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ABSTRACT  

The development of cerebrovascular disease is tightly coupled to changes in cerebrovascular 

hemodynamics, with altered flow and relative pressure indicative of the onset, development, 

and acute manifestation of pathology. Image-based monitoring of cerebrovascular 

hemodynamics is, however, complicated by the narrow and tortuous vasculature, where 

accurate output directly depends on sufficient spatial resolution. To address this, we present a 

method combining dedicated deep learning and state-of-the-art 4D Flow MRI to generate 

super-resolution full-field images with coupled quantification of relative pressure using a 

physics-driven image processing approach. The method is trained and validated in a patient-

specific in-silico cohort, showing good accuracy in estimating velocity (relative error: 12.0 ± 

0.1%, mean absolute error (MAE): 0.07 ± 0.06 m/s at peak velocity), flow (relative error: 6.6 

± 4.7%, root mean square error (RMSE): 0.5 ± 0.1 mL/s at peak flow), and with maintained 

recovery of relative pressure through the circle of Willis (relative error: 11.0 ± 7.3%, RMSE: 

0.3 ± 0.2 mmHg). Furthermore, the method is applied to an in-vivo volunteer cohort, 

effectively generating data at <0.5mm resolution and showing potential in reducing low-

resolution bias in relative pressure estimation. Our approach presents a promising method to 

non-invasively quantify cerebrovascular hemodynamics, applicable to dedicated clinical 

cohorts in the future. 
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I. INTRODUCTION  

Changes in regional hemodynamics are intimately coupled to the manifestation of 

cerebrovascular disease, making the quantification of flow and pressure critically important 

for improving diagnostics. Variations in pressure throughout the cerebrovasculature have 

been particularly highlighted in a number of clinical scenarios: the functional impact of 

intracranial atherosclerosis linked to regional changes in intravascular pressure [1], the 

likelihood of cerebral aneurysm growth related to regional pressure gradients [2], and 

experimental work showing altered pressure variations in arteriovenous malformations [3]. 

While transcranial Doppler or 2D phase-contrast magnetic resonance imaging (PC-MRI) 

provide limited information on regional flow, it is through time-resolved three-dimensional 

phase-contrast magnetic resonance imaging (4D Flow MRI) that full-field hemodynamic 

mapping can be achieved [4]. 4D Flow MRI has been used in a number of studies to capture 

cerebrovascular flow phenomena [5], and in combination with physics-informed image 

processing, quantification of relative pressure is permitted [6]. However, spatial resolution is 

insufficient to accurately quantify both cerebrovascular flow [7] and relative pressures [6], 

where vessel diameters ≤3 voxels, or dx ≥0.75 mm in the circle of Willis have been shown to 

result in significant biases while current clinical systems are limited to around dx = 0.5-1 

mm. Similarly, because image noise scales with resolution, high-resolution acquisitions 

require extended scan times, making them clinically cumbersome. In summary, there remains 

a definite need for effective approaches to achieve higher-resolution flow imaging for 

cerebrovascular hemodynamic assessment.  

 To address the need for improved spatial resolution, high-Tesla approaches have been 

proposed [8, 9], but are inherently limited to specialized imaging systems. Image-guided 

computational fluid dynamics (CFD) modelling has also been explored [10, 11], however, 

this approach generally puts high demand on available computational resources, and further 

depends on boundary conditions typically requiring additional specialized imaging protocols 

[11]. 

As an alternative to these deterministic approaches, deep learning methods have 

recently been applied in the field of medical image enhancement. For MRI, deep learning 

methods have been proven to enable data denoising [12], artefact compensation [13], and to 

generate super-resolution anatomical reconstructions of the brain [14]. For flow-based MRI, 

2D studies have shown the ability to generate accelerated reconstructions of phase-contrast 
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images [15], as well as enable automatic flow quantification over network-segmented flow 

domains [16]. For 4D Flow MRI, Ferdian et al. [17] proposed the so-called 4DFlowNet to 

generate super-resolution 4D Flow MRI data from low-resolution input, with the network 

trained on synthetic pairs of low/high-resolution images generated from aortic CFD 

simulations. Other alternatives include Rutkowski et al. [12] using a convolutional neural 

network (CNN), and Fathi et al. [18] using a Physics-Informed Neural Network (PINN), both 

generating super-resolution 4D Flow images using CFD input data as ground truth for 

training. Whilst 4DFlowNet was only tested on large-vessel aortic flows, both the CNN and 

the PINN-based alternatives were implemented on either phantom-data resembling 

cerebrovascular flow, or on selected in-vivo sets. However, no extended quantitative analysis 

has been performed for in-vivo usage in a cerebrovascular setting. Furthermore, neither of the 

above-mentioned networks (2D or 3D) have been tested with respect to functional pressure 

measurements, and it remains unknown whether pressure changes through the image domain 

are maintained or even improved by applying any of these super-resolution procedures. 

The aim of this study is therefore to assess whether a dedicated cerebrovascular super-

resolution network could improve estimates of regional cerebrovascular velocities and flows, 

and in particular, whether functional relative pressure estimates could be improved by means 

of super-resolution image conversion. To achieve this, the existing super-resolution network 

4DFlowNet is re-purposed to the cerebrovascular space using dedicated sets of 

multiresolution input training data, originating from patient-specific CFD models with 

relevant image features (magnitude, noise level) extracted from conjunctive, clinically 

acquired 4D Flow MRI. After validating recovery of velocity, flow, and functional relative 

pressures in-silico, the re-purposed network is applied to an in-vivo cohort of subjects 

scanned at multiple resolutions, assessing the potential of super-resolution imaging in a more 

clinical setting. In summary, our study explores the potential of non-invasive super-resolution 

imaging for cerebrovascular usage, providing improved estimates of clinically relevant 

functional hemodynamics metrics throughout the cerebrovasculature.   
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II. METHODS 

A. Deep learning framework for cerebrovascular super-resolution flow imaging 

1) Deep learning network architecture 

To achieve super-resolution flow images, we utilize the deep residual network 

structure of 4DFlowNet [17]; a previously published network validated for large-vessel aortic 

flows. Briefly, the architecture is based on a central upsampling layer (using bilinear 

interpolation) surrounded by a series of stacked residual blocks (RB), with preceding RBs 

denoising and pre-processing the input, and subsequent RBs refining and sharpening the 

predicted output. As input, both low resolution magnitude and velocity phase image patches 

were utilized. As output, super-resolution velocity patches were generated.   

