
A Reinforcement Learning Framework for

Pooled Oligonucleotide Design

Benjamin M. David,1 Ryan M. Wyllie,1 Ramdane Harouaka,2

and Paul A. Jensen1,3,4∗

1Department of Bioengineering, University of Illinois at Urbana-Champaign;
2Biotechnology and Bioengineering Department, Sandia National Laboratories,

Livermore, CA; 3Department of Microbiology and 4Carl R. Woese Institute for

Genomic Biology, University of Illinois at Urbana-Champaign

Abstract

The goal of oligonucleotide (oligo) design is to select oligos that op-
timize a set of design criteria. Oligo design problems are combinato-
rial in nature and require computationally intensive models to evaluate
design criteria. Even relatively small problems can be intractable for
brute-force approaches that test every possible combination of oligos, so
heuristic approaches must be used to find near-optimal solutions. We
present a general reinforcement learning framework, called OligoRL, to
solve oligo design problems with complex constraints. OligoRL allows
“black-box” design criteria and can be adapted to solve many oligo de-
sign problems. We highlight the flexibility of OligoRL by building tools
to solve three distinct design problems: 1.) finding pools of random DNA
barcodes that lack restriction enzyme recognition sequences (CutFreeRL);
2.) compressing large, non-degenerate oligo pools into smaller degenerate
ones (OligoCompressor); and 3.) finding Not-So-Random hexamer primer
pools that avoid rRNA and other unwanted transcripts during RNA-seq
library preparation (NSR-RL). OligoRL demonstrates how reinforcement
learning offers a general solution for complex oligo design problems. Olig-
oRL and its associated software tools are available as a Julia package at
http://jensenlab.net/tools.

1 Introduction

Synthesized oligonucleotides (oligos) are a ubiquitous tool in molecular biology.
Researchers use multiple design criteria for oligos or oligo pools based on the
problem they are trying to solve. Such criteria include alignment to a DNA
sequence or genome, avoidance of sequences or genomes, GC content, melting

∗Correspondence to pjens@illinois.edu.

1

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 27, 2021. ; https://doi.org/10.1101/2021.08.25.455853doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.25.455853


temperature, or degeneracy (the number of unique sequences in an oligo pool
defined by degenerate base codes (Figure 1A))[1]–[3]. Many oligo pools are de-
signed by a process of elimination. All possible oligos are considered at the
start, and the pool is narrowed down until only the candidates that satisfy all
criteria remain[4]–[6]. This strategy may be effective for small problems, but
it does not scale well. Increasing the length of an oligo or adding degenerate
bases exponentially increases the size of an oligo pool. For example, using only
the non-degenerate bases A, C, G, or T, there are 4,096 unique DNA hexamer
(6-mer) sequences but 16,777,216 unique 12-mer sequences. If all 15 degenerate
bases are allowed, there are 11,390,625 hexamer and 129,746,337,890,625 12-mer
sequences[7]. Interactions among short sequences can also lead to combinatorial
complexity. For example, designing pools of primers for multiplex PCR am-
plification requires avoiding primers that form heterodimers. Adding any oligo
requires testing for sequence overlap with all other oligos, creating dependencies
between all candidates.

A process of elimination creates oligo pools that pass a set of design fil-
ters; however, these pools are rarely optimal with respect to the design criteria.
There are two obstacles to designing optimal pools. First, the combinatorial
structure of oligo design problems makes these problems computationally in-
tractable. Heuristics or sophisticated approximation strategies must be used
to find near-optimal solutions since brute-force techniques are impractical. Sec-
ond, incorporating a traditional optimization framework requires that the design
criteria be expressed in a specific way, e.g. as linear, convex, or mixed-integer
constraints. Many oligo design criteria cannot be written in this way. For exam-
ple, the melting temperature of an oligo is a nonlinear, discontinuous function of
oligo structure[8], and counting the number of times an oligo binds to a genome
would require millions or billions of integer constraints depending on the size of
the genome.

Here we describe a general reinforcement learning framework—OligoRL—
for designing oligonucleotide pools. OligoRL finds near-optimal (within 10% of
the optimal objective value) oligo pools using “black-box” design criteria. We
demonstrate the generality of OligoRL by solving three distinct oligo design
problems: 1.) finding degenerate barcodes that lack restriction enzyme recog-
nition sites; 2.) compressing a set of individual oligos into a smaller pool of
degenerate oligos; and 3.) creating semi-random hexamer libraries that avoid
rRNA when preparing RNA-seq libraries. OligoRL solves all three problems
using the same rollout algorithm [9], [10]. (Only the reward functions and ac-
tion spaces are changed to match the design criteria for each problem.) Thus,
OligoRL can be used to solve many challenging oligo design problems, including
problems with design criteria that are difficult to represent algebraically.

2

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 27, 2021. ; https://doi.org/10.1101/2021.08.25.455853doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.25.455853


2 Results

2.1 The OligoRL Framework

OligoRL formulates the oligo design problem as a Markov Decision Process
(MDP)[11]. The MDP describes how an agent in a state si selects an action ai
that moves the agent to a new state si+1 (Figure 1B). The transition between
states is accompanied by a reward ri. The agent’s goal is to select actions
that maximize the sum of all the rewards. Our problem is to build an oligo of
length L by selecting degenerate base codes at each position. The oligo codes
are selected sequentially beginning at the 5’ end. An agent in state si has
selected the first i− 1 oligo codes, so the agent begins at state s1, when zero
oligo codes have been selected, and finishes at state sL+1. The state defines
not only how many but also which codes have been selected. An agent that
has selected codes ACG is in a different state than an agent that has selected
codes ACT.

Once in state si, the agent selects the code to place at position i. This
selection corresponds to the action ai, which is drawn from the set of possible
codes A(si). The set of allowed codes is state-dependent—the codes selected
for the prior positions 1 . . . i− 1 can change the codes available to the agent at
position i. Each available code ai ∈ A(si) has an associated reward ri(ai). This
reward depends on the entire oligo up to and including position i. The final
reward rL(aL) is based on the entire oligo.

