles. We define the edge weights such that a 326 

lower weight implies a higher likelihood that a skeleton segment should be attached to a 327 

junction. Our weight definition is motivated by the observation that a merging between two 328 

distinct roots often results in a “T” junction on the skeleton where, among all skeleton segments 329 

incident to the junction, one segment (which should be detached) is close to being orthogonal to 330 

the other segments (see Figure 8B). In contrast, a typical branching of the root usually results in 331 

a “Y” junction on the skeleton where each skeleton segment at the junction forms an obtuse 332 
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angle with at least one other segment. However, branching close to the stem of the root could be 333 

more like “T” than “Y”, due to the large difference in thickness between the main and offspring 334 

roots. Our weight encourages “Y” junctions while preventing detachment close to the stem.  335 

Specifically, let 𝑒 be a graph edge, 𝑣& the node of the edge 𝑒 that represents a skeleton junction, 336 

𝑢& the other node of 𝑒 which represents a skeleton segment, and 𝐸(𝑣) the set of edges incident to 337 

node 𝑣. We denote by 𝑒 the unit vector of the tangent direction of the skeleton segment 338 

represented by node 𝑢& towards the junction node 𝑣&. We first define the angle deviation term 339 

𝑤'!()& as: 340 

𝑤'!()&(𝑒) = min
&!∈+(-"),&!0&

-2 − 01 + 𝑒 ⋅ 𝑒$	56. 341 

This term reaches the minimal value of 0 when there is some edge 𝑒$ incident to 𝑣&that has the 342 

same direction as 𝑒, and it attains the maximal value of 2 when all other edges incident to 𝑣& 343 

have the opposite direction as 𝑒. Next, we define 𝑤12"(𝑒) as the shortest distance along the 344 

skeleton between the skeleton junction represented by 𝑣& and any skeleton vertex in the stem. 345 

Here, we extract the stem from the skeleton using the heuristic reported in [9]. The heuristic 346 

starts from a subset of the skeleton whose thickness measure is above a threshold (since the stem 347 

is usually the thickest portion of the maize root system) and extracts the longest simple path from 348 

the subset. Finally, the edge weight is defined as: 349 

𝑤(𝑒) = 𝜆𝑤12"(𝑒) + 𝑤'!()&(𝑒). 350 

Here 𝜆 is a balancing parameter, which is set to 0.05 in our experiments. 351 

Inferring hierarchy 352 
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Fig. 9 353 

 354 
Heuristic for inferring hierarchy on a cycle-free skeleton. (A) The input skeleton with only the 355 
stem region labelled (blue). (B) The first stage associates each parent segment with one of its 356 
children segments (indicated by arrows). The numbers are the depth stored at each segment, an 357 
intermediate quantity used to determine the parent-child association. (C) The second stage 358 
assigns hierarchy levels to each skeleton segment based on the parent-child association. 359 

A key feature of TopoRoot is computing the hierarchy of the maize root system consisting of the 360 

stem, nodal roots, and lateral roots at different levels. Given the cycle-free skeleton computed 361 

from the previous steps, we next label each vertex of the skeleton as either part of the stem path, 362 

the stem region, a nodal root, or a lateral root at a specific level. As described in the previous 363 

step, the stem path is identified using the thickness-based heuristic of [9]. The stem region is then 364 

defined as the set of skeleton edges within a cylindrical region around the skeleton path, where 365 

the radius of the cylinder varies along the stem path and is set to be 1.6 times the thickness 366 

measure stored on the path vertices. In Figure 4D, the stem path and stem region are colored dark 367 

blue. 368 

To label the remaining skeleton edges by the root hierarchy (e.g., nodal roots, 1st-order lateral 369 

roots, 2nd-order lateral roots, etc.), we make the following two assumptions. First, as assumed in 370 

previous works including DynamicRoots, roots at lower levels of the hierarchy are generally 371 

longer. For example, nodal roots are generally longer than lateral roots, and 1st-order lateral 372 
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roots are generally longer than 2nd-order lateral roots, and so on. Second, the maximum number 373 

of hierarchy levels in a root system is generally kept low. With these assumptions, we developed 374 

a labelling heuristic that minimizes the maximal level of hierarchy in the root system while 375 

encouraging longer roots to be at lower levels. 376 

Our heuristic proceeds in two stages, a bottom-up traversal of the skeleton and then a top-down 377 

traversal. They are illustrated in Figure 9 using a cartoon example. We start with a skeleton 378 

labelled only by the stem region (Figure 9A). Since the skeleton has no cycles, it is a “tree”. We 379 

consider the stem region as the “root” of this tree, and this induces a partial ordering of the 380 

skeleton segments such that each skeleton junction (outside the stem region) is incident to 381 

exactly one parent segment and zero or more children segments. The first stage of the heuristic 382 

computes, at each skeleton junction, the association between the parent skeleton segment with 383 

one of the children segments as the continuation of the same root (see arrows in Figure 9B). The 384 

association is computed by visiting the skeleton segments from the leaves of the skeleton 385 

