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Abstract
This report provides a review of our submissions
to the Algonauts Challenge 2021. In this chal-
lenge, neural responses in the visual cortex were
recorded using functional neuroimaging when par-
ticipants were watching naturalistic videos. The
goal of the challenge is to develop voxel-wise en-
coding models which predict such neural signals
based on the input videos. Here we built an ensem-
ble of models that extract representations based
on the input videos from 4 perspectives: image
streams, motion, edges, and audio. We showed
that adding new modules into the ensemble consis-
tently improved our prediction performance. Our
methods achieved state-of-the-art performance on
both the mini track and the full track tasks.

1. Introduction
Building computational models for the human perception
system is an important step towards the ultimate goal of
better understanding human intelligence and guiding artifi-
cial intelligence engineering. Previous studies have shown
that pre-trained task-optimized deep neural networks can
extract useful representations which lead to neural encod-
ing models of single static images with high performance
(Yamins & DiCarlo, 2016; Schrimpf et al., 2020). However,
the human visual system does not operate on independent
static images but on continuous stimuli of videos. The Algo-
nauts Challenge 2021 (Cichy & Dwivedi, 2021) aims to
improve our understanding of the neural basis and compu-
tational models of visual cognition, particularly regarding
to naturalistic stimuli from everyday events. The goal of
the challenge is to predict neural response to video clips
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of daily events recorded by functional magnetic resonance
imaging (fMRI) at the voxel level. Motivated by the suc-
cess of ensemble learning and multimodal methods (Zhou,
2019; Baltrušaitis et al., 2018), we develop an ensemble
model that combines feature representations in deep neural
networks from multiple perspectives and modalities, includ-
ing image streams, motion, edges and audio features. We
show that representations from each perspective separately
improves the prediction performance of the ensemble en-
coding model. Our results also demonstrate that different
brain areas integrate feature information on different spatial
scales and show distinct levels of selectivity for these feature
perspectives. The code of our implementation is available
at https://github.com/huzeyann/huze algonauts.

2. Dataset and Setup
In the challenge, the stimulus set includes a total of 1102
videos, 1000 for training and 102 held-out for online submis-
sion. These videos are 3-second clips of daily events (Cichy
& Dwivedi, 2021). For the 1102 videos, most of them are
recorded at 256x256 resolution and 30 fps for 3 seconds,
with about 100 videos without audio and 200 videos blow
25 fps.

We trained our models on the first 900 video-fMRI pairs and
used the rest 100 as validation set. The validated optimal
model is used for the final online evaluation.

3. Methods and Experiments
We built an ensemble of backbone models from different fea-
ture perspectives (see Fig.1). Our final model with the best
prediction performance consisted of 2 phases (see Fig.2):

1. Training of encoding models on different perspectives.

2. Ensemble of predictions from all encoding models.

3.1. Ensemble Framework Overview

Our proposed model consists of a set of different feature
encoder and decoder networks. These networks learn fea-
ture representations of the stimulus videos from different
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Figure 1. Examples of different perspectives of features. (left)
Image features based on RGB frame; (mid) Motion features by
optical flow estimation; (right) Edge features from perceptual edge
detection.
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Figure 2. Schematics of the 2-phase ensemble model.

perspectives, including image streams, motion, edges, and
audio. The feature encoders take in the stimulus video and
extract feature vectors that contain relevant information.
The decoders then take in these extracted feature vectors
and generate predictions of neural responses.

To optimize our model performance, we performed two
phases of model ensemble. In phase 1, we made the ensem-
ble over different hyperparameters and architectures within
the set of models from the same scope of feature modality.
In phase 2, we took the ensemble models from phase 1 and
combined them into the final neural encoding model.

The ensemble procedure assigned a weight to each model.
The weights were optimized by differential evolution (Das
& Suganthan, 2010) to maximize the correlation score on
the validation set. This method of weight ensemble enables
better performance on the validation set.