We used a similar design for the original 4DFlowNet structure [17], with the following 

specific changes introduced for its application on cerebrovascular flow data: 

1. Patch input size was changed from an original 16-voxel cube, to a 12-voxel cube, 

accounting for the smaller vessel sizes encountered in the cerebrovascular space. 

2. The original hyperbolic tangent activation functions at the output layers were 

switched to linear activation functions. This was introduced to aid the network in reducing 

overfitting whilst still allowing for unbounded output values. 

3. The gradient terms were removed from the loss function, following improvements 

observed in near-wall velocity estimates in preliminary data assessment. 

The modified network was trained using an Adam optimizer, with a learning rate set to 10-4. 

Batch sizes of 20 were used for training, with training completed after 60 epochs. The 

network was implemented using Tensorflow 2.0 [19], utilizing a Keras backend. 

2) Loss function definition 

For the loss function, the optimization target was set to minimize the mean squared 

error (MSE) between the generated super-resolution images, and the paired high-resolution 

input data. The voxel-wise loss was defined as the mean of the squared sum of differences 

between Cartesian velocity components, (∆𝑣𝑣𝑥𝑥2, ∆𝑣𝑣𝑦𝑦2 and ∆𝑣𝑣𝑧𝑧2), given as 

𝑙𝑙𝑀𝑀𝑀𝑀𝑀𝑀 =  1
𝑁𝑁
∑ ∆𝑣𝑣𝑥𝑥2 + ∆𝑣𝑣𝑦𝑦2 + ∆𝑣𝑣𝑧𝑧2𝑁𝑁
𝑖𝑖=1   (1) 
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where N is the total number of voxels in the assessed image domain. To compensate for 

imbalances between fluid and static tissue regions within a singular patch, the MSE was 

calculated separately for fluid and static tissue in each region. 

 Lastly, to avoid network overfitting, an L2 regularization term was included. The 

complete loss function was given as 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =  𝑙𝑙𝑀𝑀𝑀𝑀𝑀𝑀−𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 + 𝑙𝑙𝑀𝑀𝑀𝑀𝑀𝑀−𝑛𝑛𝑛𝑛𝑛𝑛−𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 + 𝜆𝜆∑ 𝑤𝑤𝑖𝑖2𝑁𝑁
𝑖𝑖=1   (2) 

where 𝑙𝑙𝑀𝑀𝑀𝑀𝑀𝑀−𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 and 𝑙𝑙𝑀𝑀𝑀𝑀𝑀𝑀−𝑛𝑛𝑛𝑛𝑛𝑛−𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 are the voxel-wise MSE loss in fluid and static tissue, 

respectively, and λ is a set coefficient (equal to 5 ∙ 10−7) regularizing the network weights 

𝑤𝑤𝑖𝑖.  

3) Cerebrovascular training and testing data 

To train the super-resolution network, sets of low and high resolution flow images 

needed to be collected. Whilst acquired, matched, integer pairs of clinical 4D Flow MRI data 

would represent a theoretically ideal training set, in practice it is very difficult to obtain such 

high-resolution, high-SNR, artefact-free in-vivo ground truth data suitable for training. 

Instead, we here propose a separate set of synthetic 4D Flow MRI originating from patient-

specific cerebrovascular flow simulations. To improve clinical relevance, simulated data are 

combined with reference in-vivo scans, from which realistic noise levels and relevant 

reference magnitude images can be extracted. 

a) Patient-specific in-silico data 

As a basis for training, anatomically accurate patient-specific CFD models of the 

arterial cerebrovasculature were used, providing both realistic velocity, flow, and reference 

pressure fields data [11].  

In short, models were created using a combination of time-of-flight (TOF) MRI, 2D phase 

contrast (PC) MRI, and MRI arterial spin labelling (ASL) [20], covering the vasculature from 

the aortic root to the circle of Willis (CoW). A pulsatile velocity profile derived from PC-

MRI was prescribed at the inlet of the aortic root. Each outlet was coupled to a 3-element 

Windkessel lumped parameter model and calibrated using a combination of PC-MRI and 

ASL perfusion data [11]. 3D models were meshed using tetrahedral elements, and the 

incompressible Navier-Stokes equations solved iteratively using a stabilized finite-element 

formulation. Nodal velocity and pressure data were extracted after periodicity was reached 
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(≥4 cardiac cycles). The modelling and analysis were performed using the validated open-

source framework CRIMSON [21]. Further details on setup and model validation can be 

found in [11]. Data from four different image sets were generated: 

Subject 1 presenting without evidence of cerebrovascular disease, although exhibiting 

an incomplete CoW through right and left posterior communicating artery hyperplasia. 

Subject 2 presenting with a severe stenosis in the right proximal internal carotid artery 

(ICA, 70-99% based on velocity criteria from duplex ultrasound) and a complete CoW. 

Subject 3a presenting with a bilateral carotid stenosis (80-90% in the right proximal 

ICA, and 60% in the left proximal ICA, based on CTA image criteria), and a CoW exhibiting 

right P1 segment and distal right vertebral artery hypoplasia.  