towards the stem and updating a depth d(b) (numbers in Figure 9B) and a distance l(b) at each 386 

visited segment 𝑏, as follows. First, for each segment 𝑏 incident to a leaf vertex of the skeleton, 387 

we set d(b)=0 and l(b) as the length of the segment 𝑏. We then iteratively visit parent segments 388 

whose children segments have already been visited. For a parent segment b whose children are 389 

b1, …., bn, we associate 𝑏 with the child 𝑏2 that has the maximal depth 𝑑(𝑏2). If multiple children 390 

have the same maximal depth, 𝑏 is associated with the 𝑏2 with maximal length 𝑙(𝑏2). We then set 391 

d(b)=d(bi)+1 and l(b) to be l(bi) plus the length of segment 𝑏. In the second stage, we visit all 392 

segments from the stem to the leaves and assign the hierarchy levels. We assign each segment 393 

attached to the stem region a hierarchy level of 1 (i.e., nodal roots). For each parent segment 394 

assigned with level 𝑘, we assign level 𝑘 to the child segment associated with the parent 395 
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(computed from the first stage) and level 𝑘 + 1 to all other children segments. The resulting 396 

hierarchy labelling is shown in Figure 9C both as numbers and the heat color (warmer colors 397 

have higher levels). 398 

Computing traits 399 

Given the skeleton and the hierarchy labelling, TopoRoot computes a suite of coarse-grained and 400 

fine-grained traits of the root system. Like existing works (e.g. [33]), we compute global traits 401 

which are aggregated over all the hierarchy levels, including the total root length, number of 402 

roots, and average root length. For fine-grained traits, for each hierarchy level (e.g., nodal roots, 403 

1st-order lateral roots, 2nd-order lateral roots, etc.), we compute the root count, average and total 404 

root length, average root tortuosity, average root thickness, average number of children, and the 405 

average emergence, midpoint, and tip angle. We also report the length and thickness of the stem. 406 

Some of these traits, such as stem length and per-level angle traits, have not been previously 407 

reported by existing tools (including DynamicRoots [32]). Details on how each of these traits is 408 

computed can be found in supplementary table 1.  409 

Results 410 

We validated TopoRoot on the aforementioned dataset and compared it with some previous 411 

tools, including DynamicRoots [32] (for both global and fine-grained traits) and a 3D version of 412 

GiaRoots [4] first published in [33] (for global traits only). We used default parameters for both 413 

DynamicRoots and GiaRoots. DynamicRoots requires a “seed” voxel, which we set as a random 414 

voxel from the top slice. We ran DynamicRoots and GiaRoots on the thresholded images at the 415 

shape threshold. To illustrate the effect of topological errors on these tools, we extend each tool 416 
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by first performing the topological simplification step of TopoRoot. We call the extended tools 417 

DynamicRoots+ and GiaRoots+ respectively. TopoRoot is implemented in C++, and all 418 

experiments were run on a Windows 10 machine with an Intel(R) Core(TM) i9-10900X 419 

Processor @ 3.70 GHz and 64.0 GB of memory (RAM). 420 

Excavated root crowns 421 

First, we visually compare the root hierarchies computed by TopoRoot, DynamicRoots, and 422 

DynamicRoots+ for a randomly picked root crown (Figure 10). DynamicRoots produces a point 423 

cloud where each point represents an input voxel and is labelled by its hierarchy level (0, 1, 2, 424 

etc.). As explained in [32], the hierarchy levels produced by DynamicRoots reflect the geometric 425 

branching structure and may not map well to the biological hierarchy (e.g., stem, nodal roots, 426 

lateral roots, etc.). For this reason, as well as the inaccuracy in determining hierarchy without a 427 

dense time series and the different morphology of mature root crowns in our dataset from those 428 

of seedlings grown in a gel environment (for which DynamicRoots was designed), 429 

DynamicRoots tends to produce significant mis-classifications of root branches in our dataset. 430 

For example, the level-0 roots obtained by DynamicRoots include not only the stem but quite a 431 

few nodal roots (black boxes). These errors propagate to higher-level roots, which fork from 432 

lower-level roots. In addition, since the thresholded root image at the shape threshold contains 433 

many disconnected components, and because DynamicRoots only considered one connected 434 

component, a significant portion of the root is missing in the analysis of DynamicRoots (red 435 

box). Although performing the topological simplification step in TopoRoot allows 436 

DynamicRoots+ to recover a more complete root system, mis-labelling of hierarchy levels 437 

remains (black boxes). In contrast, TopoRoot produces a more visually plausible hierarchy 438 

separating the stem (region), nodal roots, and lateral roots. 439 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.24.457522doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.24.457522
http://creativecommons.org/licenses/by/4.0/


22 

 

Fig. 10 440 

 441 

Visual comparison of root hierarchies computed by TopoRoot, DynamicRoots and 442 
DynamicRoots+ from the X-ray CT scan of an excavated maize root crown. Hierarchy levels are 443 
colored as follows: 0 (stem): dark blue, 1 (nodal roots): light blue, 2 (1st-order lateral roots): 444 
green, 3 (2nd-order lateral roots): orange, 4 (3rd-order lateral roots): red, ≥ 5: dark red. Black 445 
boxes highlight incorrect levels obtained by DynamicRoots and DynamicRoots+, and the red box 446 
highlights a missing component in DynamicRoots. 447 