3.2. Encoder Models

We used 5 different types of encoder networks in our pro-
posed framework: 1) Inflated 3D ConvNet image stream
(I3D RGB): extracting the spatio-temporal information in
the image stream; 2) Inflated 3D ConvNet optical flow
stream (I3D Flow): extracting the motion dynamic informa-
tion from the videos; 3) Bi-Directional Cascade Network

for edge detection (BDCN Edge): extracting edge and con-
tour information from the images; 4) Big Transfer (BiT):
additional general image representations; 5) Convolutional
network for audio classification (Vggish Audio): extracting
audio information.

3.2.1. I3D RGB

To extract the spatio-temporal features from the videos, we
used the 3D Resnet model proposed in (Monfort et al., 2019).
We fine-tuned the 3D Resnet model pre-trained on multi-
label version of the full Moments in Time Dataset (Monfort
et al., 2019). This model was pre-trained at 224x224 res-
olution and 16 frames, and we fine-tuned it for 288x288
resolution and 16 frames. We took the output of each of 4
Resnet blocks (res1 ... res4) and connected the intermediate
layers to an adaptive pooling layer with various pooling
sizes, then flattened the output and fed it to the decoder
model to make predictions. We tuned the backbone model
end-to-end at half the learning rate after freezing it for 4
epochs.

Single-layer Encoder The size of layer outputs from the
Resnet blocks were res1: 256x8x72x72, res2: 512x4x36x36,
res3: 1024x2x36x36, res4: 2048x1x9x9. We took each of
these 4 outputs and employed adaptive pooling to reduce
their temporal-spatial dimension to 1 × k × k. We ran a
grid search on the pooling size k to find the proper pooling
size for each layer and each ROI based on their validation
correlation ( Fig.3). For V1, V2, and V3, lower level features
(res2, res3) and larger pooling size (smaller receptive field
size) yielded better results, while EBA, LOC, PPA, FFA,
and STS preferred higher-level features (res3, res4).

Multi-layer Encoder We also built a multi-layer encoder
through concatenating the outputs from different Resnet lay-
ers and employed the spatial pyramid pooling to summarize
on multiple levels of features. The best multi-layer model
slightly outperformed the best single-layer model only be-
fore the ensemble of different hyperparameters. After the
ensemble of models with all searched hyperparameters, the
performance of these 2 version of models on the validation
set showed no significant difference (see Fig.4).

3.2.2. I3D FLOW

To include more dynamic information from the videos, we
employed networks that extract information based on optical
flows from the stimuli. Specifically, we took the flow stream
of the 3D Resnet model pre-trained on Kinetics400 Dataset
as proposed in (Carreira & Zisserman, 2017). The optical
flow used as input was generated by RAFT (Teed & Deng,
2020). This model was pre-trained at 224x224 resolution
and 64 frames, we fine-tuned at native 256x256 resolution
and took the center 224x224 crop (we observed noise in
edges when generating optical flow, center crop eliminated
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Figure 3. Summary of results using different pooling parameters in
I3D RGB layers. Pooling size (x-axis) and layers (colored lines),
validation correlation score (y-axis). A larger pooling size means a
smaller receptive field size and more spatial information. The later
layer represents higher-level features.

such noise and led to better performance). For videos that
had less than 64 frames (videos recorded at 15fps), we
employed ffmpeg’s temporal interpolation to up-sample
them to 22fps, this up-sampling step led to more noise when
generating optical flow. We did not tune this backbone
model end-to-end due to implementation difficulties. The
later part of the I3D Flow model was identical to the I3D
RGB model: we ran a search on layers and pooling sizes,
then ensembled all models in the search scope.