We do not make any assumptions about the reward functions. For example,
the reward for an oligo can be based on aligning the oligo to a genome and
counting the number or quality of the hits. It is also possible to set all but
the final rewards to zero, delaying the reward calculation until the entire oligo
has been selected. Furthermore, the reward function can be applied to either
a single oligo or an entire oligo pool. The flexibility of the reward function
underlies the generality of our approach, but it also requires us to solve the
oligo selection problem by simulation.

We use a rollout algorithm to choose the best code at each position. Roll-
out is a reinforcement learning (RL) technique used to solve large MDPs by
simulating trajectories using a computer model [9], [10]. In state si we begin
by considering the first code a1 ∈ A(si). We simulate ahead to the end of the
oligo, choosing codes randomly and summing the rewards. By averaging the
rewards from many random trajectories, all beginning with action a1, we can
estimate the average reward the agent will experience when code a1 is selected.
We compute this reward-to-go estimate for all other actions available at state si.
The action we ultimately choose in state si corresponds to the maximum reward
from the rollout simulations. After the code is selected, we move to the next
position (state si+1) and repeat the rollout process starting at the new state.

To demonstrate the flexibility of OligoRL, we apply the framework to three
pooled oligo design problems. First, we design pools of random DNA barcodes
that lack restriction enzyme recognition sequences. We previously solved this
problem using a mathematical programming algorithm called CutFree[3]. The

3

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 27, 2021. ; https://doi.org/10.1101/2021.08.25.455853doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.25.455853


new OligoRL implementation returns near-optimal solutions but is more com-
putationally efficient than CutFree on large problems.

Next, we use OligoRL to implement an oligo compressor. Given a large pool
of non-degenerate oligos, the compressor finds a smaller pool of degenerate oligos
that contains every sequence (and only those sequences) in the larger pool.

Finally, we use OligoRL to design pools of Not-So-Random (NSR) primers.
NSR pools are used to selectively prime reverse transcription in when preparing
sequencing libraries. The original NSR pools were designed to avoid hybridiza-
tion to rRNA transcripts[4]. Using OligoRL, we found smaller NSR pools with
increased uniformity across all mRNAs in a representative organism. This final
example demonstrates “black-box” reward functions that map the NSR primers
to transcriptomes and calculate the uniformity of an NSR pool. Neither of these
reward functions can be expressed as algebraic constraints on the OligoRL prob-
lem.

2.2 CutFreeRL

DNA barcodes are pools of randomers used to label individual genetic parts.
Random barcodes can be problematic for restriction enzyme-based cloning meth-
ods since some of the random sequences will contain restriction enzyme recog-
nition sites. The unwanted sites in the barcodes can lead to incorrect DNA
constructs or incorrect barcoding.

We previously developed the CutFree algorithm to design degenerate oligo
pools that are free from a user-specified set of restriction sites[3]. CutFree is a
mixed integer linear program (MILP) that uses constraints to guarantee that
the restriction sites do not appear in the resulting degenerate randomers. Users
input a set of unwanted restriction sites and the degenerate codes allowed at
each position. CutFree uses an MILP solver to maximize the degeneracy of the
randomer subject to the restriction site constraints. Unfortunately, the runtime
of CutFree increases exponentially when increasing either the number of blocked
restriction sites or the length of the randomer. CutFree’s MILP framework
also causes large variations in runtime, as the computational difficulty of an
MILP can change drastically when even small changes are made to the objective
or the constraints. Although CutFree can find provably optimal solutions for
many small problems, the algorithm is intractable for large problems with long
randomers or many blocked restriction sites.

We used our reinforcement learning framework to develop CutFreeRL, a
rollout-based alternative to the CutFree algorithm. Like CutFree, CutFreeRL
creates a single degenerate oligo. Beginning at the 5’ end, the agent selects
a degenerate base ai in state si to maximize the expected future reward. As
we showed with CutFree, maximizing diversity of the randomer is equivalent to
maximizing the sum of the log-degeneracy of each individual base[3], so ri =
log nb where nb is the degeneracy of base b. (For example, nA = nG = nC =
nT = 1, nM = 2, and nN = 4.) Before selecting a base, the agent checks that
no unwanted restriction site appears in positions 1 . . . i of the oligo. Unlike the
MILP-based CutFree, the check for restriction sites is not encoded algebraically.

4

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 27, 2021. ; https://doi.org/10.1101/2021.08.25.455853doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.25.455853


Instead, CutFreeRL simply calls a function that matches the unwanted sites
against the oligo. The reward for a randomer is set to zero if a simulated oligo
contains to any of the restriction sites.

We benchmarked CutFreeRL against the original CutFree algorithm by de-
signing randomers of different lengths or numbers of restriction sites. Restriction
sites were selected randomly from the set of all commercially available, palin-
dromic, six base pair restriction enzyme recognition sequences in REBASE[12].
As previously shown, CutFree’s runtime increased exponentially when either the
randomer length or the number of restrction sites increased (Figure 1C,D).

Conversely, the runtime for CutFreeRL varied linearly with respect to ran-
domer length and the number of restriction sites. This linear response was
expected since the rollout algorithm uses a fixed horizon to check if a randomer
contains any restriction sites. The horizon extends from the current base back
as far as the longest restriction site. Like most MILPs, the original CutFree
algorithm scaled exponentially with either the randomer length or the num-
ber of restriction sites. For problems with more than five restriction sites and
randomers with more than 17 bases, CutFreeRL was faster than the original
CutFree algorithm.

Another disadvantage of the original CutFree MILP approach is that the
runtimes can change unpredictably when different restriction sites are blocked
from randomers of the same length. Rollout-based algorithms have more pre-
dictable runtimes than MILPs, and we observed less runtime variation between
replicates for CutFreeRL than for the original CutFree approach.

While the original CutFree MILP framework frequently returns a provably
optimal solution, CutFreeRL relies on random simulation to find a solution.
CutFreeRL is limited to finding near-optimal solution since the rollout algo-
rithm cannot visit the entire combinatoric search space. While the CutFreeRL
approach sacrifices returning an optimal solution in order to handle solving
larger problems, it returns randomers with degeneracy scores on the same order
of magnitude as CutFree (Figure 1E). As expected, the degeneracies of oligos
found by both approaches decreased exponentially as the number of restric-
tion sites increased; however, there was no significant interaction between the
number of restriction sites and the choice of method (CutFree or CutFreeRL),
indicating that both CutFree and CutFreeRL scale similarly (p > 0.085, t-test).