Subject 3b being the same subject as 3a following surgical re-opening of the stenosis 

at the right proximal ICA.   

 From the above, synthetic 4D Flow MRI data was generated by sampling the nodal 

CFD output onto a uniform voxelized image grid. With the aim of covering varying spatial 

scales, data were generated for spatial samplings of dx = 1.5, 1.0, 0.75, 0.5, and 0.375 mm 

isotropic, respectively (allowing for high/low resolution pairs of 1.5/0.75; 1.0/0.5; and 

0.75/0.375 mm). A time step of dt = 1 ms was used to increase the amount of input data for 

training. Data was consistently extracted for a region-of-interest (ROI) centered around the 

intracranial vessels. An illustration of one of the utilized models is shown in Figure 1. 

 

Figure 1 - Overview of the in-silico input used for re-training of the 4DFlowNet network, showing one of the four used 
models (Subject 3b). From left to right: model overview and patch generation through the proximal cerebrovascular ROI; 
velocity field (color range 0 - 80 cm/s); pressure field (color range 120 - 130 mmHg). Note that examples are shown for the 
low/high-resolution pair of 1.0/0.5 mm isotropic. 
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b) Cerebrovascular in-vivo data 

Using a cohort of 8 healthy volunteers (2 women, 6 men, 55 ± 18 years), MRI 

acquisitions were performed at 3T (Siemens Magnetom Skyra, Erlangen, Germany) using a 

20-channel head/neck coil. Centering a ROI around the CoW, acquisitions started with a TOF 

MRA sequence (TR = 21 ms; TE = 3.6 ms; flip angle = 18°), followed by 4D Flow MRI 

(prospective k-t GRAPPA dual-venc (130/45 cm/s) acquisitions [22], dt = 95-104 ms). Flow 

images were acquired at two different resolutions: dx = 1.1 mm isotropic, and dx = 0.8 mm 

isotropic. Scan times were 10-15 minutes for all sequences, respectively. In all instances, data 

were corrected for concomitant gradient fields, eddy currents, and noise. All clinical 

acquisitions followed institutional review board (IRB) approval and informed consent. 

c) Training and testing data patch generation 

To enhance clinical relevance of the training data, synthetic 4D Flow MRI from a) 

were transformed into clinical-quality equivalents. In short, realistic velocity-to-noise ratios 

(VNR) were extracted from the clinical data in b), equaling approximately VNR = 5.67 ± 

1.64 at dx = 1.1 mm, and VNR = 2.97 ± 0.78 at dx = 0.8 mm. With data from a) treated as 

effective phase information, and with clinical magnitude images from b) used as reference, 

clinical-level noise was added to the synthetic 4D Flow MRI through k-space downsampling, 

extracting complex numbers from the synthetic phase and clinical magnitude images, 

respectively. Note that such noise was added to the low-resolution dataset only, resulting in a 

network tasked not only with increasing resolution, but also removing noise. 

 To generate a larger number of training sets from the limited (n = 4) number of 

models, the FOV was split into patches of restricted spatial extent. Specifically, from each 

temporal frame patches of 123 voxels were extracted from random positions within the FOV 

(enforcing a minimum flow region of >5%). Visualization of the distribution of patches is 

shown in Figure 1. For every patch, data augmentation by rigid cartesian rotations 

(90/180/270°) were applied.  

Data from Subjects 1 and 2 were selected for training with a total of 42,900 patches, 

Subject 3a for validation consisting of 2,730 patches, and Subject 3b for testing. Training was 

performed on a Titan X GPU with 12GB memory. With training performed for 60 epochs, 

lasting approximately 30 minutes each, complete training took about 30 hours. Super-

resolved velocity fields were predicted on a patch-basis, with complete volumes 
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reconstructed by stitching patches together with a stride of n = 8 voxels in each Cartesian 

direction, with n being an arbitrary patch size configurable during inference. Note that 4 

voxels were stripped from each patch side, reducing data to the patch center 

B. Validation of super-resolution performance, and recovery of cerebrovascular 

relative pressure 

1) In-silico validation of super-resolution velocity, flow, and relative pressure 

To validate performance of the super-resolution network, the in-silico models and 

corresponding synthetic 4D Flow MRI data from Section II.A.3 (a) were utilized. 

Performance was evaluated with respect to both super-resolved velocity fields and derived 

flows, as well as functional recovery of relative pressures using coupled physics-informed 

image processing. 

a) Validation of super-resolution velocity and flow 

For the super-resolved velocity fields, linear regression analysis was performed 

against reference high-resolution velocity data from the CFD analysis, assessing Cartesian 

velocity components and velocity magnitudes separately. Bland-Altman plots of the same 

data were also extracted to assess potential network bias. For general quantification, 

assessment of mean absolute error (MEA), root mean square error (RMSE), cosine similarity, 

absolute magnitude error, and relative magnitude error were all performed, with the latter 

extracted as per 

𝜀𝜀 =  1
𝑁𝑁
∑

�∆𝑣𝑣𝑥𝑥2+∆𝑣𝑣𝑦𝑦2+∆𝑣𝑣𝑧𝑧2

|𝑣𝑣|
𝑁𝑁
𝑖𝑖=1   (3) 

 
with ∆𝑣𝑣𝑥𝑥2, ∆𝑣𝑣𝑦𝑦2, and ∆𝑣𝑣𝑧𝑧2 being Cartesian velocity components. 