Next, we quantitatively validate the nodal root counts computed by various tools against the 448 

hand measurements. Figure 11 plots the correlation between the hand-measured nodal root 449 

counts and those computed by TopoRoot (A), DynamicRoots (B) and DynamicRoots+ (C) for all 450 

45 samples. Based on visual inspection (Figure 10), we consider the level 1 branches as nodal 451 

roots for DynamicRoots+. For each sample we computed the relative error by taking the absolute 452 

difference of TopoRoot’s nodal root count and the hand measurement, and finding the 453 
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percentage of this difference relative to the hand measurements. We compute the mean and 454 

standard deviation (𝜎) of this relative error for TopoRoot, DynamicRoots, and DynamicRoots+. 455 

TopoRoot exhibits a much lower relative error (mean=8.3%, 𝜎 = 5.6%) and higher correlation 456 

(Pearson’s coefficient=0.951) than either DynamicRoots (159.5% mean error with 𝜎 =190.0%, 457 

Pearson’s coefficient=-0.0452) or DynamicRoots+ (235.4% mean error with 𝜎 = 244.4%, 458 

Pearson’s coefficient=-0.160). The significant over-counting of DynamicRoots+ is mostly 459 

caused by the mislabeling of nodal roots as level-0 roots, as explained above, which leads to 460 

many lateral roots being labelled as level-1 roots.  The over-counting also increases with the size 461 

of the root system. Furthermore, both the nodal root counts computed by TopoRoot and the hand 462 

measurements exhibited a significant difference between the mutant and wild type samples, as 463 

measured by the independent two-sided Wilcoxon rank sum test (p=0.000130 for TopoRoot, 464 

p=0.00349 for hand measurements). Neither DynamicRoots (p=0.126) nor DynamicRoots+ 465 

(p=0.0199) showed a significant difference between the mutant and wild-type, and both had 466 

negative Pearson coefficients. This shows that TopoRoot can perform better for differentiating 467 

the root system architecture between these two varieties than can DynamicRoots. 468 

Fig. 11 469 

 470 
Correlation of nodal root count between hand and computational measurements. (A) Correlation 471 
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between TopoRoot and hand measurement. (B) Correlation between DynamicRoots and hand 472 
measurement. (C) Correlation between DynamicRoots+ and hand measurement. Each dot in the 473 
graph represents one of the 45 samples. Blue and red dots indicate wild type and mutant samples, 474 
respectively. The regression line is in red, while the dashed green line indicates the ideal 475 
correspondence between the hand and computational measurements. The correlation coefficient 476 
ρ is indicated in each plot. 477 

Since we do not have hand measurements of other fine-grained traits for this data set, we 478 

perform an indirect evaluation by assessing the ability of each trait computed by TopoRoot in 479 

differentiating the mutant and wild type samples. As shown in Figure 12, 12 out of the 23 fine-480 

grained traits computed by TopoRoot (reported up to the hierarchy level of the first-order lateral 481 

roots) exhibit a significant difference between the two genotypes (p<0.01). Compared to the wild 482 

type, the mutants generally have fewer and shorter thinner roots at each hierarchy, whereas the 483 

various angle measures are greater. These fine-grained trait differences offer a more 484 

comprehensive analysis of phenotypic differences caused by the mutation which better 485 

characterizes gene function and may lead to novel biological investigations. 486 

 487 

 488 

 489 

 490 

 491 

 492 

 493 

 494 

 495 

 496 

Fig. 12 497 
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Fine-grained traits computed by TopoRoot for wild type and mutant samples. Each boxplot 499 
shows distribution bars for one trait over all 27 wild type samples and 18 mutants. Traits with 500 
p<0.01, as measured by the independent two-sided Wilcoxon rank sum test, are highlighted in 501 
red boxes.  502 

Simulated Roots 503 

We start with a visual comparison of the results of TopoRoot, DynamicRoots+ and GiaRoots+ 504 

on one of the simulated root systems. This root system is simulated to be 34 days old, with five 505 

whorls, 34 nodal roots, and a lateral root branching frequency between 0.3 - 0.7 cm / branch. 506 

Figure 13 visualizes the root hierarchies produced by TopoRoots and DynamicRoots+ as well as 507 

the voxelized skeletons produced by GiaRoots+ at three different noise levels (0, 0.04cm, 508 

0.08cm). As the noise level increases, the thresholded image at the shape threshold becomes 509 

more disconnected and contaminated by topological errors (see Figure 13). Accordingly, 510 