2.3 OligoCompressor

Experimenters may have preexisting pools of oligos for a genomic assay. For
example, Not-So-Random (NSR) reverse transcription primers selectively en-
rich mRNA transcripts when creating RNA-seq libraries[4]. Such pools bypass
expensive and time consuming rRNA depletion steps. The cost of a set of oligos
depends on the number of synthesis reactions. Synthesizing each oligo separately
is often cost-prohibitive for large pools like NSR RNA-seq primers. However,
synthesizing an oligo containing degenerate bases costs the same as synthesizing
a single oligo sequence. It is possible that a set of oligos can be reduced to fewer
synthesis reactions by compressing together similar sequences using ambiguous

5

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 27, 2021. ; https://doi.org/10.1101/2021.08.25.455853doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.25.455853


base codes. The resulting pool would be made up of degenerate oligos that
encode the same information as the original uncompressed pool. Depending on
the degree of similarity within sequence subsets, compressed oligo pools could
substantially reduce synthesis costs.

We used the OligoRL framework to develop OligoCompressor. Given a pool
of oligo sequences, OligoCompressor finds a smaller pool of degenerate oligos
that contains the same sequences. By defining the reward function and ac-
tion spaces, we ensure that OligoCompressor finds the smallest equivalent pool
without introducing sequences not found in the original pool. The compressor
follows a stepwise greedy approach where the agent is rewarded for maximiz-
ing the number of oligos from the original pool it can capture within a single
degenerate oligo (Figure 2A). The agent is also constrained such that it can
only capture oligos from the original pool, with prohibitively large penalties for
incorporating sequences not found in the original pool. After a degenerate oligo
has been selected, all of the sequences captured by that oligo are removed from
the original pool, and the oligo selection process repeats until all sequences from
the original pool have been captured.

OligoCompressor implements a dynamic action space to improve perfor-
mance (Figure 2B). Since the sequences that OligoCompressor is trying to cap-
ture are known a priori, we can limit the action choices at each nucleotide
position to only the bases in the target pool at that position. For example, if
every remaining oligo in the target pool has either an A or T in the final position,
then the agent doesn’t need to waste simulations by testing oligos that end in
G or C. In this scenario, we can reduce the size of the action space for the agent
at the final nucleotide position from 15 degenerate base codes down to three (A,
T, or W). Furthermore, as the agent selects nucleotides, it commits to matching
only a subset of the original pool. For example, an agent that selected a W for
the first position can ignore any oligos in the target pool that do not start with
an A or T. (The oligos that begin with G or C will need to be matched by a
subsequent degenerate oligo.) Limiting the available actions and setting aside
the unmatchable oligos quickly eliminates unnecessary simulations and reduces
OligoCompressor’s runtime.

To assess the performance of OligoCompressor, we randomly generated hex-
amer pools of varying size and compressed them using the OligoRL framework.
The degree of compression generally increased with the size of the starting
pool (Figure 2C). This is expected since a pool of 1,000 random oligos is more
likely to contain groups of similar, “compressible” oligos than a smaller pool
of 100 oligos. We observed that OligoCompressor became increasingly effec-
tive when the number of the oligos in the pool approached the upper bound of
4,096 possible hexamer sequences. At approximately 2,500 starting oligos, the
compressed pool size peaked around 800 oligos. Starting pools with more than
2,500 oligos could be compressed into even fewer oligos. As an extreme case,
running OligoCompressor on a starting pool with all 4,096 possible hexamers
returned the single degenerate oligo: NNNNNN.

OligoCompressor iterates by adding a single degenerate oligo until it cap-
tures every oligo in the starting pool. Its runtime therefore depends on both

6

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 27, 2021. ; https://doi.org/10.1101/2021.08.25.455853doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.25.455853


the number of iterations and the difficulty of finding a valid oligo during each
iteration. The runtimes for OligoCompressor followed the same pattern as the
degree of compression (Figure 2D). Pools with more than 2,500 starting oligos,
for example, compressed faster because they produced fewer, more degenerate
oligos and required fewer iterations to capture the starting pool. Interestingly,
there was a quadratic relationship between runtime and pool size for small pool
sizes (< 500 oligos). Since the degree of compression is relatively low for these
smaller pools, the algorithm uses more iterations and must check itself against
a larger fraction of the starting pool during each iteration. The relationship
between runtime and pool size became linear for larger pools because each oligo
selection iteration removed a larger fraction of the starting pool, reducing both
the number of iterations and the runtime of each iteration.

We performed simulations to test how efficiently OligoCompressor can re-
duce pools of hexamers. We randomly selected degenerate, pre-compressed
pools of 10 oligos of varying degeneracy and expanded the pools into a non-
degenerate starting pool. The expanded pools contained between 30–150 oligos.
We then used OligoCompressor to re-compress the expanded pools and com-
pared the size of the re-compressed pools to the size of the pre-compressed
pools (Figure 2E). On average, OligoCompressor returned a solution that con-
tained 16.8 ± 3.7 oligos, while the largest solution contained 23 oligos for an
expanded pool of 145 oligos. These results suggest that like CutFreeRL, Oligo-
Compressor returns near-optimal solutions.

OligoCompressor excels at compressing pools of short oligos such as NSR primer
pools used in single-cell RNA-seq. The compressed pools are equivalent to the
uncompressed pools but cost less to manufacture. For example, a recently
published NSR pool for mammalian single-cell RNA-seq contains 408 non-
degenerate oligos[13]. OligoCompressor reduced the same set of sequences to
262 degenerate oligos—a savings of 36%. We can also use the OligoRL frame-
work to directly design pools of NSR primers and tune the pool to specific design
criteria.

