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SARS-CoV-2 is a zoonotic agent capable of infecting humans and a wide range of animal 

species. Over the duration of the pandemic, mutations in the SARS-CoV-2 Spike protein (S) 

have arisen in circulating viral populations, culminating in the spread of several variants of 

concern (VOC) with varying degrees of altered virulence, transmissibility, and neutralizing 

antibody escape. In this study, we employed lentivirus-based pseudotyped viruses that express 

specific SARS-CoV-2 S protein substitutions and cell lines that stably express ACE2 from nine 

different animal species to gain insights into the effects of VOC mutations on viral entry and 

antibody neutralization capability. All animal ACE2 receptors tested, except mink, support viral 

cell entry for pseudoviruses expressing the parental (prototype Wuhan-1) S at levels 

comparable to human ACE2. Most single S substitutions (e.g., 452R, 478K, 501Y) did not 

significantly change virus entry, although 614G and 484K resulted in a decreased efficiency in 

viral entry.  Conversely, combinatorial VOC substitutions in the S protein were associated with 

significantly increased entry capacity of pseudotyped viruses compared to that of the parental 

Wuhan-1 pseudotyped virus. Similarly, infection studies using live ancestral (USA-WA1/2020), 

Alpha, and Beta SARS-CoV-2 viruses in hamsters revealed a higher replication potential for the 

Beta variant compared to the ancestral prototype virus. Moreover, neutralizing titers in sera from 

various animal species, including humans, were significantly reduced by single substitutions of 

484K or 452R, double substitutions of 501Y-484K, 452R-484K and 452R-478K and the triple 

substitution of 501Y-484K-417N, suggesting that 484K and 452R are particularly important for 

evading neutralizing antibodies in human, cat, and rabbit sera. Cumulatively, this study reveals 

important insights into the host range of SARS-CoV-2 and the effect of recently emergent S 

protein substitutions on viral entry, virus replication and antibody-mediated viral neutralization.
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Author summary 

Cells stably expressing ACE2 from various animals and a lentivirus-based SARS-CoV-2 

pseudotyped virus assay were established to study SARS-CoV-2 cell entry. The results 

demonstrated that ACE2 from a wide range of animal species facilitate S-mediated virus entry 

into cells, which is supported by in silico data as well as natural and experimental infection 

studies. Pseudotyped viruses containing mutations in the RBD of S representative of the Alpha, 

Gamma, and especially Beta, variants of concern demonstrated that certain mutations are 

associated with increased viral entry compared to the parental S. The Beta variant was also 

observed to have a replicative advantage in vitro and in vivo compared to the prototype virus. 

Pseudotyped viruses containing combinatorial substitutions of 501Y-484K-417K, 614G-501Y-

484K and 614G-501Y-484K-417N increased viral entry via ACE2 across multiple species. The 

501Y or 478K single substitution did not significantly affect neutralizing capacity of immune sera 

compared to the prototype strain, but the addition of 484K or 452R substitutions significantly 

reduced the neutralizing titers. 
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Introduction 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of 

COVID-19 disease, unexpectedly emerged in late 2019 and has spread throughout the world,  

infecting over 200 million people worldwide and causing over 4 million deaths as of August 2021 

[1]. The zoonotic origin and intermediate hosts of SARS-CoV-2 are still unclear, although bats 

are considered a likely source based on numerous SARS-CoV-2-related bat coronaviruses 

found in Southeast Asia [2-4]. It is now increasingly apparent that SARS-CoV-2 has the capacity 

to infect several animal species besides humans, generating rising concerns that domestic and 

wild animals may become secondary reservoirs of the virus [5-7]. Outbreaks of COVID-19 in 

hundreds of mink farms in the EU [8], where identification of human-to-mink and mink-to-human 

virus transmissions [9, 10] as well as mink-associated variants led to the culling of over 20 

million minks in Denmark, underscored the importance of identifying and assessing the risks 

associated with the new pandemic for animal and human health [11-14].  Other animal species, 

including cats, dogs, ferrets, hamsters, non-human primates, white-tailed deer, mice, cattle, 

pigs, tree shrews, rabbits, raccoon dogs, and fruit bats, have also been investigated for their 

susceptibility to SARS-CoV-2 infection [15]. Reports from natural and experimental infection 

studies determined a wide range of susceptibility in several domesticated (farm or companion) 

animals or wildlife to SARS-CoV-2 infection [8, 16-27]. 