DynamicRoots and GiaRoots miss more root parts, whereas TopoRoot as well as the extended 511 

tools, DynamicRoots+ and GiaRoots+, retain much of the root shape. Observe that, similar to the 512 

real roots dataset, the hierarchies produced by DynamicRoots+ incorrectly label many nodal 513 

roots as level 0 (black boxes). In contrast, the hierarchies produced by TopoRoot are more 514 

visually plausible. 515 

 516 

 517 

 518 

 519 

 520 

 521 

 522 

 523 
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Fig. 13 524 

 525 
Comparing hierarchies and skeletons computed by different tools from images of a simulated 526 
maize root. Three different noise levels are shown. Hierarchy levels 0, 1, 2, 3 and 4 produced by 527 
TopoRoot and DynamicRoots+ are colored dark blue, light blue, green, orange, and red. The 528 
voxelized skeletons produced by GiaRoots+ are colored brown. Black boxes highlight 529 
mislabeling of nodal roots as level 0 roots by DynamicRoots and DynamicRoots+. 530 

We performed a thorough quantitative validation of all traits computed by TopoRoot against the 531 

ground truth provided by OpenSimRoot. The relative error for each trait over the entire 532 

simulated dataset, as well as the errors of DynamicRoots+ and GiaRoots+ (for global traits only), 533 

are reported in Tables 1-4 for noise levels ≤ 0.04 cm and 0.08 cm. In supplementary Figures S1-534 

S4, we take a closer look at the accuracy of TopoRoot and the other tools as a function of the 535 

noise level of the input images. These figures plot the relative errors of the five tools in 536 

computing the stem traits (Figure S1), the nodal root traits (Figure S2), the lateral root traits 537 

(Figure S3), and the global traits (Figure S4) as the noise level increases. Roots less than one 538 

voxel long in the ground truth model were ignored in our analysis. We compare and analyze the 539 

accuracy of TopoRoot across each category of traits below. In general, we observe that higher 540 
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image noise leads to larger mean errors and/or greater variance by TopoRoot. For most of the 541 

traits, TopoRoot maintains a lower error than other tools across all noise levels.  542 

As the base of the hierarchy, the stem traits are among the most accurate. As the noise increases, 543 

portions of the stem region are lost, resulting in a thinner stem (Figure S1). Increased noise also 544 

causes the stem to wiggle more in the direction perpendicular to its main path, resulting in an 545 

increased stem length.  546 

The nodal root traits (Table 2) are the most accurate for the root count (8.3% up to e=0.04, 547 

10.3% up to e=0.08) and emergence and midpoint angles (5.7/7.1% up to e=0.04, 9.1/9.5% up to 548 

e=0.08). The lowest accuracy is seen for the number of children (40.0% up to e=0.04, 48.6% up 549 

to e=0.08) and thickness (39.2% up to e=0.04, and 38.2% up to e=0.08). These errors are due to 550 

misclassifications when the nodal root becomes entangled with higher-order lateral roots. 551 

TopoRoot slightly underestimates the average and total length due to faulty cycle breaking and 552 

misclassification errors in portions of nodal roots further away from the stem. TopoRoot’s error 553 

in nodal root tortuosity is higher than that of DynamicRoots for two reasons. First, the ground 554 

truth tortuosity is close to 1 (only for the simulated data, but not for the real maize roots), and 555 

DynamicRoots coincidentally produces values close to this because it mistakes many shorter 556 

lateral roots as nodal roots, as evidenced by its much shorter average nodal root length and the 557 

black boxes of Figure 13. Second, nodal roots sometimes are misclassified by TopoRoot closer 558 

to their tips due to the large number of intersections between roots of different hierarchy levels, 559 

resulting in excessive winding. TopoRoot slightly overestimates angle measurements due to 560 

misclassification errors further away from the stem which bend the detected paths sideways; 561 

these explain the errors in the tip angle measurements. 562 
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The errors for the lateral root traits (Table 3) are generally larger than nodal root traits, primarily 563 

since the imaging noise has a greater impact on the thinner roots more than the thicker ones. 564 

There is a greater underestimation of both the total first-order lateral roots and their total length 565 

(Figure S3), due to both the misclassification of the hierarchy levels and the loss of many thin 566 

roots in the distance field. On the other hand, the misclassified first-order lateral roots are 567 

counted as lateral roots of higher orders, and hence less errors lie in the total lateral root count 568 

(22.2% up to e=0.04 and 37.0% up to e=0.08) and lengths (24.3% up to e=0.04 and 24.4% up to 569 

e=0.08) over all orders. All methods significantly overestimate the first-order lateral root 570 

thickness due to limits in the resolution, but TopoRoot produces the lowest error.  The lowest 571 

errors are seen in the first-order lateral emergence/midpoint/tip angles (3.4%/4.1%/5.4% up to 572 

e=0.04 and 3.0%/4.0%/5.9% up to e=0.08) and tortuosity (4.6% up to e=0.04 and 4.5% up to 573 

e=0.08).  574 

 575 

Finally, combining nodal and lateral roots, TopoRoot produces on average 35.4% error (21.5% 576 

up to e=0.04) in the total root count and 25.4% error (25.0% up to e=0.04) in the total root 577 

length, which are much lower than DynamicRoots and GiaRoots (Table 4). Note that both 578 