2.4 NSR-RL

CutFreeRL and OligoCompressor use straightforward reward functions (sequence
degeneracy and number of oligos matched) to search for optimal solutions. Both
algorithms incorporate sequence alignment to find restriction sites or to compare
short oligo sequences. As a final example, we use OligoRL to find oligo pools
using a complex, multivariate reward function that uses a computationally-
intensive sequence search across an entire transcriptome. Our goal is to find an
optimal pool of Not-So-Random (NSR) primers that 1.) avoid rRNA, tRNA, or
transcripts from any unwanted genes, 2.) bind to every gene in a target set at
least once, 3.) uniformly cover the transcripts from targeted genes, and 4.) use
the smallest number of oligos necessary to meet objectives 1–3.

Highly abundant transcripts from rRNA and tRNA genes constitute up to
95% of the RNA in the cell[14]. If these transcripts are not removed before
sequencing, they can vastly inflate the sequencing cost needed to quantify the

7

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 27, 2021. ; https://doi.org/10.1101/2021.08.25.455853doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.25.455853


abundance of mRNA. In bulk RNA from eukaryotes, mRNA transcripts can be
enriched by polyT selection; however, prokaryotic mRNAs are not polyadeny-
lated, and the highly abundant rRNA transcripts must instead be removed by
physical capture with silica columns or magnetic beads[15]–[17]. Column- and
bead-based separations are not possible in single-cell RNA-seq studies where
libraries are prepared from picograms of RNA in droplets or microwells.

Some RNA-seq protocols use random hexamers to prime reverse transcrip-
tion. The hexamers bind randomly across the transcriptome, so libraries made
from total RNA will be dominated by rRNA. Recently, NSR primers have been
used to selectively amplify non-rRNA sequences[4]. An NSR pool contains only
the hexamers that are not found in the rRNA genes, so rRNA transcripts are
not primed for reverse transcription and subsequent amplification.

Current workflows for designing NSR hexamer primers start with a pool of
all 4,906 possible hexamers and remove hexamers that appear in the undesired
transcripts. The remaining hexamers are aligned to the rest of the transcrip-
tome. The OligoRL framework can improve NSR selection in two ways. First,
OligoCompressor can reduce the cost of a brute-force pool by finding degenerate
oligos in the pool. As previously shown, OligoCompressor reduced a recently
published NSR pool of 408 oligos to 262 degenerate oligos[13]. Second, we can
avoid brute-force selection of NSR primers and instead design pools of hexam-
ers with optimal coverage and uniformity. The oligos in brute-force pools are
scored individually and may not represent the best overall pool when combined.
Current NSR pools are designed only to maximize the number of binding sites
in the transcript, leading to skewed coverage of transcripts. We developed a
multifaceted reward function that scores NSR primer pools using five criteria:

1. Specificity. Each NSR primer is compared to hexamers in rRNA and
tRNA genes, sequencing adapters, and the other NSR primers. Any NSR
candidate that contains these sequences receives a reward of zero.

2. Gene count. The agent receives a reward for any gene hit at least once by
an oligo in the pool.

3. Total hits. The agent is rewarded for maximizing the total number of hits
across the transcriptome.

4. Intergene uniformity. The agent is rewarded for placing the same number
of hits on each gene.

5. Intragene uniformity. The agent is rewarded for uniformly distributing
hits across the length of each gene.

Inter- and intragene uniformity are quantified by the distribution uniformity,
lower quartile (DULQ) score (Figure 3A)[18]:

DULQ =
mean(lower quartile)

mean(sample)
.

8

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 27, 2021. ; https://doi.org/10.1101/2021.08.25.455853doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.25.455853


The DULQ is bounded between zero (all hits at a single location) and one
(perfect uniformity). Only genes with at least one hit are used to calculate the
DULQ. The total reward is the weighted sum of the individual criteria:

reward = βgene {gene count}
+ βhits {total hits}
+ βinter {intergene uniformity}
+ βintra {intragene uniformity}.

Users can change the weights to emphasize certain criteria when designing
primer pools.

We tested the performance of our RL-guided NSR primer design program,
called NSR-RL, by designing primer pools using varying weights in the reward
function. We compared the NSR-RL pools to primer pools designed using a
standard brute-force approach. Both pools targeted the 1.76 Mb Streptococcus
mutans transcriptome. Changing the reward function weights prioritizes differ-
ent design criteria. For example, if we are only interested in designing a pool
that hits every gene at least once, we can do so by zeroing out the other terms
in the reward function. NSR-RL can design a pool that hits every gene using
only 10 oligos. A brute-force approach requires 453 oligos to hit every gene even
after the final pool is compressed using OligoCompressor.

Rather than minimize the number of oligos, we can use NSR-RL to design
a fixed-size pool with improved coverage or uniformity. We used NSR-RL to
design a pool containing 100 oligos with nonzero weights for all four criteria
in the reward function. The resulting pool exceeded the performance of the
compressed brute-force pool (Figure 3B-E). The NSR-RL pool hit every gene
in the S. mutans transcriptome after only 22 oligos. The NSR-RL pool also
placed an average of 993 hits per oligo while the brute-force pool placed an
average of 910 hits per oligo. Note that it is impossible to generate more total
hits than the brute-force designed pool since the brute-force pool includes all
hexamers that are not found in the rRNA or other “unallowable” genes. While
the NSR-RL pools contain fewer total hits, the hits are distributed more evenly
across the transcriptome as measured by intergene uniformity. Interestingly, we
observed that the intergene uniformity score quickly approached a maximum
but then oscillated near this value as new oligos were added to the pool. The
oscillations indicate that NSR-RL added new oligos that improved the scores of
other terms at the expense of intergene uniformity, and vice-versa. The NSR-RL
pool’s intragene uniformity matched the performance of the brute-force pool.
Users can tune the reward function’s weights to produce NSR primer pools that
prioritize either the number of genes hit, total hits, or uniformity. In addition,
users can easily add terms to the reward function or create a custom reward to
design specialized pools.