 Furthermore, flow rates through three different planes cutting through sections of the 

right ICA, mid-ICA, and MCA were also compared between super-resolved and high-

resolution reference synthetic 4D Flow MRI data. Quantification of RMSE and relative 

errorwere also performed against high-resolution reference flow from the CFD analysis. 

b) Validation of super-resolution relative pressure 

A key component of our study was to assess whether network-based super-resolution 

images also enabled accurate extraction of conjunctive, functional relative pressures. A 
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variety of methods exist to derive relative pressures from image velocity data, each with 

specific method assumptions and applicability in the cerebrovascular space. Here we use the 

virtual work-energy relative pressure (vWERP) method, which allows for arbitrary probing 

through narrow and bifurcating structures [23], with catheter-based validation underlining the 

method’s potential. vWERP has also been applied in a cerebrovascular setting, indicating 

promising abilities whilst highlighting the importance of sufficient spatial resolution [6].  

With details provided in previous work [23], vWERP originates from a virtual work-

energy form of the Navier-Stokes equations, derived by introducing an auxiliary virtual field 

w, and evaluating the resulting expression over the fluid domain of interest, Ω. Doing so, 

relative pressures can be derived as: 

Δ𝑝𝑝 =  − 1
𝑄𝑄

(𝜕𝜕𝐾𝐾𝑒𝑒
𝜕𝜕𝜕𝜕

+ 𝐴𝐴𝑣𝑣 + 𝑉𝑉𝑣𝑣)   (4) 

with 

𝐾𝐾𝑣𝑣 = 𝜌𝜌 ∫ 𝒗𝒗 ⋅ 𝒘𝒘 𝑑𝑑ΩΩ ;𝐴𝐴𝑣𝑣 = 𝜌𝜌 ∫ (𝒗𝒗 ⋅ ∇𝒗𝒗) ⋅ 𝒘𝒘 𝑑𝑑ΩΩ ;𝑉𝑉𝑣𝑣 = 𝜇𝜇 ∫ ∇𝒗𝒗:∇𝒘𝒘 𝑑𝑑ΩΩ ;𝑄𝑄 = ∫ 𝒘𝒘 ⋅ 𝒏𝒏 𝑑𝑑ΓΓi
  (5) 

Here, each term represents different virtual energy components, including virtual 

kinetic energy (𝐾𝐾𝑣𝑣), virtual advective energy rate (𝐴𝐴𝑣𝑣), virtual viscous energy dissipation (𝑉𝑉𝑣𝑣), 

and the virtual flow (𝑄𝑄) going through a selected inlet plane (Γi). Introducing 𝒘𝒘 as a 

divergence-free field with 𝒘𝒘 =  0 at all domain wall boundaries, relative pressures can then 

be extracted directly from the imaged flow field 𝒗𝒗.  

Using vWERP, relative pressures were estimated over four different cerebrovascular 

sections in each synthetic 4D Flow MRI dataset, respectively: left / right ICA, going from the 

cranial end of the cervical ICA to the mid-section of the petrous ICA, and left / right ICA-

middle cerebral artery (MCA), going from the mid-section of the petrous ICA to midway 

along the M1-segment of the MCA. Based on previous analysis [6], estimations were 

performed on low/high resolution pairs of 1.0/0.5 and 0.75/0.375 mm, as well as on 

corresponding super-resolution data. In all instances, data were extracted with temporal 

sampling of dt = 40 ms, to approximate a clinically realistic acquisition. 

Just as in Section II.B.1(a), linear regression analysis was performed for super-

resolved relative pressures against reference high-resolution pressure field data originating 

from the simulated CFD output. Bland-Altman plots were also extracted to assess potential 

9 
 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 27, 2021. ; https://doi.org/10.1101/2021.08.25.457611doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.25.457611
http://creativecommons.org/licenses/by-nc-nd/4.0/


E. Ferdian, D. Marlevi et. al.   Cerebrovascular super-resolution 4D Flow MRI 
 

estimation bias. For general quantification, assessment of RMSE, cosine similarity, and 

relative error was also performed, as per Section II.B.1(a). 

2) In-vivo implementation and possibilities for clinical cerebrovascular super-

resolution 

Adding to the validation in Section II.B.1, super-resolved velocity fields were also 

generated and assessed in the clinical 4D Flow MRI data from Section II.A.3(b). Super-

resolution upsampling was performed by a factor of two on all datasets (converting 1.1 to 

0.55 mm, and 0.8 to 0.4 mm, respectively). 

a) Estimation of super-resolution velocity and flow 

Native and super-resolved flow fields were qualitatively compared to assess visual 

correspondence. Although data were not acquired in integer resolution pairs, through-plane 

flow rates at the proximal section of the left and right MCAs were still compared between 

resolution sets to quantify differences between native and super-resolved resolutions, as well 

as changes in velocity-to-noise ratio (VNR). 

b) Estimation of super-resolution relative pressure 

To assess relative pressures in the in-vivo data, similar ICA-MCA sections as the ones 

used in the in-silico analysis were identified. To achieve this, vessel segmentation was first 

performed using a previously published analysis framework [24]. Second, inlet and outlet 

planes for the relative pressure estimations were positioned based on relevant anatomical 

landmarks along the right and left ICA and MCA, with planes visually co-aligned between 

resolutions (1.1 and 0.8 mm, respectively). With planes and segmentations created, vWERP 

was used to extract relative pressures in all subjects. Whilst lacking reference pressures, 

extracted measures were compared over different resolutions, assessing linear correlations 

and Bland-Altman plots between the different sets (with and without super-resolution, 

respectively). 
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III. RESULTS 

A. In-silico validation of super-resolution 4D Flow MRI 

1) Validation of super-resolution velocity and flow 

Complete evaluation was performed on one test subject (Subject 3b), using 1 mm 

input data (low resolution, LR) to generate super-resolution equivalents at 0.5 mm (SR), 

comparing output quality against high-resolution (HR) reference data at the same 0.5 mm 

resolution. As apparent in Figure 2, significant noise reduction is achieved in the SR velocity 

fields. Furthermore, SR flow rates indicate slight overestimation at the proximal-most (A) 

section (mean shift of -0.33 ± 0.14 mL/s), whilst showing a similar but opposite 

underestimation of flow in the more distal (B) and (C) sections (0.34 ± 0.16 mL/s, and 0.33 ± 

0.12 mL/s, respectively). Relative differences are however kept <10.3 % over the evaluated 

sections (Figure 2 and Table 1). Isolating peak flow rates in all models, slight error reduction 

is seen for conversion from LR (RMSE = 0.74 mL/s, relative error = 9.0 ± 6.2%) to SR 

(RMSE = 0.56 mL/s, relative error = 6.6 ± 4.7%). 