SARS-CoV-2 is an enveloped, positive-sense RNA virus that belongs to the family 

Coronaviridae. RNA viruses are prone to high mutation rates, giving rise to new variants over 

time, although the mutation rate of coronaviruses is lower than many other RNA viruses due to 

proofreading activity of their replicative complex [28, 29]. Some virus variants possess notable 

changes in virus transmissibility, virulence, or other characteristics that are important in host 

defense, such as immune evasion. Since the emergence of COVID-19, multiple variants of 
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SARS-CoV-2 have been identified and have largely replaced the prototype SARS-CoV-2 strain 

(Wuhan-Hu-1) [30, 31]. Currently, the World Health Organization designated Alpha (lineage 

B.1.1.7), Beta (B.1.351, B.1.351.2 and B.1.351.3), Gamma (P.1, P.1.1 and P.1.2) and Delta 

(B.1.617.2, AY.1 and AY.2) SARS-CoV-2 viruses as variants of concern (VOC) [20] as they are 

associated with increased risks to global public health. These variants contain multiple amino 

acid substitutions in the S protein, some of which have received special attention as they span 

the receptor binding domain (RBD) or the S1/S2 junction. Entry of SARS-CoV-2 to the target 

cells is mediated by the interaction of the S protein with its receptor, the ACE2 on the host cell 

membrane [3, 32, 33]. The RBD in the S protein is located on residues 319-541 and interacts 

with 25 conserved residues on human ACE2 [33, 34]. Cleavage of the S1/S2 junction (residues 

613-705) of SARS-CoV-2 S protein by cellular proteases triggers fusion and viral entry into host 

cells [35, 36]. Due to its involvement in receptor binding, most neutralizing antibodies are 

directed against the RBD [37]. Mutations affecting the S protein, including the RBD, are of 

particular concern because they may enhance virus transmissibility and reduce antibody binding 

and immune protection, thus compromising vaccine efficacy [30]. In addition, the interaction 

between the cellular receptor and the virus, leading to virus entry into host cells, is one of the 

critical factors that determine host susceptibility to virus infection. With the recently emerging 

virus variants, it is critical to understand the impact and significance of such mutations on virus 

neutralization, which has wide-reaching implications on vaccine efficacy, and on animal 

susceptibility to SARS-CoV-2 to identify and manage risks of zoonotic/reverse zoonotic 

infections. Some of the key mutations found in SARS-CoV-2 VOC have been studied using 

pseudotyped viruses or recombinant viruses carrying mutant SARS-CoV-2 S proteins [38]; 

however, only limited information on the roles of the mutations for a broad range of animal 

species, as well as humans, is available so far. 
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Small animal models such as mice and Syrian Golden hamsters are available to study 

various aspects of SARS-CoV-2 infection [39]. Ancestral SARS-CoV-2 viruses can infect 

genetically engineered mice that express human ACE2, although unmodified mice are only 

permissive to mouse-adapted SARS-CoV-2 [40, 41] with the exception of SARS-CoV-2 variants 

containing the N501Y polymorphism in their S gene [42]. Hamsters are highly permissive to 

SARS-CoV-2 infection, and efficient virus replication and moderate to severe lung pathology are 

observed following virus replication, usually accompanied by weight loss and other clinical signs 

during acute infection [43-46].  Small animal models for COVID-19 have been used to study 

viral transmission, pathogenesis, immunity and for the evaluation of vaccines and therapeutic 

drugs and are also a suitable model for investigating virulence and infectivity of SARS-CoV-2 

variants [47].

In this study we investigated the characteristics of key mutations found in Alpha, Beta, 

Gamma, or Delta variants (single or combinations of 614G, 501Y, 484K, 452R, 478K). Using 

lentivirus-based pseudotyped virus assays, the effects of key substitutions on virus entry into 

human and various animal-ACE2 expressing cells, and on the neutralizing activities of antisera 

from humans, cats, and rabbits were determined. Using the hamster model, infection studies 

were conducted to provide further understanding of the replication capacity of SARS-CoV-2 

variants. Finally, structural models for the parental and mutant SARS-CoV-2 S protein RBD in 

complex with ACE2 from various animals were generated to probe the structural basis for host 

susceptibility and the effects of the mutations on the interactions between ACE2 and RBD. The 

presented results provide important insights into the impact of S protein mutations found in from 

emerging SARS-CoV-2 variants on cell entry in human and other animal species, and on virus 

replication and virus neutralization
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Results

Entry of pseudotyped virus with SARS-CoV-2 S into HEK293T or CRFK cells expressing 

human or animal ACE2. 

Expression of ACE2 in HEK293T or CRFK cells that were stably transfected with a plasmid 

encoding the ACE2 protein from human and various animal species was confirmed using 

Western blot analysis (data not shown). Entry of pseudotyped viruses, measured by firefly 

luciferase, was comparable between HEK293T and CRFK cells expressing the same ACE2 

construct. However, CRFK cells yielded more robust and consistent results than HEK293T; 

therefore, CRFK cells were subsequently used for pseudotyped virus entry assays. The results 

of the virus entry assays are shown in Figure 1A. Importantly, native CRFK cells that do not 

express exogenous ACE2, only inherent feline ACE2 (Mock), yielded negligible virus entry 

(Figure 1A), indicating that CRFK cells are suitable to determine the effects of exogenous 

heterologous ACE2 on viral entry. Expression of various animal ACE2 receptors in cells led to 

greatly enhanced entry of pseudotyped viruses expressing the parental SARS-CoV-2 S protein 