NSR-RL’s runtime increases linearly with the size of the problem. We gener-
ated NSR pools containing 30 hexamers for an assortment of bacterial transcrip-
tomes ranging between 0.17–9.2 Mb in size. We observed that the algorithm’s
runtime scaled linearly with each species’ transcriptome size (Figure 3F). The

9

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 27, 2021. ; https://doi.org/10.1101/2021.08.25.455853doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.25.455853


NSR-RL runtime also increases linearly with the number of oligos in the final
pool. The amount of computation required depends heavily on the structure of
the reward function. In particular, calculating the intragene uniformity score
requires measuring the hit positions of every simulated oligo and calculating the
gap distances between each hit position along the length of every gene. Pools
designed with reward functions that include intragene uniformity took approx-
imately 50% longer to generate (Figure 3G). We implemented a bypass to skip
these calculations if the user is not interested in intragene uniformity, i.e. when
the user sets βintra = 0.

3 Discussion

OligoRL is a general framework designing optimal pools of oligonucleotides. It
requires only a reward function and constraints on the action space for each
problem; both can be implemented as “black-box” functions. This study used
the OligoRL framework to solve three distinct problems. First, CutFreeRL
designs pools of DNA barcodes free of restriction sites. CutFreeRL finds near-
optimal pools and scales linearly with the problem size, while the original Cut-
Free algorithm has exponential scaling. The second tool, OligoCompressor,
collapses large, non-degenerate oligo pools into smaller degenerate ones. Oligo-
Compressor works best with large pools of short sequences such as hexamers
used for RNA-seq library generation. The smaller pools are less expensive to
synthesize, allowing researchers to incorporate base modifications, such as 5’
biotinylation, to their pools. Finally, the NSR-RL tool finds hexamer pools us-
ing a complex, multivariate reward function. The resulting pools maximize the
number and quality of hits across an entire transcriptome while avoiding un-
wanted transcripts from rRNA and tRNA genes. Pools designed using NSR-RL
require fewer oligos and have better intergene uniformity than pools designed
using published brute-force design strategies[4].

The rollout algorithms used in OligoRL have been applied to numerous com-
binatorial optimization problems. Rollout is a stochastic optimization technique
that is not guaranteed to return an optimal solution after a single iteration. One
option is to use rollout results to incrementally improve the policy; however, this
approach is computationally expensive and the improvements after each iter-
ation can be small. Our results indicate that OligoRL returns near-optimal
solutions with a single pass (Figures 1E and 2E). Another option is to exploit
the stochasticity of rollout and re-run OligoRL several times with different ran-
dom number seedings. Stochastic optimizers often include multiple restarts
and return the best solution. Indeed, re-running the algorithms in this study
produced solutions that were better or worse than our reported results.

All reinforcement algorithms require tuning for optimal performance. For
NSR-RL, changing the relative weights of the reward function can impact both
solution quality and runtime. Users will also need to balance the time spent
finding a single solution (by changing the number of rollout simulations) with
re-running the algorithm with different random number seeds. Increasing the

10

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 27, 2021. ; https://doi.org/10.1101/2021.08.25.455853doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.25.455853


number of simulations will improve the agent’s confidence in the expected re-
ward estimates. We found that 100 simulations under each action provided the
best results without excessive runtime. Fortunately, the runtime of OligoRL
algorithms scales linearly with the number of simulations, so users can easily
estimate runtimes based on previous results.

OligoRL uses true “black-box” reward functions. The quality of a candidate
oligo pool can be measured using simple algebraic expressions (like degeneracy
of the pool) or complex calculations performed by external software packages
(such as genome-wide sequence aligners). NSR-RL has a complex, multifacto-
rial reward function, and calculating rewards makes up the majority of the algo-
rithm’s runtime. Researchers with computationally intensive reward functions
may consider approximating the reward with a simpler function. Performing
more rollout simulations with a less accurate reward may yield better solutions
than fewer simulations with better reward estimates.

OligoRL works best when finding optimal solutions from a large set of valid
solutions. When the pool of valid solutions shrinks, the nature of the design
problem shifts from finding optimal solutions to finding valid solutions that sat-
isfy the problem’s constraints. Rollout, and therefore OligoRL, performs better
at optimization than constraint satisfaction. When valid solutions are difficult
to find, OligoRL explores many dead-end solutions with poor rewards. For ex-
ample, instructing NSR-RL maximize total hits leads to states where there are
only a few valid hexamers left. In this scenario, OligoRL randomly samples
many hexamers but often fails to find the few valid ones. The invalid simu-
lations do not provide useful information to the agent since all invalid actions
appear equally poor. Conversely, when nearly all solutions are valid, OligoRL
quickly determines good actions for each state since every simulation provides
information about an action.

OligoCompressor and NSR-RL find sets of oligos with differing degeneracy.
Some wet-lab protocols suggest oligo pools with equimolar concentrations, so
experimenters should be careful to mix the oligos in proportion to their degen-
eracy. The added mixing complexity is a trade-off for the savings gained when
using these tools.

Artificial intelligence (AI) is increasingly used in genomic data analysis. This
study highlights how AI can improve data collection by optimizing reagents for
complex genomic assays. Multiplexed genomic screens need to target thou-
sands of genes while adhering to a large set of biochemical constraints. Such
design problems explode combinatorially and are a daunting challenge for tradi-
tional optimization techniques. OligoRL demonstrates how reinforcement learn-
ing algorithms can simplify complex design problems and find computationally
tractable solutions to black box problems. We hope this work will increase the
use of AI for designing complex experiments.

11

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 27, 2021. ; https://doi.org/10.1101/2021.08.25.455853doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.25.455853


4 Methods

4.1 Implementation

OligoRL and all simulation codes are available as a Julia package at http://jensenlab.net/tools.
Simulations were run using Julia version 1.2.8 on a 16-core 3.2 GHz AMD
Threadripper processor with 48 Gb of RAM (for OligoCompressor and NSR-RL)
or a dual-core 1.6 GHz Intel i5 processor with 8 Gb of RAM (for CutFree and
CutFreeRL). The original CutFree algorithm was executed in R version 3.6.2
using Gurobi 9.1.1.

The rollout algorithm used in OligoRL can be parallelized at either the
action or simulation level. For example, when simulating the reward for a single
base, each simulation can be executed in parallel by a separate thread. This
study used Julia’s multithreading tools to perform parallel computations on a
multicore processor. The code can also be configured for a cluster computing
environment where parallel simulations execute on separate machines.