DynamicRoots and GiaRoots significantly underestimate the root count and total length, even 579 

after topological simplification, and the amount of underestimation generally increases with the 580 

level of noise (Figure S4). The only global trait that TopoRoot does not have the lowest error is 581 

the average length, due to a combination of DynamicRoots being coincidentally closer due to its 582 

underestimation of both the total length and number of roots, and TopoRoot having an excessive 583 

number of roots at higher noise levels. These are the same reasons why the two methods have 584 

similar lateral root average length errors.  585 
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Table 1: Reporting the accuracy of TopoRoot for stem traits. 586 
Trait ≤ e TopoRoot (%) 

Stem length 0.04 6.9 (σ=6.9) 

0.08 7.7 (σ=7.3) 

Stem thickness 0.04 11.9 (σ=4.3) 

0.08 15.3 (σ=5.8) 

Each entry gives the average error (and standard deviation 𝜎) for our method across all simulated 587 
models and across all noise levels up to e=0.04 cm and 0.08 cm. 588 
 589 
Table 2: Comparing TopoRoot to DynamicRoots and DynamicRoots+ for nodal root traits. 590 

Trait ≤ e TopoRoot (%) DynamicRoots (%) DynamicRoots+ 
(%) 

Nodal root count 0.04 8.3 (σ=8.2) 392.9 (σ=423.5) 486.2 (σ=426.6) 

0.08 10.3 (σ=10.9) 263.9 (σ=367.0) 455.2 (σ=400.0) 

Nodal root total 
length 

0.04 22.4 (σ=13.1) 46.4 (σ=17.7)  38.3 (σ=14.3) 

0.08 23.9 (σ=13.7) 56.9 (σ=19.7) 40.7 (σ=14.6) 

Nodal root average 
length 

0.04 17.8 (σ=11.2) 76.6 (σ=18.8) 80.9 (σ=16.1) 

0.08 19.9 (σ=13.1) 74.0 (σ=17.4) 81.0 (σ=15.4) 

Nodal root 
thickness 

0.04 39.2 (σ=27.6) 36.6 (σ=33.8) 46.2 (σ=115.0) 

0.08 38.2 (σ=26.8) 50.1 (σ=150.3) 48.2 (σ=109.6) 

Nodal root number 
of children 

0.04 36.4 (σ=21.6)  87.7 (σ=13.7) 89.4.5 (σ=12.5) 

0.08 45.6 (σ=41.0) 87.0 (σ=13.1) 89.2 (σ=12.4) 

Nodal root 
tortuosity 

0.04 32.6 (σ=13.0) 2.3 (σ=2.5) 2.0 (σ=1.8) 

0.08 37.3 (σ=13.8) 4.5 (σ=4.4) 2.9 (σ=2.3) 
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Nodal root 
emergence angle 

0.04 5.7 (σ=11.9) N/A N/A 

0.08 7.3 (σ=11.9) N/A N/A 

Nodal root midpoint 
angle 

0.04 7.1 (σ=14.0) N/A N/A 

0.08 9.1 (σ=13.8) N/A N/A 

Nodal root tip angle 0.04 18.3 (σ=17.7) N/A N/A 

0.08 22.7 (σ=22.8) N/A N/A 

Each entry gives the average error (and standard deviation s) for a method across all simulated 591 
models and across all noise levels up to e=0.04 cm and 0.08 cm. For each trait, the method with 592 
the lowest error is bold-faced. 593 
 594 
Table 3: Comparing TopoRoot to DynamicRoots and DynamicRoots+ for lateral root 595 
traits. 596 
 597 

Trait ≤ e TopoRoot (%) DynamicRoots 
(%) 

DynamicRoots+ 
(%) 

1st-order lateral root 
count 

0.04 41.4 (σ=23.4) 75.6 (σ=11.3) 71.5 (σ=10.7) 

0.08 49.0 (σ=41.5) 80.7 (σ=11.2) 71.9 (σ=10.3) 

1st-order lateral root 
total length 

0.04 44.5 (σ=15.0) 71.9 (σ=13.9) 66.9 (σ=15.4) 

0.08 47.0 (σ=15.9) 76.7 (σ=14.9) 67.4 (σ=14.9) 

1st-order lateral root 
avg. length 

0.04 20.4 (σ=15.0) 38.1 (σ=74.6) 26.5 (σ=54.0) 

0.08 25.6 (σ=19.2) 53.2 (σ=98.2) 26.0 (σ=52.3) 

1st-order lateral root 
thickness 

0.04 355.0 (σ=85.8) 424.6 (σ=101.7) 439.2 (σ=104.2) 

0.08 342.8 (σ=85.3) 427.7 (σ=112.0) 450.1 (σ=102.2) 

1st-order lateral root 0.04 68.3 (σ=34.7) 152.9 (σ=301.1) 115.6 (σ=192.7) 
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number of children 0.08 80.7 (σ=50.0) 180.9 (σ=319.7) 115.6 (σ=182.6) 

1st-order lateral root 
tortuosity 

0.04 4.6 (σ=3.2) 11.9 (σ=2.1) 12.1 (σ=1.8) 