(Figure 1A), except for mink ACE2, which failed to show marked increase in virus entry 

compared to other ACE2s, with only a 31-fold increase over mock. Cellular entry of 

pseudotyped viruses in the presence of ACE2 receptors from various animal species ranged 

from an approximately 1,200-fold (horse/cat) to 3,000-fold (rabbit) increase in cellular entry 

compared to the mock control (no ACE2 transfection). Figure 1B shows a summary of the virus 

entry results using cells expressing different animal ACE2 receptors compared to that in cells 

expressing human ACE2. Virus entry levels for each ACE2 were considered high, medium, or 

low when > 80%, 10-80%, or 1-10% of virus entry in ACE2-expressing cells (compared to 

hACE2-expressing cells) was observed, respectively, based on the criteria suggested by Damas 

et al [18]. High levels of virus entry were observed in cells expressing ACE2 from human, dog, 

cow, hamster, or rabbit (Figure 1A and B), while medium levels of virus entry were seen in cells 
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expressing ACE2 from cat, horse, camel, and white-tailed deer. Expression of mink ACE2 

resulted in low virus entry. The overall trend of virus entry in cells expressing various animal 

ACE2 receptors was similar to the in silico predictions by Damas et al [18](Figure 1B).

Entry of pseudotyped virus expressing SARS-CoV-2 parental or mutant S in human 

ACE2-expressing CRFK cells.  

The pseudotyped virus preparations carrying single or multiple S mutations were quantitated 

and normalized by ELISA p24 lentivirus antigen measurement or by SARS-CoV-2 S protein 

expression for transduction of the cells. Virus entry of each pseudotyped virus carrying single or 

multiple substitutions of 417N, 452R, 478K, 484K, 501Y, or 614G on the S protein RBD was 

compared to that of parental pseudotyped viruses (no mutation in S gene) in cells expressing 

human ACE2. The single substitutions of 501Y, 452R, or 478K did not lead to a statistically 

significant difference in virus entry compared to parental virus (Figure 2A), except for 614G or 

484K, which resulted in significantly reduced virus entry compared to that of the parental 

pseudotyped virus. Among the double substitutions (i.e., 614G-501Y, 501Y-484K, 452R-484K, 

or 452R-478K), only the 501Y-484K combination significantly increased pseudotyped virus entry 

compared to that of the parental pseudotyped virus. The addition of substitution 417N or 614G 

to the 501Y-484K combination, however, did not further increase the virus entry efficiency of 

pseudotyped virus compared to the 501Y-484K double substitution, unless both 417N and 614G 

were combined with 501Y-484K in a quadruple combination (417N-484K-501Y-614G). 

Interestingly, when 501Y was combined with 614G (614G-501Y double substitution), an 

increase of virus entry was observed, similar to the level of parental virus. Virus entry capacity 

was further enhanced by the addition of 484K (614G-501Y-484K) or 484K-417N (614G-501Y-

484K-417N). Likewise, the combination of 501Y and 484K led to significantly increased virus 

entry compared to the parental virus, suggesting that the 501Y substitution is important in 

negating the suppressive effects of the 484K and 614G single mutations (Fig.2A). The reduced 
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virus entry due to the 484K substitution was also restored to the level of the parental virus entry 

when combined with the 452R substitution (Fig.2A). However, the 452R-478K double mutation 

did not lead to enhanced virus entry compared to the 452R or 478K single mutations. In CRFK 

cells expressing no exogenous ACEs (native feline ACE2-expressing CRFK cells), a significant 

decrease or increase in pseudotyped virus entry was observed with the 614G single mutation or 

the 614G-501Y-484K-417N quadruple mutation, respectively (Fig.2B). However, the overall 

magnitude of pseudotyped virus entry in non-transfected CRFK cells was very low, regardless 

of the presence or absence of S protein mutations, which confirms that non-transfected CRFK 

cells are poorly supportive of SARS-CoV-2 S-pseudotyped virus entry. 

Entry of pseudotyped virus carrying SARS-CoV-2 parental or mutant S proteins in 

various ACE2-expressing CRFK cells.  

In this experiment, we compared the entry of pseudotyped viruses with parental or mutant S into 

cells expressing ACE2 from various animal species, including humans. Overall, the trend of 

change in virus entry among various pseudotyped viruses is similar in all tested cells expressing 

various animal ACE2 receptors. The quadruple 614G-501Y-484K-417N substitution showed the 

highest fold-change compared to the parental S (no mutation), followed by the triple 

combination 614G-501Y-484K. The 501Y-484K and 501Y-484K-417N substitutions led to a 

moderately increased virus entry compared to the parental S, but without a statistically 

significant difference. The 614G single mutation led to a decrease in virus entry in cells 

expressing human (see also Figure 2A) and animal ACE2. Notably, even in mink ACE2-

expressing cells, which support limited virus entry compared to other ACE2s, a similar trend 

was observed with pseudotyped viruses with single and multiple substitutions. Interestingly, 

relatively little change was observed in virus entry among parental and mutant pseudotyped 

viruses in horse ACE2-expressing cells. These results suggest that the effects of these 
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mutations in the RBD region of the S protein for virus entry are shared among a wide range of 

animal ACE2 receptors. 

Replication and infection dynamics of SARS-CoV-2 variant strains.  