 

Figure 2 - Comparison between low resolution (LR), high resolution (HR), and super resolution (SR) images at three 
different intersecting planes (A-C) and three different regional sections (D-F) all through the ICA-MCA. Insets are showing 
the selected regions in magnified form and with views rotated to highlight velocity vectors. Comparison of flow rates 
through the intersecting planes (A-C) are also shown. Note that the model insert at the bottom left is shown dorsally. 
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Figure 3 shows linear regression plots and Bland-Altman representations for 

generated super-resolution velocities. In general, excellent correlations are observed between 

SR and HR velocities, with linear regression slopes and correlation coefficients of k>0.91 and 

R2>0.96 reported for the vessel core region (all voxels apart from the outermost fluid layer), 

and k>0.90 and R2>0.76 for the vessel wall region (the outermost layer of fluid voxels). 

Slightly lower values are seen for velocity magnitudes (k=0.82 and R2=0.79 for core; k=0.69 

and R2=0.52 for wall), although the Bland-Altman output corroborates the quality of the 

results, with minimal bias indicated (consistent deviations of <0.02 m/s). 

Isolating peak velocity magnitudes, measures in both vessel core (MAE = 0.07 ± 0.06 

m/s, relative error = 12.0 ± 0.07%, cosine similarity = 0.99 ± 0.06) and vessel wall regions 

(absolute error = 0.12  ± 0.11 m/s, and cosine similarity = 0.95 ± 0.11) confirm the trends 

noted above. Similar numbers are also observed for 0.75/0.375 mm resolution sets, as shown 

in Supplementary Material A. 

 

Figure 3 – Top: Regression plot for each of the velocity components (vx, vy, and vz) and velocity magnitude between 
ground truth and super-resolved image during the peak flow for in-silico test case (Subject 3b). Bottom: Bland-Altman plot 
for each of the velocity components during peak flow. The plots show 5% of the data points (randomly selected) within the 
vessel core (black) and vessel wall (red), respectively 

Table 1 – Flow rate measurements on Subject 3b for the right MCA, mid-ICA, and ICA. For all sections, results were 
measured by averaging 3 parallel cross-sectional slices. 

Plane 
LR flow 

rate 
[mL/s] 

SR flow 
rate [mL/s] 

HR flow 
rate 

[mL/s] 

SR-HR 
flow rate 
[mL/s] 

Rel. diff. 
[%] 

A 2.71  ± 
1.1 2.80 ± 1.1 3.13 ± 

1.2 
-0.33 ± 

0.1 10.3 ± 0.9 

B 5.63 ± 
2.6 6.29 ± 2.9 5.95 ± 

2.8 
0.34 ± 

0.2 5.8 ± 0.5 

C 5.24 ± 
2.4 5.83 ± 2.7 5.50 ± 

2.6 
0.33 ± 

0.1 6.4 ± 1.2 
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2) Validation of super-resolution relative pressure 

Figure 4 shows linear regression and Bland-Altman plots for estimations of relative 

pressure across different resolutions and all models (example relative pressure traces are also 

given in Supplementary Material B). Overall, significant underestimation is observed at LR 

(1 mm), whilst accurate estimates are reported at the HR (0.5 mm) setting. Importantly, 

distinct improvements in functional relative pressures are observed for the super-resolved SR 

fields as compared to the LR input: relative error in peak relative pressure decreasing from 

23.3 ± 14.9 % at LR, to 11.0 ± 7.3 % at SR, with 5.1 ± 2.3 % at reference HR. Similarly, the 

RMSE for the entire time series goes from 1.1 ± 1.7 mmHg at LR, to 0.3 ± 0.2 mmHg at SR, 

compared to 0.2 ± 0.1 mmHg at HR. Quantitative output for an ICA-MCA sections across all 

different models are given in Table 2. 

The above is also confirmed in Figure 4 with conversion from LR to SR increasing 

the linear regression slope from k = 0.56 to 0.99, representing a virtual 1:1 correlation to 

ground truth relative pressures (k = 0.98 at HR for reference). Likewise, the mean bias shift 

in the LR set (mean shift of -0.85 ± 1.43 mmHg) is significantly reduced by conversion into 

SR data (mean shift of -0.17 ± 0.30 mmHg). The HR data show no estimation bias (mean 

shift of 0.03 ± 0.22 mmHg). Notice that similar improvements are observed when converting 

0.75 mm base resolution sets into super-resolution equivalents (at 0.375 mm), with complete 

data for this analysis shown in Supplementary Material A. 

 

Figure 4 – Linear regression (top row) and Bland-Altman plots (bottom row), comparing relative pressure estimates to 
reference CFD equivalents using low resolution data (LR, 1 mm, left column), high resolution data (HR, 0.5 mm, middle 
column), and super-resolution data (SR, converting 1 mm to 0.5 mm, right column). The colors depict different data sets 
(training in blue (Subject 1 and 2), validation in red (Subject 3a), testing in green (Subject 3b)). 
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Table 2 – Image-based peak relative pressure measurements through the right ICA-MCA section four all different subjects.  