0.08 4.5 (σ=3.2) 10.2 (σ=3.0) 11.3 (σ=2.0) 

1st-order lateral root 
emergence angle 

0.04 3.4 (σ=2.4) N/A N/A 

0.08 3.0 (σ=2.2) N/A N/A 

1st-order lateral root 
midpoint  angle 

0.04 4.1 (σ=2.7) N/A N/A 

0.08 4.0 (σ=2.7) N/A N/A 

1st-order lateral root 
tip angle 

0.04 5.4 (σ=6.4) N/A N/A 

0.08 5.9 (σ=7.3) N/A N/A 

Lateral root count 0.04 22.2 (σ=19.5) 60.6 (σ=13.0) 58.0 (σ=14.8) 

0.08 37.0 (σ=56.1) 66.8 (σ=12.4) 58.1 (σ=14.4) 

Total lateral root 
length 

0.04 24.3 (σ=9.3) 52.3 (σ=19.6) 50.9 (σ=19.0) 

0.08 24.4 (σ=11.4) 59.1 (σ=18.8) 56.0 (σ=17.8) 

Average lateral root 
length 

0.04 20.2 (σ=14.8) 21.2 (σ=22.4) 22.0 (σ=21.6) 

0.08 25.9 (σ=19.0) 21.4 (σ=22.9) 20.6 (σ=20.2) 

Each entry gives the average error (and standard deviation s) for a method across all simulated 598 
models and across all noise levels up to e=0.04 cm and 0.08 cm. For each trait, the method with 599 
the lowest error is bold-faced. 600 
 601 
Table 4: Comparing TopoRoot to DynamicRoots, DynamicRoots+, GiaRoots, and 602 
GiaRoots+ for global traits. 603 
Trait ≤ e TopoRoot (%) DynamicRoots 

(%) 
DynamicRoots
+ (%) 

GiARoots 
(%) 

GiARoots+ 
(%) 

Total root 
count 

0.04 21.5 (σ=18.4) 53.7 (σ=11.1) 49.3 (σ=11.3) 57.9 
(σ=13.7) 

56.8 (σ=13.7) 
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0.08 35.4 (σ=51.8) 60.8 (σ=12.7) 49.7 (σ=11.3) 45.7 
(σ=21.1) 

57.5 (σ=13.2 

Average root 
length 

0.04 18.4 (σ=13.5) 9.1 (σ=11.8) 9.7 (σ=9.8) 42.6 
(σ=33.5) 

50.2 (σ=35.3) 

0.08 24.7(σ=18.8) 9.9 (σ=12.5) 13.3 (σ=12.2) 40.8 
(σ=27.4) 

55.6 (σ=34.2) 

Total length 0.04 25.0 (σ=8.5) 52.2 (σ=13.9) 48.7 (σ=13.1) 46.0 
(σ=12.1) 

40.1 (σ=12.1) 

0.08 25.4 (σ=9.7) 59.6 (σ=14.5) 52.8 (σ=12.4) 45.7 
(σ=19.6) 

38.2 (σ=13.1) 

Each entry gives the average error (and standard deviation s) for a method across all simulated 604 
models and across all noise levels up to e=0.04 cm and 0.08 cm. For each trait, the method with 605 
the lowest error is bold-faced. 606 

Discussion 607 

A gap exists in the phenotypic measure of root system architecture between fine-grained 608 

analyses that can be conducted on entire seedling root systems in laboratory settings, and much 609 

coarser global analyses available to field researchers. Since root systems are an emergent 610 

property of their many hundreds, thousands, or tens of thousands of constituent roots, this gap is 611 

a major hindrance to a comprehensive understanding of root system development, environmental 612 

interaction, and the genetics that influence these processes. In previous work, we showed that 613 

when global 3D analysis of field excavated maize root crowns was compared to 3D seedling 614 

analysis in gellan gum, genetically encoded differences were consistent despite major differences 615 

in developmental stage and the growth environment [17]. Whereas DynamicRoots was 616 

previously developed for fine scale measurements of 3D seedling root systems containing dozens 617 

to hundreds of roots, no similar tool existed for more complex mature root crowns, containing 618 

hundreds to thousands of roots. The orders of magnitude of increased complexity motivated 619 

unique solutions using both state-of-the-art techniques in computer graphics [38, 36, 37] and 620 
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novel algorithms which eventually led to the development of TopoRoot. While we consider this 621 

first version as the foundation of several future planned advancements, discussed below, we were 622 

able to present here unprecedented fine-grained analysis of complex 3D root systems (on average 623 

943 total roots [maximum of 2514]), 78 nodal roots (maximum of 126), 865 lateral roots (all 624 

classes combined; maximum of 2414) for the excavated maize roots, as computed by TopoRoot) 625 

that facilitates “apples to apples” comparisons with existing seedling phenotyping pipelines. 626 