To gain insights into the consequences of VOC mutations, replication kinetics of parental 

lineage A (WA1/2020), B.1, B.1.1.7 (Alpha), and B.1.351 (Beta) SARS-CoV-2 strains in CRFK-

human ACE2 or CRFK-hamster ACE2 cells were determined (Fig. 4 A, B).  Although a 0.01 

MOI was intended, back-titration of the inoculum, represented as time 0, showed the B.1.351 

strain at a significantly lower input titer than the lineage A parental prototype strain. However, 

titers for the lineage A virus were lower at 24, 48 and 72 hpi compared to the B.1, B.1.1.7 and 

B.1.351 strains for both CRFK-human ACE2 or CRFK-hamster ACE2 cells.  Moreover, the 

B.1.351 titers were higher than the parental lineage A virus in CRFK-human ACE2 cells at 24, 

48 and 72 hpi, and B.1.351 was the dominant virus strain in the CRFK-hamster ACE2 cells at 

48 and 72 hpi. In both cell lines, the B.1 strain dominated at 24 hpi.  The B.1, B.1.1.7 and 

B.1.351 strains had relatively similar titers in the human ACE2 cells at 48 and 72 hpi, while more 

variation was observed between these strains at the same time points in CRFK-hamster ACE2 

cells.  All strains peaked at around 48 hpi in both cell lines, although generally lower titers were 

observed at all time points for CRFK-hamster ACE2 cells compared to CRFK-human ACE2 

cells.  Taken together, these results show that the variant viruses have a replication advantage 

over the parental lineage A strain in these cells.

Replication ability of the parental lineage A, Alpha VOC B.1.1.7 and Beta VOC B.1.351 

strains were analyzed in hamsters inoculated intranasally with 1x105 TCID50 of the respective 

viruses (Fig. 4 C,D).  Mean virus titers of nasal washes collected from the lineage A- and Beta 

VOC B.1.351-infected groups were significantly higher than the B.1.1.7 infected group at 3 

DPC, but not significantly different at 5 DPC.  Mean virus titers of lung homogenates were 

similar for all groups at 3 and 5 DPC although the B.1.351 infected individuals had generally 
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higher nasal wash and lung titers compared to the linage A- and B.1.1.7-infected animals.  

Together these data support the notion that the Beta VOC B.1.351 strain has a replicative 

advantage in hamsters compared to the parental lineage A and B.1.1.7 strains.

Neutralizing activities of convalescent human sera or post-infection/vaccination sera 

from cat, and rabbit against pseudotyped viruses with single S protein mutations.  

The effects of single mutations on the S protein in pseudotyped viruses in the neutralizing 

activity of various sera from human, cat, and rabbit were assessed using human ACE2-

expressing cells. The results are shown in Figure 5 and Table 1. The negative control sera from 

human, cat and rabbit did not neutralize any of the pseudotyped viruses (starting at a 12.5 

dilution), as expected (Figure 5C, F and I). The 501Y or 478K single substitutions did not affect 

the neutralizing activity of all tested sera (Figure 4A-I, Table 1). However, significantly reduced 

neutralizing activities of human and cat sera were observed against pseudotyped viruses 

carrying 484K or 452R single substitutions. In contrast, the reduction in neutralization due to the 

484K or 452R single mutations was not apparent in the rabbit sera, except for the rabbit 7A 

serum against 452R. 

Neutralizing activities of convalescent or post-infection sera from human, cat, and rabbit 

against pseudotyped viruses with double or triple S protein mutations. 

The results of the virus neutralization assays (VNAs) are summarized in Figure 6 and Table 1. 

Interestingly, when the 501Y or 478K mutation, which did not affect neutralization as a single 

substitution (Figure 5), is combined with 484K or 452R (i.e., 501Y-484K, 452R-478K), 

neutralizing activities of all tested sera were significantly decreased when compared to the 

parental pseudotyped virus. Moreover, the double substitution 452R-484K and the triple 

substitution 501Y-484K-417N also resulted in significant reduction of neutralizing activities of all 

tested sera compared to the parental pseudotyped virus. Each of these double and triple 
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substitutions showed comparable neutralizing titers in all tested sera. These results from single 

and multiple substitutions in the S protein suggest that positions 484K and 452R are particularly 

important for evading neutralizing antibodies in human, cat, and rabbit sera. 

Structural modeling insights into the ACE2-RBD interaction of different species. 

Structural modelling (Figure 7A) showed that parental (PA) SARS-CoV-2 RBD forms hydrogen 

bonding interactions (dotted lines) at the following RBD positions: (i) N501 with human (h)ACE2-

Y41 and hACE2-K353; (ii) K417 with hACE2-D30; and (iii) E484 with hACE2-K31 (Figure 7B). In 

the triple 501Y-484K-417N mutant, Y501 interacts with hACE2-Y41 and hACE2-K353 and the 

salt bridges between N417 and K484 and the ACE2 receptor are lost (Figure 7B). No significant 

structural differences in the RBD-ACE2 interactions were observed for the PA or mutated RBD 

for ACE2 from cat, cattle, hamster, rabbit, or white-tailed deer (data not shown). However, dog 

and mink ACE2 receptors contain an ACE2-H34Y substitution (Figure 7C) that may increase 

binding affinity in the presence of the S Protein K417N substitution due to potential interactions 

between the hydroxyl group of tyrosine and the amino group of asparagine (Figure 4B). 