3.2.3. BDCN EDGE

Considering the sensitivity to edges in the early visual cortex
and the object category selective properties in the ventral
temporal areas, we also included networks that extract object
shape information such as edges. Following (He et al.,
2019), we took the edge detection output and employed
adaptive pooling on it before feeding it into an LSTM layer
to construct the edge-based feature representations. This
model was pre-trained by 500x500 crops. We ran a grid
search of input resolutions in [32, 48, 64, 96, 128], frames in
[4, 10], pooling size in [8, 10, 12, 14, 16, 20, 24, 28, 32], and
ensembled all the models in the search scope. The backbone
was tuned end-to-end after freezing for the first 5 epochs
and optimized at a 0.25 learning rate ratio.

3.2.4. BIT

To gain additional feature representations from the images,
we took the intermediate layers of Resnet from the pre-
trained BiT-M-R50x1 model (Kolesnikov et al., 2020) and
fed it into a LSTM layer to make predictions. The fine-
tuning was made at 224x224 resolution and 4 frames with
pooling size in [1, 2, 3, 4, 5, 6, 7]. The backbone is tuned
end-to-end after frozen for 4 epochs, then trained at a 1.0
learning rate ratio.

3.2.5. VGGISH AUDIO

Considering areas such as STS may encode multimodal in-
formation, we also included networks that represent audio
features from the video. Although the actual audio was not
presented to the subjects, additional information about the
video may be represented in the audio and may correlate
with the neural responses. Following (Hershey et al., 2017),
we took the final embedding output from their model (di-
mension 3 × 128) as input. For videos that did not have
audio, we left their input to zeros with the same shape. The
backbone was not tuned end-to-end considering the simple
fact that the audio was not played during the fMRI scan.

3.3. Decoder Models

The decoder model takes feature vector from the encoders
for each video and predicts the corresponding neural re-
sponses in each voxel. For the mini track, we employed a
fully connected neural network to make predictions of all
voxels in the same ROI for all subject. For the full track,
with the addition of spatial coordinates, we employed a con-
volution transpose model to make predictions of the whole
brain. The output channel of the last convolution layer was
set to match the number of subjects in order to predict all
subjects’ neural responses simultaneously.

4. Results
4.1. Submission Scores in Mini- and Full-tracks

Table 1 lists the normalized correlation scores in the final
online evaluations when adding models from different per-
spectives to the ensemble procedure. The performance score
kept increasing when new perspectives were added. Due
to the limited number of submissions during the challenge,
we did not make a full ablation analysis for each individual
module. We leave it to future work. It’s worth noting that
that the submission score improved when adding the audio
model to the ensemble, though the audio was not played
during the fMRI scan.

On average, our best ensemble models achieved normalized
correlation score of 0.711 in the mini-track, and 0.373 in
the full track. The best scores of ensemble model listed in
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models submission score
- mini track

submission score
- full track

I3D RGB 0.678 0.348

... + I3D Flow
+ BDCN Edge 0.697 0.363

... + Vggish Audio 0.704 0.365

... + BiT 0.708 0.369

Final Submission 0.711 0.373

Table 1. Summary of the submission scores using different ensem-
ble strategy. The score kept improving when adding additional
modalities. The final submission combined the best predictions for
each ROI.

Table 1 is slightly lower than our best submission scores
because we combined the best predictions for each ROI
when making the final submission.

4.2. Performance Scores of Inividual Models

In Fig.4 we plotted each model’s individual performance
on the validation set for each ROI. I3D RGB was the best
performing model, both single-layer and multi-layer ver-
sions of I3D RGB reached the best performance. Followed
by BDCN Edge in earlier ROIs such as V1, V2, but this
edge perceptual model had worse performance in higher
areas, such as V3, V4, EBA, LOC, STS. I3D Flow had the
best performance in STS, EBA, LOC, but performed worse
than the edge perceptual model in V1. It’s worth noting that
the audio model alone can make a moderate prediction for
higher-level ROIs, such as PPA and STS, although audio
was not played during fMRI scan. This suggests that there
might be predictive coding of multimodal information in
these areas, which is an open question to be studied.

Figure 4. The performance of single models in each ROI. Different
colors indicate different models. X-axis is ROI and y-axis is the
correlation score on the validation set.