4.2 CutFreeRL Algorithm

CutFreeRL generates a single degenerate oligo that is free of user-specified re-
striction sites. The specified restriction sites can vary in length up to the length
of the final oligo. If any restriction sites are non-palindromic, the reverse com-
plement is added to the list of restriction sites. The user defines the length L of
the oligo as well as the acceptable base codes that can be used at each position.
(Some oligo synthesis companies restrict the use of certain codes.)

An empty oligo is initialized with L unspecified positions. Starting at the
first position (1), a single candidate base code a is selected from the set A(s1) of
allowed codes at position 1. The algorithm simulates ahead to form a candidate
oligo that begins with code a at position 1 followed by randomly selected codes
through the end of the oligo (positions 2 through L). At each position i, the code
is selected from the set A(si) of allowed codes at that position. As codes are
selected, the algorithm checks that the newest code does not create a restriction
site in the candidate oligo. A (backwards) sliding horizon is used to checking
the oligo for restriction sites, with the horizon equal to the length of the longest
restriction site. Any codes beyond the window have already been checked for
restriction sites when those codes were selected. If all of the allowed codes
create a restriction site, the simulation stops and oligo is terminated early. At
the end of each simulation (i.e. after a single candidate oligo has been built), the
reward function returns the log2 degeneracy of the candidate. Any prematurely
terminated oligo candidate is assigned a log2 degeneracy of −100, a prohibitively
large penalty.

CutFreeRL performs many simulations (100–1000) for each allowed base
code a at the first position 1. The overall reward for code a is the average
reward of the individual simulations. The code with the highest average reward
is selected for position 1, and the algorithm moved to the next position 2. The
entire simulation procedure is repeated starting at position 2, and so on until

12

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 27, 2021. ; https://doi.org/10.1101/2021.08.25.455853doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.25.455853


codes have been selected for all L positions.
Benchmarking experiments were performed on groups of restriction sites

selected randomly from the set of all commercially available, palindromic, hex-
americ restriction enzymes in REBASE[12]. The groups of restriction sites were
blocked from 20 bp oligos using both CutFreeRL and the original CutFree algo-
rithm. Randomly selected sets of five restriction sites were used for experiments
that varied the oligo length. All base codes were allowed at every position, and
CutFreeRL performed 1000 rollout simulations per action. The following linear
model was used to compare the decrease in degeneracy as additional restriction
sites are blocked:

log(degeneracy) = β0 + β1 sites + β2 CutFreeRL + β12 sites · CutFreeRL.

A t-test on the coefficient β12 assessed the significance of the interaction between
the number of sites and the choice of algorithm.

4.3 OligoCompressor Algorithm

OligoCompressor reduces a large set of non-degenerate oligos (the target pool)
into a smaller set of degenerate ones (the compressed pool). OligoCompressor
applied a semi-greedy approach that begins by designing a degenerate oligo that
matches the largest number of oligos in the target pool. The resulting oligo is
added to the compressed pool and the matched sequences are removed from the
target pool. OligoCompressor repeats this process until all oligos in the target
pool have been matched by an oligo in the compressed pool.

OligoCompressor begins with an empty oligo equal to the length of the
oligos in the target pool. Rollout is used to select degenerate bases for each
position given the expected future rewards. If at any point a candidate oligo
contains a sequence that is not in the original target pool, the simulation is
stopped prematurely, and the candidate receives a score of zero; otherwise, the
candidate’s score is the number of matched oligos in the target pool. To check
if a candidate oligo contains a non-target sequence, the algorithm checks that
the degeneracy of the candidate does not exceed the number of matches in the
original target pool.

As mentioned previously, OligoCompressor updates the action space of al-
lowed bases as it builds candidate oligos (Figure 2B). For example, if the algo-
rithm selects code T at position 1, the action spaces for the remaining positions
are limited to only those codes that appear in oligos that begin with T. If code
A is selected for position 2, the action space for positions 3 and beyond are fur-
ther resticted to bases that appear in target oligos beginning with TA. Shrinking
the action spaces prevents unnecessary simulations by skipping codes that are
guaranteed to end prematurely when the candidate does not match any tar-
get oligos. It is especially useful near the end of the algorithm when the few
remaining target sequences need to be added individually to the compressed
pool.

To benchmark OligoCompressor (Figure 2C,D), pools of random hexamers
of size 50–4,096 were sampled without replacement from the set of all possible

13

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 27, 2021. ; https://doi.org/10.1101/2021.08.25.455853doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.25.455853


hexamers. To test compression efficiency (Figure 2e), pools of 10 degenerate oli-
gos were constructed that contained 30 to 150 unique oligos. Each degenerate
oligo was generated by sampling bases as Poisson random variable ranging from
degeneracy 1 (A, T, G, or C) to degeneracy 4 (N). The degeneracy of each pool was
tuned by changing the Poisson rate parameter (λ). Each pool of 10 degenerate
oligos was expanded and then re-compressed using OligoCompressor. All bench-
marking experiments used 100 rollout simulations per action; no differences in
compression efficiency were observed using 1000 simulations per action.

4.4 NSR-RL Algorithm

NSR-RL designs Not-So-Random primer pools for RNA-seq library preparation
and other multiplex genomic assays. Users supply two sequence files containing
1.) “targeted” transcripts that should be targeted by the NSR primers, and
2.) “unallowed” transcripts to avoid, e.g. transcripts from rRNA and tRNA
genes. The user also specifies the number of NSR primers to create and the
length of the primers (the default is hexamers).

NSR-RL builds oligos using rollout with dynamic action spaces as described
for the OligoCompressor. Candidate oligos are assigned a reward of zero if
they hit any unallowed transcript. Palindromic candidates are also assigned a
reward of zero since palindromic reverse transcription primers may self-anneal
during amplification. Non-palindromic candidate oligos that miss the unallowed
transcripts are scored by the multifaceted reward function. The first three terms
in the reward are calculated by counting the number of times the oligo hits each
targeted sequence. First, the gene count term is the number of genes that
are hit at least once. Second, the total hits term is sum of all hits across the
transcriptome. Third, the intergene uniformity score is calculated using the
DULQ score of all of the hit counts. Calculating the fourth term in the reward,
intragene uniformity, requires the gaps between hits to calculate the DULQ for
each transcript. Transcripts with a more uniform gap distance distribution will
score higher than transcripts with different sized gaps. The overall intragene
uniformity score is the average DULQ across all transcripts. We multiply the
inter- and intragene uniformity scores by the number of targets, ntargets, to
place these rewards on a similar scale as the other terms. The target count
and uniformity terms range from 0 to ntargets, while the total hits is term is
unbounded. Each term in the reward function has an associated weight β, and
the weights can be changed to tune the pools empirically.