Moreover, horse ACE2 contains a Y41H substitution (Figure 4C) that does not provide the 

interactions necessary for strong binding of either the PA N501 or mutant Y501 residues (Figure 

4B). Lastly, camel ACE2 contains a K31E substitution (Figure 4C), which may provide a basis 

for polar contacts in the region in the presence of the S protein K484 substitution. Overall, 

analysis of these structural models provides insights into the cell entry of the parental and 

mutated S proteins in the presence of ACE2 receptors from the different species.

Discussion

Since the unexpected emergence of SARS-CoV-2 in human populations, extensive 

efforts have been directed towards both elucidating the risks associated with emerging virus 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 25, 2021. ; https://doi.org/10.1101/2021.08.25.457627doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.25.457627
http://creativecommons.org/licenses/by/4.0/


variants and identifying susceptible animal species to better understand the zoonotic/reverse 

zoonotic implications of the pandemic. In our study, we used pseudotyped virus assays to 

elucidate the roles of ACE2 from various animal species including humans, in viral entry, which 

is a central event determining host susceptibility to SARS-CoV-2 infection. Using the S protein 

from the ancestral prototype (parental) SARS-CoV-2 stain (Wuhan-Hu-1), we found that several 

animal ACE2 receptors can efficiently interact with the SARS-CoV-2 S protein to allow virus 

entry into cells. The efficiency of virus entry among animal ACE2 receptors tested are not 

remarkably different from that of human ACE2, except for mink ACE2 which was consistently 

associated with comparatively low virus entry. Many animal species have been reported to be 

susceptible to SARS-CoV-2 infection either in experimental studies or natural infection as 

evidenced by clinical disease, viral replication in the respiratory tract and other organs, viral 

shedding/transmission, or seroconversion; these include domestic and large captive cats, dogs, 

cattle, mink, ferrets, otters, fruit bats, non-human primates, New Zealand white rabbits, 

hamsters, deer mice, bushy-tailed woodrats, striped skunks, and white-tailed deer [48-52]. 

Other animal species either have not been tested or showed no consistent evidence of active 

viral infection. Among them, cats and dogs have been of particular interest due to their proximity 

to humans. These companion animals can be infected by SARS-CoV-2 in natural and 

experimental settings, and usually remain asymptomatic although some develop mild 

respiratory disease [23, 53-55]. Overall, our pseudotyped virus entry results are consistent with 

previous animal susceptibility studies with all animal ACE2 receptors (human, cat, dog, cow, 

horse, camel, hamster, rabbit, mink, and white-tailed deer) tested in this report allowing virus 

entry [48-52]. Although there are currently no reports of natural or experimental infection in 

horses and camels, there have been concerns that SARS-CoV-2 may infect these animals 

based on predictions from structural in silico analyses or cell-to-cell fusion assays using 

pseudotyped virus [16-18]. Our results regarding the horse and camel ACE2 receptors and 

pseudotyped viruses provide a further impetus to study viral susceptibility in these animal 
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species; however, our structural modeling, coupled with previous experimental evidence [56], 

indicates that the horse ACE2 Y41H substitution may confer resistance to RBD binding of both 

parental and mutated S proteins. An experimental infection study of cattle revealed that SARS-

CoV-2 infection in this species may occur but does not appear to be robust, which seems to 

support the results of pseudotyped virus assays conducted by us and others [16, 57]. 

Interestingly, mink ACE2 was predicted to have a weak interaction with S protein in a previous 

in silico analysis study [18]; similarly, our pseudotyped virus entry assay showed that mink 

ACE2 allowed viral entry, although at a relatively lower level compared to other animals or 

human ACE2. This is somewhat surprising because mink are highly susceptible to SARS-CoV-2 

infection, leading to a significant number of outbreaks of COVID-19 in mink farms with high 

morbidity/mortality [8, 19]. It is likely that an unknown disparity exists between virus entry 

mediated by pseudotyped viruses and native cell-virus interaction for mink. Structural models 

were generated to gain insight into the interaction between the S protein and selected animal 

ACE2 with a focus on the residues interacting with K417, E484 and N501 on the S protein 

(Fig.7). The respective ACE2 residues are mostly conserved with minor variations among 

human and animal ACE2s, which is line with the pseudotyped virus assay results obtained in 

this study.     

We also examined the effects of various mutations (417, 452, 478, 484 and 501) in the 

RBD, found in the Alpha (614G-501Y), Beta (614G-501Y-484K-417N), or Delta variants (452R-

478K or 452R-484K), on entry of cells expressing human or animal ACE2 receptors using 

pseudotyped viruses. SARS-CoV-2 variants carrying 614G have replaced the prototype 614D 

virus and now are part of all major variants [58, 59], most likely because 614G is associated 

with enhanced fitness in susceptible cell lines including human airway cell culture [59, 60]. Th 

614G virus was also shown to enhance replication in the upper respiratory tract and 

transmission in infected hamsters [60, 61], although this was not observed in hACE2 mice [60]. 