Model 
LR peak 
Δp 

[mmHg] 

SR peak 
Δp 

[mmHg] 

HR peak 
Δp 

[mmHg] 

SR-HR 
peak Δp 
[mmHg] 

Rel. diff. 
[%] 

1 7.39 13.93 13.11 14.04 0.82 
2 6.78 12.97 12.51 13.00 0.46 
3a 2.51 2.91 2.81 2.88 0.10 
3b 2.35 2.80 2.66 2.71 0.14 

 

3) Comparison between original and re-trained networks 

Super-resolution predictions were also computed using the original aortic 4DFlowNet. 

With detailed results provided in Supplementary Material C, the aortic network shows 

deviations from ground truth HR data when it comes to super-resolved velocity components 

(linear regression slopes and correlation coefficients of k>0.73 and R2>0.55, and k>0.51 and 

R2>0.29 are reported for vessel core and wall regions, respectively). The original aortic 

4DFlowNet also shows lower accuracy for the recovery of cerebrovascular relative pressures 

(k = 0.87 against reference data, and a mean bias shift of -0.41 ± 0.58 mmHg). Peak relative 

pressure estimates are given at a relative error of 14.8 ± 11.9 %, and a RMSE of 0.5 ± 0.6 

mmHg – all consistently higher than what is reported for the repurposed cerebrovascular 

4DFlowNet. Again, complete data are provided in Supplementary Material C.   

B.  In-vivo implementation of cerebrovascular super-resolution 4D Flow MRI 

1) Estimation of super-resolution velocity and flow 

For the in-vivo dataset, visual inspection confirmed qualitative improvement with 

regards to noise reduction and data appearance of the generated super-resolved 4D Flow MRI 

data (see Figure 5). Specifically, VNR showed a 4-times increase in the 0.55 mm SR data 

(going from VNR = 5.67 ± 1.64 at dx = 1.1 mm to VNR 24.20 ± 11.28 at dx = 0.55 mm), and 

a 3-times increase in the 0.4 mm SR data (going from VNR = 2.97 ± 0.78 at dx = 0.8 mm to 

VNR 9.29 ± 4.25 at dx = 0.4 mm).  

Assessing flow rates through the left and right MCAs, the clinical base resolution data 

indicated a flow rate range of 0.65 to 7.13 mL/s and peak flow rates of 4.96 ± 1.52 mL/s at dx 

= 1.1 mm, compared to a slightly reduced range of 0.67 to 5.53 mL/s and peak flow rates of 

3.47 ± 1.01 mL/s at dx = 0.8 mm. Converting to SR equivalents (dx = 0.55 mm and 0.4 mm, 

respectively) flow rates are only modestly modified, with slight downregulation observed in 

both datasets (flow range of 0.58 to 6.93 mL/s and peak flow rates of 4.39 ± 1.56 mL/s at dx 
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= 0.55 mm; flow range of 0.64 to 5.13 mL/s and peak flow rates of 3.32 ± 0.91 mL/s at dx = 

0.4 mm). 

 

Figure 5 – Visual comparison of an in-vivo case at low (LR) and super-resolution (SR) given for both sets of dx=1.1 and 
0.55, and 0.8 and 0.4 mm, respectively. Improvements in VNR are apparent in the super-resolved phase images (A) as well 
as in the flow visualizations (B). Direct velocity vectors comparison are given for a section through the right MCA for the 
paired low resolution (1.1 mm)/super-resolution (0.55 mm) in (C), and for the paired low resolution (0.8 mm)/super-
resolution (0.4 mm) in (D), with vectors shown projected onto a visual2D plane. In general, broad view of the velocity 
vectors only reveal minor differences between resolution sets, although detailed view reveals velocity vectors conforming 
more to the anatomy of the vessel in the super-resolved images, including at the near-wall regions 

2) Estimation of super-resolution relative pressure 

Relative pressures were derived for all in-vivo subjects and sections. Overall, 

estimates were within the range of -0.6 to 6.0 mmHg for the 1.1 mm data, with peak relative 

pressures at 2.9 ± 1.6 mmHg, compared to a range of -0.1 to 6.8 mmHg for the 0.8 mm data, 

with peak relative pressures at 3.8 ± 1.8 mmHg. Converting to SR, the ranges changes with 
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estimates getting closer to one another: SR data at dx = 0.55 mm (input at dx = 1.1 mm) 

exhibiting a range of -0.7 to 5.9 mmHg with peak relative pressures at 2.6 ± 1.4 mmHg; SR 

data at dx = 0.4 mm (input at dx = 0.8 mm) exhibits a range of -0.5 to 4.3 mmHg with peak 

relative pressures at 2.9 ± 1.1 mmHg. 

Although lacking in-vivo reference pressure, Figure 6 shows linear regression and 

Bland-Altman plots comparing LR and HR data to its SR equivalents. At base resolutions 

(LR vs. HR) a systematic bias shift in relative pressure is observed between the two 

resolutions (k = 0.64; R2 = 0.81; mean shift = -0.93 ± 0.93 mmHg). Converting to super-

resolved equivalents, however, the shift is reduced, although without completely recovering a 

1:1 correlation between the two datasets (k = 0.81; R2 = 0.77; mean shift = -0.47 ± 0.72 

mmHg). 