After NSR-RL finishes an oligo, the oligo and its reverse complement are
added to the list of unallowed sequences to prevent avoid repeats or selecting
oligos that could form dimers when the libraries are amplified.

NSR-RL was benchmarked by creating 100 degenerate hexamers target-
ing the transcriptome of the 1076 Mb transcriptome of Streptococcus mutans
strain UA159 (Figure 3B–E). Unless otherwise specified, the reward weights
were βgene = 1, βhits = 10−4, βinter = 1, and βintra = 1. To compare NSR-
RL runtime with transcriptome size (Figure 3F), 30 degenerate hexamers were
designed to target the transcriptomes of 25 species of bacteria (Supplementary

14

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 27, 2021. ; https://doi.org/10.1101/2021.08.25.455853doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.25.455853


File 1).

5 Acknowledgements

This work was supported by the National Institutes of Health (grant GM138210)
and the Laboratory Directed Research and Development (LDRD) Program of
Sandia National Laboratories (contract 2093481) to PAJ. Sandia National Labo-
ratories is a multi-mission laboratory managed and operated by National Tech-
nology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary
of Honeywell International Inc., for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-NA0003525. BMD is sup-
ported in part by an Illinois Distinguished Fellowship.

15

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 27, 2021. ; https://doi.org/10.1101/2021.08.25.455853doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.25.455853


References

[1] M. Hendling, S. Pabinger, K. Peters, N. Wolff, R. Conzemius, and I.
Barǐsić, “Oli2go: an automated multiplex oligonucleotide design tool,” Nu-
cleic Acids Research, vol. 46, no. Web Server issue, W252, Jul. 2018. doi:
10.1093/NAR/GKY319. [Online]. Available: /pmc/articles/PMC6030895/
%20/pmc/articles/PMC6030895/?report=abstract%20https://www.

ncbi.nlm.nih.gov/pmc/articles/PMC6030895/.

[2] M. Hendling and I. Barǐsić, “In-silico Design of DNA Oligonucleotides:
Challenges and Approaches,” Computational and Structural Biotechnology
Journal, vol. 17, pp. 1056–1065, Jan. 2019, issn: 2001-0370. doi: 10.1016/
J.CSBJ.2019.07.008.

[3] A. J. Storm and P. A. Jensen, “Designing Randomized DNA Sequences
Free of Restriction Enzyme Recognition Sites,” Biotechnology Journal,
vol. 13, no. 1, Jan. 2018, issn: 18607314. doi: 10.1002/biot.201700326.
[Online]. Available: https://pubmed.ncbi.nlm.nih.gov/28865135/.

[4] C. D. Armour, J. C. Castle, R. Chen, T. Babak, P. Loerch, S. Jackson,
J. K. Shah, J. Dey, C. A. Rohl, J. M. Johnson, and C. K. Raymond,
“Digital transcriptome profiling using selective hexamer priming for cDNA
synthesis,” Nature Methods 2009 6:9, vol. 6, no. 9, pp. 647–649, Aug. 2009,
issn: 1548-7105. doi: 10.1038/nmeth.1360. [Online]. Available: https:
//www.nature.com/articles/nmeth.1360.

[5] M. Vignali, C. D. Armour, J. Chen, R. Morrison, J. C. Castle, M. C. Biery,
H. Bouzek, W. Moon, T. Babak, M. Fried, C. K. Raymond, and P. E.
Duffy, “NSR-seq transcriptional profiling enables identification of a gene
signature of Plasmodium falciparum parasites infecting children,” The
Journal of Clinical Investigation, vol. 121, no. 3, p. 1119, Mar. 2011. doi:
10.1172/JCI43457. [Online]. Available: /pmc/articles/PMC3046638/
%20/pmc/articles/PMC3046638/?report=abstract%20https://www.

ncbi.nlm.nih.gov/pmc/articles/PMC3046638/.

[6] O. Arnaud, S. Kato, S. Poulain, and C. Plessy, “Targeted reduction of
highly abundant transcripts using pseudo-random primers,” BioTechniques,
vol. 60, no. 4, pp. 169–174, Apr. 2016. doi: 10.2144/000114400. [Online].
Available: www.BioTechniques.com.

[7] A. Cornish-Bowden, “Nomenclature for incompletely specified bases in
nucleic acid sequences: recommendations 1984.,” Nucleic Acids Research,
vol. 13, no. 9, p. 3021, May 1985. doi: 10.1093/NAR/13.9.3021. [On-
line]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/

PMC341218/.

[8] A. Untergasser, I. Cutcutache, T. Koressaar, J. Ye, B. C. Faircloth, M.
Remm, and S. G. Rozen, “Primer3—new capabilities and interfaces,” Nu-
cleic Acids Research, vol. 40, no. 15, e115, Aug. 2012. doi: 10.1093/

NAR/GKS596. [Online]. Available: /pmc/articles/PMC3424584/%20/pmc/

16

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 27, 2021. ; https://doi.org/10.1101/2021.08.25.455853doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.25.455853


articles/PMC3424584/?report=abstract%20https://www.ncbi.nlm.

nih.gov/pmc/articles/PMC3424584/.

[9] D. P. Bertsekas, Reinforcement Learning and Optimal Control, 1st Ed.
Athena Scientific, 2019, isbn: 978-1-886529-39-7.

[10] ——, Rollout, Policy iteration, and Distributed Reinforcement Learning.
Athena Scientific, 2020, isbn: 978-1-886529-07-6.

[11] R. Bellman, “A Markovian Decision Process,” Journal of Mathematics
and Mechanics, vol. 6, no. 5, pp. 679–684, 1957.