In human ACE2-expressing 293T cells, pseudotyped viruses carrying 614G alone have been 
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reported to either increase [59, 62-65]  or cause no change [38] in viral cell entry. In contrast to 

previous findings showing an increase in 614G cell entry in cells expressing human, cat or dog 

ACE2 orthologs [59], pseudoviruses carrying the 614G mutation alone consistently showed 

decreased cell entry across all species in our assays. Structural studies have indicated that 

614G does not result in a higher affinity towards ACE2, but instead results in allosteric changes 

conducive towards a more open conformation of the RBD in which it is better positioned to 

interact with the ACE2 receptor [59]. The entry efficiency of the 484K single mutation alone has 

not yet been well studied. In our study using human ACE2 expressing cells, entry of the 614G or 

484K mutant pseudotyped viruses was significantly decreased compared to the parental virus. 

In contrast, the 614G-501Y-484K (found in the Beta VOC) and 614G-501Y-484K-417N (found in 

Beta and Gamma VOC) mutations in the S protein increased virus entry compared to the 

parental pseudotyped virus. In a previous report [57], pseudoviruses with these mutations did 

not change virus entry in cells expressing human and various animal ACE2 receptors, with the 

exception of murine ACE2-expressing cells [57]. This observed difference in virus entry may be 

due to the different assay system including cell types, variance of assays, and other factors. 

Our replication kinetics study using parental (lineage A), B.1, Alpha (B.1.1.7) and Beta 

(B.1.351) SARS-CoV-2 variants in CRFK cells stably expressing human ACE2 or hamster 

ACE2 revealed a comparatively higher replicative capacity of the Beta variant. This is consistent 

with the report of increased replication efficiency of Beta variant over Alpha variant in Vero cells 

[66]. In our experimental infection study using hamsters infected with parental virus (lineage A), 

Alpha (B.1.1.7) and Beta (B.1.351) VOC, more robust viral replication was observed in the nasal 

washes with the Beta VOC than the prototype virus or the Alpha VOC at 3 DPC, although the 

Beta variant inoculum titer was significantly lower than the inoculum dose of the other two 

viruses. This suggests that the Beta variant has a higher replication efficiency in susceptible 

nasal epithelial cells during the early phase of infection, which would be conducive towards 
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increased virus shedding and transmission. The Alpha VOC appears to be transmitted highly 

efficiently [67, 68] and the Beta VOC  has spread rapidly worldwide, which suggests that the 

Beta variant seem to have  a replicative advantage over other variants previously circulating, 

although more data is required to confirm this [69]. 

The emerging VOC have been associated with an adverse impact on antibody 

neutralization capacity by convalescent and immunized humans, which may affect vaccine- and 

infection-induced protection, risks of reinfection, and the potency of therapeutic mAbs [70, 71]. 

The full set of signature mutations on and around the RBD of the S protein, as well as mutations 

in other genomic regions of SARS-CoV-2 VOC, contribute to the characteristics of each variant, 

and particular attention has been directed towards the roles of amino acid residues located on 

the S protein’s RBD, due to its direct interaction with ACE2. To understand the effects of key 

mutations of the Alpha, Beta, and Delta VOC, we tested respective pseudotyped viruses in virus 

neutralization assays with convalescent human and cat (from a challenge study with the SARS-

CoV-2 USA-WA1/2020 strain [72]) sera, and hyperimmune rabbit sera (immunized with 

baculovirus-expressed prototype parental S protein). Substitution N501Y is found in Alpha, Beta 

and Gamma VOC and reported to have an increased binding efficacy to human ACE2 [73]. Our 

result showed the 501Y substitution did not significantly affect neutralization ability of all tested 

sera compared to the parental virus (PA); this is consistent with a previous report whereby 

recombinant SARS-CoV-2 virus (within the genetic background of USA WA1/2020) carrying the 

501Y or 501Y-614G mutations did not affect neutralization ability of BNT162b6 vaccine-induced 

antibodies in human sera [74]. The 484K mutation has emerged independently in multiple 

variants and confers resistance to some mAbs targeting S protein receptor binding motif region 

[75, 76]. Adding the 484K mutation into pseudotyped viruses carrying the full set of the Alpha 

variant-associated mutations on the S protein led to a considerable loss in neutralizing activity of 

antibodies in BNT162b6-elicited or convalescent human sera [77]; this confirms our results 
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using pseudotyped viruses carrying the 484K or 484K-501Y mutations. Likewise, combined S 

protein substitutions, such as 484K-614G, 484K-501Y-614G or 417N-484K-501Y-614G, 

reduced the neutralization ability of BNT162b6 vaccine-induced human sera and several 

therapeutic mAbs to recombinant virus in the genetic background of USA WA1/2020 [74]; 

similarly, it affected the neutralization ability of convalescent human sera to pseudotyped 

viruses carrying 417N-484K-501Y-614G.  The substitutions 452R and 478K are found in the 