 

Figure 6 – Linear regression and Bland-Altman plots for the in-vivo cerebrovascular 4D Flow MRI data, showing the 
relationship between relative pressure estimated at base resolutions (ΔP, two left-most plots, comparing 1.1 mm and 0.8 mm 
data) and at equivalent super-resolutions (ΔP*, two rightmost plots, comparing super-resolved 0.55 mm vs. 0.4 mm data). 
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IV. DISCUSSION 

In this study, we evaluated the utility of super-resolution 4D Flow MRI in the setting 

of cerebrovascular hemodynamics, showcasing how super-resolved intracranial velocity 

fields and regional flows can be recovered from low-resolution input data using a re-trained 

version of the 4DFlowNet architecture. Furthermore, we showed how super-resolution 4D 

Flow MRI in combination with the physics-informed vWERP algorithm successfully 

recovers functional relative pressures through regional cerebrovascular sections, with the 

super-resolved data effectively reducing estimation bias otherwise observed in the low-

resolution input data. With non-invasive cerebrovascular assessment intrinsically complicated 

by the narrow and tortuous vasculature, our results highlight the potential of super-resolution 

4D Flow MRI to improve quantitative functional cerebrovascular hemodynamic assessment. 

A. In-silico validation of cerebrovascular super-resolution 4D Flow MRI to quantify 

velocity, flow, and relative pressure 

In-silico super-resolved flows and velocity fields both conform closely to high-

resolution reference data. For super-resolved velocities, slightly reduced accuracy was 

identified along near-wall voxels. This behavior is similar to what has been previously 

reported [12], and is not entirely surprising: near-wall voxels suffer from reduced input 

information (being surrounded by ‘information-depleted’ static tissue), and will be inherently 

linked to reduced signal quality. Dedicated neural networks have been explored for the 

recovery of near-wall velocities in 2D flow data [25], although application in 4D Flow MRI 

data remains to be performed.   

Furthermore, a major part of our work focused on whether super-resolved flow fields 

enable accurate estimation of functional relative pressures; an entity directly dependent on 

utilized spatial resolution [6]. As reported in Section III.A.2), the combination of a super-

resolution network (4DFlowNet) and a physics-informed analysis algorithm (vWERP) allow 

for accurate estimation of cerebrovascular relative pressures. This not only indicates the 

utility of the vWERP algorithm but also highlights that the 4DFlowNet architecture allows 

for accurate estimation of the complete fluid mechanical environment, with precise recovery 

of both velocity and velocity gradients needed to accurately extract relative pressures.  

Another benefit of the repurposed 4DFlowNet is the ability to significantly improve 

VNR. Deterministic multi-venc sequences have been explored to enhance VNR [22], 
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however, using a post-processing super-resolution approach in principle enables maintained 

signal quality even at reduced scan times, as highlighted in other super-resolution work [12]. 

B. Re-training 4DFlowNet for cerebrovascular usage 

The importance of re-training is highlighted in Section III.A.3 and Supplementary 

Material C, where distinct performance differences are highlighted between the original 

(aortic) and repurposed (cerebrovascular) 4DFlowNet. Here, it is important to appreciate the 

fundamental differences in input training data that exist between the aortic and the 

cerebrovascular 4DFlowNet. In the original work, patches containing purely aortic flows 

from CFD were shown during training, with hemodynamics dominated by transient flows 

[26] guided through a large vessel structure. On the contrary, cerebrovascular hemodynamics 

is a joint resultant of transient, advective, and viscous behavior [6], with flow restricted by 

the narrow, tortuous vasculature. Additionally, the cerebrovascular training data contain 

synthetically generated magnitude images, as such carrying more realistic image properties 

and noise characteristics. Hence, the original network was never exposed to patches 

containing the same image characteristics, or entailing similarly small vessels or tortuous 

near-wall gradients, and performance is likely reduced when attempting cerebrovascular data 

recovery.  

The fact that re-training resolved estimation bias also demonstrates that the core 

4DFlowNet architecture is robust to different types of flows, and that it is rather the 

information contained in the training data (i.e. vessel sizes, noise characteristics) that 

determines final performance. This also indicates that further re-training might be necessary 

if attempting super-resolution imaging in yet another cardiovascular domain (e.g. intracardiac 

flow fields), although as long as anatomical structures are similar in size (e.g. cerebral vs. 

hepatic vessels) maintained accuracy is plausible. To overcome the need for constant 

retraining, one could envision combining training data from multiple domains to create a 

network handling both large and small vessel anatomies, as well as fast and slow flows. The 

performance of such a network, however, remains to be determined. 

C. In-vivo feasibility of cerebrovascular super-resolution 4D Flow MRI to quantify 

flow, velocity, and relative pressure 

In Section III.B, super-resolution images and functional relative pressure estimations 

were performed in a select in-vivo cohort. Although ground truth high-resolution scans or 
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reference pressure measurements were unavailable, the behavior indicated in-silico seems 

replicated in-vivo. Specifically, super-resolved flow fields did not introduce any bias shifts, 

and estimates of both flows and relative pressures indicate slight convergence at upsampled 

resolutions. Nevertheless, even though derived relative pressure magnitudes coincide with 

what has been reported in previous cerebrovascular work [27], a desired 1:1 relation between 

resolutions is not achieved. Here, comparably coarse temporal resolution (dt ≥ 95 ms), 

cardiovascular variations between scans, or temporal intra-scan mis-match could all 

contribute to this slight discrepancy. Further validation of in-vivo work would be beneficial to 

understand the clinical translation of the combined 4DFlowNet and vWERP approach.   

D. Contextualizing cerebrovascular super-resolution 4D Flow MRI 

It is worth contrasting our re-purposed 4DFlowNet to previously published work 

within the same space. Whilst few studies exist attempting super-resolution recovery of 

directly imaged flow [12, 17], only a handful have attempted the same for functional 

hemodynamic recovery. Kissas et al. [28] proposed a PINN-based network to recover 

absolute pressure in simplified arterial model sections; however, application in 

cerebrovascular geometries was never attempted. Shit et al. [29] similarly proposed the 

PINN-based ‘Velocity-to-Pressure’ net; however, super-resolution abilities were never 

included. In comparison, our work combines the super-resolution utility of 4DFlowNet with 

the functional recovery of the physics-informed deterministic vWERP approach, being 

previously benchmarked across different cardiovascular domains, including the 

cerebrovasculature [6, 23, 30].   