Error analysis 627 

The steps of our pipeline which are most prone to errors are topological simplification and 628 

skeletonization. The amount and quality of the topological repairs depends on the choices of the 629 

iso-values k, s, and n. If k and n are too close to s, then very little topological simplification will 630 

occur. On the other hand, if k and n are too far away from s, then such an aggressive setting may 631 

result in some topological features being removed in a geometrically suboptimal fashion. This is 632 

because we use a setting of [38] which uses the image intensity as guidance to determine where 633 

contents are added and removed from the iso-surface s, but these changes may not be smooth if 634 

the image values are not reliable. For example, cycles may be cut in the middle of branches, 635 

resulting in improper tracing of branches and potential double counting of the same root. 636 

Another step of our pipeline which is prone to errors is the cycle breaking portion of 637 

skeletonization. Decisions on where to break cycles rely on local angle continuity information 638 

near junctions, as well as the distance from the stem. However, if a root continues across many 639 

junctions where cycles pass through, then the root may accidentally be cut off early at one of 640 

these junctions. Our pipeline is sensitive to the amount of soil remaining in the sample, because 641 

soil often has a similar or higher intensity as the roots. If a large clump of soil is stuck onto the 642 

root, it may result in a thick region which is mistakenly identified as part of the stem. This 643 
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problem can be avoided by thorough cleaning of samples prior to scanning, and by basic image 644 

thresholding prior to TopoRoot analysis. The final contrast will affect the ideal choices for k and 645 

n with respect to s; the greater the contrast, the smaller the gap between k and n need to be to 646 

incur the same amount of topological simplification.  647 

The quality of the topological repairs may be improved by considering not only the image 648 

intensity when computing additions and removals of contents, but also incorporating geometric 649 

criteria such as the tubularity of a region to identify it as part of a root. This will allow for a 650 

greater amount of topological simplification without sacrificing geometric optimality. The 651 

suboptimal local decisions of cycle-breaking may be potentially improved by grouping cutting 652 

decisions together to produce a collective score. These groups can gradually be built from the 653 

bottom-up to produce a more globally optimal solution. 654 

Running time 655 

On average, TopoRoot completes in 7 minutes and 13 seconds for each sample in the CT scan 656 

dataset (downsampled by a factor of 4 to the resolution of 369 x 369 x 465). Since this is much 657 

shorter than the time spent imaging and reconstructing one sample, TopoRoot is well suited for 658 

high-throughput analysis. The computation time is dominated by the first two steps, topological 659 

simplification (3 minutes and 6 seconds) and skeletonization (3 minutes and 44 seconds). The 660 

time complexity of both these steps may increase quickly with the image resolution. For 661 

example, running TopoRoot on the original CT volumes downsampled by a factor of 2 (instead 662 

of 4 as used in our validation), which results in volumes of resolution 737 x 737 x 931, would 663 

take 63 minutes and 39 seconds, with 32 minutes and 25 seconds spent on topological 664 

simplification and 29 minutes and 9 seconds on skeletonization. On the other hand, we have not 665 
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observed a notable improvement in the accuracy of the nodal root count for this data set by 666 

reducing the downsampling factor from 4 to 2. 667 

Extensions 668 

 669 

 670 

Fig. 14 671 

 672 

Hierarchies of sorghum roots computed by TopoRoot. The examples have (A) one tiller (B) two 673 
tillers and (C) four tillers. Hierarchy levels 0, 1, 2, 3 and 4 are colored dark blue, light blue, 674 
green, orange, and red.  675 

In addition to the per-level traits reported in this work, the hierarchy obtained by TopoRoots 676 

potentially enables computation of other fine-grained traits. For example, we are currently 677 

exploring the use of the hierarchy for computing whorls and the soil plane, which would in turn 678 

enable computation of traits such as inter-whorl distances, per-whorl measurements, and the 679 

numbers of nodal roots above and below the soil. Preliminary experiments show promising 680 

results of whorl detection by clustering the nodal roots along the stem. The soil plane can be 681 
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potentially identified where a large cluster of 1st-order lateral roots appear along the direction of 682 

the stem.  683 

While TopoRoot is designed for and validated on X-ray CT scans of excavated maize root 684 

crowns, the tool can be potentially adapted to other types of root systems and imaging 685 

modalities. For root crowns with multiple tillers (e.g., sorghum), we offer a mode of TopoRoot 686 

which extends the stem-detection heuristic (during the skeletonization step) by producing a stem 687 

path within each region of the skeleton above a given thickness threshold. Preliminary visual 688 

experiments show that TopoRoot’s multiple-tiller mode produces plausible hierarchies at a 689 

quality similar to that seen in the single-tiller mode (Figure 14). Further expanding the stem-690 

detection heuristic to identify the primary root would make the pipeline applicable to taprooted 691 

systems as well. TopoRoot should work equally well for fine-grained analysis of 3D root system 692 

architecture reconstructions derived from in situ imaging methods such as X-ray CT, MRI, and 693 

optical imaging, provided they are first segmented from background (primarily soil and pot). 694 