Delta variant and other variants under monitoring, such as the Epsilon variant, and have been 

on the rise in the US and Mexico since early 2021 [78]. Due to its relatively recent appearance, 

the impact of the 452R and 478K substitutions on the S protein have not yet been well studied; 

they have been predicted to negatively affect human ACE2 binding and shown to reduce 

neutralizing activity of antibodies from convalescent or vaccinated individuals [62, 79, 80]. In our 

pseudovirus assay, we observed significant reduction of neutralization activity of the tested sera 

with the pseudovirus carrying 452R, but not 478K. The negative effect of 452R on neutralization 

is also seen with the 452R-478K mutation, which significantly reduced neutralization activity of 

the sera. Interestingly, the neutralizing activity of sera with 452R-484K, 452-478, 501Y-484K 

and 501Y-484K-417N pseudoviruses were comparably decreased in our assays. The negative 

impact of the 501Y-484K-417N-carrying pseudovirus on neutralizing antibodies elicited with 

mRNA-based vaccines was also observed by others [81]. 

Our structural modelling showed potential changes in the interactions of RBD amino acid 

substitutions (501Y-484K-417N) and human ACE2, which may affect RBD binding. The 

structural modelling performed in this study is consistent with previous reports, indicating that 

the N501Y substitution increases the affinity for human ACE2 via the formation of new contacts 

with ACE2 residues Y41 and K353, and that the salt bridges between E484 and ACE2 K31, as 

well as K417 and D30 are lost upon substitution to 484K and 417N [82-84]. While many of the 

animal ACE2 sequences analyzed in this study (cat, cattle, hamster, and rabbit) contain ACE2-

RBD interaction sites consistent with humans, there are amino acid differences in the ACE2 
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receptors of dog, mink, horse, and camel that could have significant effects on RBD-ACE2 

interaction, especially when subjected to VOC. The H34Y ACE2 substitution found in dogs and 

mink was previously predicted to decrease RBD interaction, although several additional species 

with known susceptibility carry this substitution (e.g., cougar, lion, tiger) [85, 86]. Our modeling 

analysis suggests that the dog/mink Y34 residue in ACE2 could potentially increase RBD-ACE2 

affinity when the RBD K417N substitution is present; however, the K417N substitution did not 

significantly increase pseudovirus entry in cells expressing ACE2 from dogs and mink. This 

inconsistency may limit the significance of the H34 residue of ACE2 and highlights the 

importance of wet lab research to supplement in silico predictions. Horse ACE2 contains a 

Y41H substitution, an amino acid which was shown by prior mutagenesis studies to abolish 

RBD binding [56, 87]. This contrasts with our results indicating that horse ACE2 with 41H can 

facilitate viral entry, albeit at a lower level. Notably, variant-associated S proteins did not 

increase cellular entry mediated by horse ACE2, indicating an overall deficiency for S binding 

for this species. Lastly, the camel ACE2 contains a K31E substitution that was previously shown 

to abolish ACE2 binding [87]; however, we observed robust viral entry in cells expressing the 

camel ACE2 receptor. Moreover, our structural predictions indicate that the K31E substitution in 

camel ACE2 may provide a basis for hydrogen bonding with 484K in the S variant. This is 

consistent with an increase in cell entry observed upon the E484K substitution, indicating that 

variants containing 484K may have increased susceptibility in camels. Overall, these structural 

insights provide some basis for understanding the ramifications of SARS-CoV-2 S mutations in 

emerging variants, although further structural and functional studies are required to confirm their 

effects in various animal species.

In summary, our results obtained from lentivirus-based system and hamster infection 

study showed that a wide range of animal ACE2 support pseudotyped virus entry, and the key 

mutations found in the VOC affect pseudotyped virus entry in cells expressing human or animal 

ACE2 as well as neutralizing sera of human, cat, and rabbit. The hamster infection study 
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confirmed the replicative advantage of beta variant over the parental and alpha variant. The 

findings of this study highlight the importance of elucidating the roles of mutations and 

monitoring for evolving SARS-CoV-2 variants to assess their public health implications.  

Materials and Methods

Animal care and ethics statement. 

All animal experiments were conducted in animal biosafety level 3 (BSL3) facilities at the 

Biosecurity Research Institute at Kansas State University according to protocols approved by 

the Institutional Animal Care and Use Committee at Kansas State University and the guidelines 

set by the Association for the Assessment and Accreditation of Laboratory Animal Care and the 

U.S. Department of Agriculture.

Cells and plasmids. 