Continuing into the cerebrovascular space, a few very recent works have shown how 

merging physics-informed analysis, machine learning, and imaging can have particular 

promise for improving non-invasive cerebrovascular assessment. Fathi et al. [18] used a 

patient-specific PINN to recover regional flow and pressure from input 4D Flow MRI, 

promising virtually unrestricted spatiotemporal refinements on recovered velocity fields. 

Similarly, Rutkowski et al. [12] recently presented a CNN-based network to reconstruct 

super-resolution 4D Flow MRI in a cerebrovascular setting, using patient-specific in-vitro 

models for both training and testing. Along these very same lines, our work also highlights 

the significant potential of super-resolution 4D Flow MRI in the cerebrovascular space. 

Within this setting, our study extends these previous works by showing how a combination of 

super-resolution utilities with the physics-informed vWERP algorithm provides accurate 
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recovery of relative pressures, overcoming inherent resolution bias otherwise observed in 

clinical-level image sets [6] and allowing for the accurate recovery of this established 

biomarker through the challenging cerebrovascular space. Whilst technical differences exist 

in utilized network design or loss function, the combination of our data and the above 

reviewed works all point to the increasing interest shown in network-driven super-resolution 

4D Flow MRI, with the cerebrovascular space being a prime target of where such utilities can 

have direct clinical impact.   

E. Limitations 

A number of limitations are worth pointing out. Firstly, clinical in-vivo validation 

against catheter based pressure data remains to be performed. Acquiring invasive pressure 

data in the cerebrovascular space is challenging as intracranial arterial catheterization still 

awaits regulatory approval in the US. Furthermore, clinical validation of super-resolution 

utilities is inherently limited in clinical practice. With both 4DFlowNet and the vWERP 

algorithm validated in other domains [23, 30], its potential in improving cerebrovascular 

quantification is evident. Still, experimental validation in patient-specific in-vitro models (as 

recently attempted in other super-resolution work [12]) or in a pre-clinical setting would 

bring important additional information as to the clinical utility of the presented work. 

Secondly, a modest number of in-silico models were used for training, where 

additional data could enhance network versatility. Similarly, combining the original aortic 

and cerebrovascular datasets could generate a more general-purpose utility, although 

performance of such would have to be evaluated separately. 

Thirdly, it is worth noting that the training of the super-resolution network also 

depends on the accuracy of the utilized CFD models to capture realistic cerebral flow and 

pressure. Realistic CFD modeling of cerebral flow is generally challenging due to difficulties 

in assigning patient-specific boundary conditions. In this work, however, we overcame these 

challenges by using a previously presented CFD calibration strategy based on cerebral 

perfusion (non-selective ALS) and flow (PC-MRI) data [11]. Specifically, the utilized CFD 

models were validated by comparing the blood supply in the CoW against territorial 

perfusion data from vessel-selective ALS, where observed high correlations underline the 

accuracy and applicability of the utilized models.  
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Lastly, a practical limitation is the increasing data storage required by the super-

resolution conversion. Due to the uniformly sampled data representation, a two-fold 

resolution increase leads to an eight-fold increase in disk space usage. Adaptable grid 

representations or graph-based networks [31] may offer improved future possibilities 

circumventing this issue, and may be explored in future work. 

F. Clinical outlook and future work 

The expansion of quantitative hemodynamic imaging for cerebrovascular applications 

promises improved clinical abilities [1-3], and the usage of super-resolution 4D Flow MRI 

presents an effective way of quantifying such hemodynamic markers in the brain, with our 

work highlighting its accurate recovery of both direct and functional hemodynamic metrics. 

Importantly, super-resolution imaging circumvents intrinsic obstacles otherwise related to 

non-invasive cerebrovascular flow quantification (limited spatial coverage; challenging 

vascular anatomies; etc.), and its clinical potential is therefore particularly evident within this 

vascular domain.  

Numerous, future directions can be envisioned to extend and clarify the capabilities 

highlighted in our study: additional training data expanding network capabilities, modified 

architecture improving predictions in near-wall regions, or extended clinical validation 

against acquired 4D Flow MRI or experimentally derived invasive catheter data. Clinically 

oriented studies evaluating the potential of super-resolution imaging to improve clinical risk 

stratification by means of improved relative pressure estimations could also be envisioned in 

the future. Nevertheless, our data highlights the potential of super-resolution 4D Flow MRI 

and coupled physics-informed image analysis in the cerebrovascular space. 
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V. CONCLUSION 

In this study, we have shown how dedicated super-resolution 4D Flow MRI and 

physics-informed image analysis can together be effectively used to accurately quantify 

cerebrovascular hemodynamics, including regional velocities, flows, and functional relative 

pressures. Using dedicated patient-specific in-silico data, we have shown how the existing 

4DFlowNet network can be effectively repurposed into the cerebrovascular space, 

successfully converting low-resolution input data into high-resolution equivalents with 

maintained precision and effective noise-reduction. Furthermore, in combination with the 

physics-informed deterministic image analysis algorithm vWERP, we have shown how 

conversion into super-resolution data successfully reduces estimation biases in functional 

relative pressures otherwise observed in the utilized low-resolution input data. Lastly, 

implementation in an exemplary in-vivo cohort shows how improvements in velocity-to-

noise-ratio, preserved flow, and converging relative pressures estimates are achievable in a 

clinical setting.   
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