Segmentation can be done using a variety of methods such as region-growing [1], tracking 695 

tubular features [26; 22], deep learning [29, 30], and semi-automatic annotation [3, 6]. Note that 696 

some of these methods produce a binary volume (e.g., region-growing) whereas others produce a 697 

probability density field (e.g., deep learning). Since TopoRoot requires a gray-scale intensity 698 

volume with three thresholds (shape, kernel and neighborhood), a binary segmentation will first 699 

need to be converted into a Euclidean distance field.  700 

Software availability 701 

TopoRoot is available for free at: https://github.com/danzeng8/TopoRoot 702 
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Included in the page are instructions to run the software, and details on the formats of the input 703 

and output. Currently, the accepted inputs are either image slices (suffixed with .png) or .raw 704 

files, with a .dat accompanying the .raw file to specify the dimensions. TopoRoot is currently 705 

configured to build and run on Windows 10 machines, and has not been tested on other 706 

platforms. We plan on releasing a Linux build of TopoRoot in the future. A graphical user 707 

interface is also available on the page for visualizing the output hierarchy. 708 

Conclusions 709 

We introduced TopoRoot, a high-throughput method for computing the root hierarchy and fine-710 

grained root traits from a 3D image. TopoRoot specifically addresses topological errors, which 711 

are common in 3D imaging and segmentation and are barriers for obtaining accurate root 712 

hierarchies. Our method combines state-of-the-art methods developed in computer graphics with 713 

customized heuristics to compute a wide variety of traits at each level of the root hierarchy. 714 

When tested on both 3D scans of excavated maize root crowns and simulated root systems with 715 

artificially added noise, TopoRoot exhibits higher accuracy than existing tools (DynamicRoots 716 

and GiaRoots) in both coarse-grained and fine-grained traits. Furthermore, the efficiency and 717 

automation of TopoRoot makes it ideal for a high-throughput analysis pipeline, and the results 718 

are readily compatible with the Root System Markup Language (RSML;[13]), and major plant 719 

structural-functional modelling frameworks such as CRootBox [25] and OpenSimRoot [24]. 720 

List of Abbreviations 721 

RSA: Root system architecture 722 
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CT: Computed Tomography 723 
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Supplementary Table 1: TopoRoot’s computed traits 871 

Groups Trait Description 

Global traits Total length Sum of the lengths of stem, nodal roots, 
and lateral roots. 

Number of roots Total number of roots across all hierarchy 
levels. 

Average length Total length divided by number of roots. 

Stem traits Average stem thickness Average thickness of the vertices along the 
stem path. 

Stem length Length of the stem path. 

Per-level traits Level n root count The number of level n roots. 

Total level n root length Sum of the lengths of level n roots. The 
length is the skeleton distance from the 
beginning of the root to its tip.   

Average level n root length Total level n root length divided by level n  
root count. 

Level n root tortuosity Length of a root (skeleton distance) 
divided by the Euclidean distance from the 
beginning to the tip, averaged across all 
level n roots. 

Level n root thickness Thickness associated with the skeleton 
vertices in the root, averaged across all  
level n roots.  

Number of level n root 
children 

Number of level 2 roots divided by 
number of level 1 roots. 

Level n root tip angle Angle between the stem direction and the 
vector from the beginning to the tip of a 
root, averaged across all level n roots. 

Level n root emergence angle Angle between the stem direction and the 
vector from the beginning to 30 vertices 
along the skeleton of a root, averaged 
across all  level n roots. 
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Level n root midpoint angle Angle between the stem direction and the 
vector from the beginning of a root to the 
halfway point of the root, averaged across 
all level n roots. 

Aggregated 
lateral root traits 

Total lateral length Sum of the lengths of lateral roots whose 
hierarchy level is greater than or equal to 
2. 

Number of lateral roots Number of lateral roots whose hierarchy 
level is greater than or equal to 2. 

Average lateral root length Average length of lateral roots whose 
hierarchy level is greater than or equal to 
2. 

Supplementary Fig. S1 872 

 873 
Evaluating the accuracy of computing stem traits by TopoRoot. The tan line represents the 874 
ground truth, and the result of TopoRoot is computed as a percentage of the ground truth. 875 
 876 

 877 

 878 

 879 

 880 

 881 

 882 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.24.457522doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.24.457522
http://creativecommons.org/licenses/by/4.0/


48 

 

 883 

 884 

 885 

 886 

Supplementary Fig. S2 887 

 888 

Comparing the accuracy of computing nodal root traits between TopoRoot, DynamicRoots, and 889 
DynamicRoots+ across 55 models. The tan line represents the ground truth, and the results of all 890 
methods are computed as a percentage of the ground truth. 891 
 892 
 893 
 894 
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Supplementary Fig. S3 903 
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 904 
Comparing the accuracy of computing lateral root traits between TopoRoot, DynamicRoots, and 905 
DynamicRoots+ across 55 models. The tan line represents the ground truth, and the results of all 906 
methods are computed as a percentage of the ground truth. 907 
 908 
Supplementary Fig. S4 909 
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 910 
Comparing the accuracy of computing global traits between TopoRoot, DynamicRoots, 911 
DynamicRoots+, GiaRoots, and GiaRoots+ across 55 models. The tan line represents the ground 912 
truth, and the results of all methods are computed as a percentage of the ground truth. 913 
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