4.3. Ensemble Weights of Individual Models

As described in 3.1, we used differential evolution to maxi-
mize the correlation score on the validation set to find the
best ensemble weights. Fig.5 shows the final optimized
ensemble weights, where V4, EBA, LOC, STS had a rel-
atively high ensemble weight on Flow stream, and EBA,
PPA, STS had a relatively high ensemble weight on the
Audio stream. V1 had a higher ensemble weight on edge
perceptual model. Note that i3d rgb, i3d rgb ml, and BiT
model may be overlapping with I3D RGB model regarding
the extracted spatiotemporal features.

Figure 5. Ensemble weights for each model in each ROI. Each
column sums to 1. Color is made column-wise, darker color means
bigger value in ensemble weight.

4.4. ROI Results in the Full-track

During the challenge, since the mini track voxels appeared
in the full track voxels as well, we retrieved their coordi-
nates information via matching their fMRI responses. In
practice, the replacement of the predicted values of the
voxels in the full track with their matched mini track pre-
dictions led to a 0.015 improvement in submission score
(from 0.306 to 0.321 in our earlier attempts).

We further compared scores within the same set of ROIs
on the validation set for models trained on mini track and
full track in Fig.6. It’s worth noting that even after the
ensemble, the full track model still performed worse com-
pared mini track model on the same ROI. This was also true
when mixing several ROIs for training in mini track, tested
with I3D RGB model.

Further experiments found that removing mini track ROI
voxels (around 30% of all voxels) during training for
mini track will lead to a significant drop in mean corre-
lation score for the rest of voxels (0.11 drop to 0.09). This
was true for the convolution transpose decoder model. The
fully connected model, on the other hand, did not show the
similar decline in performance. These accurate ROI vox-
els might give a boost to the other voxels during training
through spatial smoothness or functional correlations in the
activity.

We did replace the prediction of the ROI voxels in full track
with mini track predictions in our final submission.
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Figure 6. Comparison of the correlation scores of the same voxels
between mini track and full track model, taken from best ensemble
model evaluated on the validation set. full track model perform
significantly worse than mini track model, differences are shown
in the bottom row

5. Implementation Details
AdaBelief Optimizer (Zhuang et al., 2020) was adopted
to train our models, the base learning rate was set to 1e-
4, beta=(0.9, 0.999), epsilon=1e-8, weight decouple=True,
weight decay=1e-2 for non-bias weights. We set the batch
size to 24 for mini track and 32 for full track. Mean-square
error loss function was used to train encoder models, and
early stopping conditioned on validation correlation. We
used gradient accumulating trick to save memory if the
model did not contain batch normalization or it was frozen.
Pytorch’s native support for mixed-precision training (fp16)
was employed for larger models (I3D RGB, I3D Flow, BiT).
I3D RGB, I3D Flow, BiT models had 40M to 600M parame-
ters depending on the pooling size. BDCN Edge model had
less than 100M parameters due to the low dimensionality
of the output edge prediction. Vggish Audio model had
less than 10M parameters. The larger experiments were
conducted on 1 NVIDIA RTX3090 GPU while smaller ex-
periments are on 1 NVIDIA Titan Xp GPU, the largest
model took 15 minutes to run 20 epochs before hitting early
stopping.

6. Conclusion and Discussion
The key contribution of our proposed method is that we
combined models from different modalities at the prediction
level and improved the performance. We made the ensem-
ble by directly optimizing the validation score with a global
optimization algorithm. Fortunately, we did not observe
severe overfitting on the validation set. Our results on the
validation set and the final held-out testing were consistent
except for STS and PPA, which were also the two ROIs with
the lowest scores. However, our ensemble approach did not
consider interactions between modalities at feature level,
an integrated end-to-end model was harder to train and per-
formed worse than the ensemble model in our experiments.
Further work may consider training an integrated model that
could outperform an ensemble of separately trained models.
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