[12] R. J. Roberts, T. Vincze, J. Posfai, and D. Macelis, “REBASE—a database
for DNA restriction and modification: enzymes, genes and genomes,” Nu-
cleic Acids Research, vol. 43, no. D1, pp. D298–D299, Jan. 2015, issn:
0305-1048. doi: 10.1093/NAR/GKU1046. [Online]. Available: https://
academic.oup.com/nar/article/43/D1/D298/2436339.

[13] T. Hayashi, H. Ozaki, Y. Sasagawa, M. Umeda, H. Danno, and I. Nikaido,
“Single-cell full-length total RNA sequencing uncovers dynamics of re-
cursive splicing and enhancer RNAs,” Nature Communications 2018 9:1,
vol. 9, no. 1, pp. 1–16, Feb. 2018, issn: 2041-1723. doi: 10.1038/s41467-
018-02866-0. [Online]. Available: https://www.nature.com/articles/
s41467-018-02866-0.

[14] A. J. Westermann, S. A. Gorski, and J. Vogel, “Dual RNA-seq of pathogen
and host,” Nature Reviews Microbiology 2012 10:9, vol. 10, no. 9, pp. 618–
630, Aug. 2012, issn: 1740-1534. doi: 10.1038/nrmicro2852. [Online].
Available: https://www.nature.com/articles/nrmicro2852.

[15] R. Sooknanan, J. Hitchen, A. Radek, and J. Pease, “Superior rRNA Re-
moval for RNA-Seq Library Preparation,” Journal of Biomolecular Tech-
niques : JBT, vol. 23, no. Suppl, S57, 2012. [Online]. Available: /pmc/
articles/PMC3630600/?report=abstract%20https://www.ncbi.nlm.

nih.gov/pmc/articles/PMC3630600/.

[16] F. J. Stewart, E. A. Ottesen, and E. F. DeLong, “Development and quan-
titative analyses of a universal rRNA-subtraction protocol for microbial
metatranscriptomics,” The ISME journal, vol. 4, no. 7, pp. 896–907, Jul.
2010, issn: 1751-7370. doi: 10.1038/ISMEJ.2010.18. [Online]. Available:
https://pubmed.ncbi.nlm.nih.gov/20220791/.

[17] P. H. Culviner, C. K. Guegler, and M. T. Laub, “A simple, cost-effective,
and robust method for rrna depletion in rna-sequencing studies,” mBio,
vol. 11, no. 2, Mar. 2020. doi: 10.1128/MBIO.00010-20.

[18] C. Burt and S. Styles, Drip and micro irrigation for trees, vines, and row
crops: Design and management (with special sections on SDI). 1999, isbn:
978-0964363427.

17

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 27, 2021. ; https://doi.org/10.1101/2021.08.25.455853doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.25.455853


Figures

Figure 1: CutFreeRL was developed using the OligoRL framework. A. IUB
codes specify all combinations of the bases A, C, G, and T. B. An OligoRL agent
in state si selects an action ai from the set of available actions A(si) in order to
move to state si+1. A reward ri is associated with the selected action. Rollout
uses simulations to find the action with the highest expected total reward. The
process repeats from state si+1 onward until the entire oligo has been selected.
CutFreeRL’s reward function implements a restriction site filter. Oligos that do
not contain an unwanted restriction site are scored in proportion to their de-
generacy. C. CutFreeRL exhibits better scaling than the original, MILP-based
CutFree algorithm as the number of blocked restriction sites increases. D. Cut-
FreeRL solve problems with longer randomers faster than CutFree. CutFreeRL
also has less variability in runtimes for large problems. E. Randomers designed
with CutFreeRL have lower degeneracy than those designed with CutFree, al-
though the rate of decrease in degeneracy as restriction sites are blocked is the
same for both algorithms.

18

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 27, 2021. ; https://doi.org/10.1101/2021.08.25.455853doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.25.455853


Figure 2: OligoCompressor reduces a large non-degenerate oligo pool into a
smaller degenerate pool. A. OligoCompressor builds a degenerate oligo that
captures the maximum number of oligos from the target pool. The selection
process continues until all target oligos have been captured. B. OligoCompres-
sor adjusts the action space after each base is selected to eliminate unneces-
sary simulation. After each base is selected, actions that do not correspond to
partially-matched oligos are removed. C. OligoCompressor can compress pools
of random hexamer sequences. A pool with all 4,096 possible hexamers is com-
pressed down to a single degenerate oligo: NNNNNN. D. OligoCompressor builds
one degenerate oligo at a time, so the algorithm’s runtime is proportional to the
number of oligos in the final compressed pool. Runtimes are shown for ten ran-
dom pools at each original pool size. E. OligoCompressor’s efficiency was tested
by decompressing and re-compressing randomly generating degenerate pools of
10 oligos. The decompressed pools contained between 30–150 sequences.

19

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 27, 2021. ; https://doi.org/10.1101/2021.08.25.455853doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.25.455853


Figure 3: NSR-RL creates hexamer pools using a multivariate reward function.
A. Intergene uniformity measures the distribution of the hits per gene. Intragene
uniformity measures the distribution of hits across the length of each gene. Both
uniformity scores range from [0, 1]. NSR hexamer libraries produced by NSR-RL
were compared to a pool of 453 hexamers produced by a standard brute-force
approach and compressed by OligoCompressor. The libraries were compared
across four criteria: the number of unique genes hit at least once (B), the total
number of hits (C), intergene uniformity (D), and intragene uniformity (E). The
dashed black lines show the performance of the brute-force pool, and the solid
red lines show the performance of the NSR-RL pool as each hexamer is added
to the pool. NSR-RL hit every target with increased intergene uniformity and
equivalent intragene uniformity with only 100 oligos. F. NSR-RL’s runtime was
measured for pools designed to target bacteria with transcriptomes between
0.17 Mb and 9.2 Mb in size. G. Quantifying intragene uniformity requires
calculating the gaps between all hits on each transcript. Consequently, the
runtime of NSR-RL decreases when intragene uniformity is removed from the
reward function by setting the associated weight βintra = 0.

20

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 27, 2021. ; https://doi.org/10.1101/2021.08.25.455853doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.25.455853