Human embryonic kidney 293 (HEK293), the Crandell-Rees feline kidney (CRFK) and Calu-3 

cells were purchased from American Type Culture Collection (ATCC; Manassas, VA). Vero E6 

cells expressing human TMPRSS2 (Vero-TMPRSS2) cells were obtained from Creative 

Biogene (Shirley, NY)[88]. Cells were maintained with either Dulbecco’s Modified Eagle Media 

(DMEM) or Eagle's Minimal Essential Medium (MEM) supplemented with 5% fetal bovine 

serum, 100 U/ml penicillin and 100 μg/ml streptomycin, respectively. The codon-optimized 

cDNAs of the open reading frame of the human or animal ACE2 gene with FLAG tag were 

synthesized by Integrated DNA Technologies (Coralville, IA) and cloned into pIRES-Neo3 

(Takara Bio, Mountain View, CA). For the ACE2 gene of white-tailed deer, because only partial 

ORF is available, the full ORF was constructed with human ACE2 gene. These plasmids were 

then designated as pIRES-Neo-(species) ACE2-FLAG. The animal species from which ACE2 

gene sequences (listed in Supplemental Table 1) were derived are cat, dog, Arabian camel, 
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European mink, horse, rabbit, cattle, Syrian golden hamster, and white-tailed deer. 

Pseudotyped viruses expressing SARS-CoV-2 S protein were generated by synthesizing the S 

gene which was truncated by 26 amino acids at the C-terminus, fused with HA tag by Integrated 

DNA Technologies, and cloned into plasmid pAbVec1 (Addgene, Watertown, MA), which were 

designated as pAbVec-SARS2-S. The parental S gene sequence was the prototype SARS-

CoV-2 S gene from Wuhan (GenBank ID: YP_009724390.1). This clone was then used to 

generate single or multiple mutations in the RBD of S gene with site-directed mutagenesis kit 

(Agilent, Santa Clara, CA) using primers listed in the supplemental Table 2 and designated as 

pAbVec-SARS2-S (mutant). Single mutations in the RBD include N501Y (alpha variants), 

E484K, K417N, T478K and L452R, and multiple mutations include N501Y+E484K (gamma 

variants), L452R+E484K (delta variants), L478K+L452R (delta variants), N501Y+E484K+ 

K417N (beta variants), and D614G+N501Y-E484K+K417N (beta variants). Each mutation was 

confirmed by Sanger sequencing analysis. 

Anti-SARS-CoV-2 antibodies from humans, cats, and rabbits. 

Convalescent sera (Lotus 11 and 25) from COVID-19 patients were obtained from Dr. Thomas 

Rogers from the Scripps Research Institute, San Diego, CA, USA. Cat sera (Cat 247 and 903) 

were collected from cats enrolled in SARS-CoV-2 re-infection studies [89]. Hyperimmune rabbit 

sera (Rabbit 4A and 7A) were obtained by immunizing rabbits with SARS-CoV-2 recombinant S 

baculovirus-expressed proteins based on the prototype Wuhan isolate. Negative sera from each 

species were also included in the study. 

Generation of CRFK cells stably expressing human or animal ACE2. 

CRFK cells, plated the previous day, were transfected with pIRES-Neo-human (or cat, dog, 

cattle, horse, camel, hamster, rabbit, mink, white-tailed deer) ACE2-FLAG. The transfected cells 

were then subsequently selected in the presence of 1 mg/ml G418. Expression of each species’ 
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ACE2 receptor in the cells was confirmed by Western Blot analysis using antibody to human 

ACE2 (Abcam, Waltham, MA). Parental CRFK cells served as a control (Mock).    

Generation of SARS-CoV-2 S pseudotyped viruses.  

The 2nd generation lentiviral packaging plasmid, psPAX2 (Addgene), a reporter plasmid 

pUCGFP-Luc (Addgene), and parental or mutant pAbVec-SARS2-S were transfected into 

HEK293 cells to produce pseudotyped viruses. Briefly, cells plated in 6-well plates the previous 

day were transfected with three plasmids (1 ug each per well) using Lipofectamine 2000 

(Thermo Fisher, Waltham, MA). Following overnight incubation, media was replaced with fresh 

media containing 5% FBS, and the cells were further incubated for 48 hrs. Supernatants were 

collected, and cell debris was removed by centrifugation at 400xg for 10 min. Quantitation of 

pseudotyped viruses was performed using an HIV p24 assay kit (Takara Bio) or ELISA for 

SARS-CoV-2 S (Sino Biological, Wayne, PA) before storing at -80˚C.   

Pseudotyped virus entry assays. 

To study the entry efficiency of parental or mutant S in cells expressing human or animal ACE2, 

HEK293 cells or CRFK cells expressing human or animal ACE2 were infected with pseudotyped 

virus carrying parental or mutant S protein. Briefly, cells plated the previous day were infected 

with each pseudotyped virus at a multiplicity of infection (MOI) of approximately 1 based on the 

p24 ELISA for pseudotyped virus preparation. Cell lysates were prepared at 48 h after infection, 

and firefly luciferase activity was measured on a luminometer (GloMax 20/20, Promega, 

Madison, WI). Fold change over the parental pseudotyped viruses was calculated for each 

mutant pseudotyped virus. 

The replication kinetics of SARS-CoV-2 variant strains in cells. 
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SARS-CoV-2 strains USA/WA1/2020 (lineage A), USA/NY-PV08410/2020 (lineage B.1), 

USA/CA_CDC_5574/2020 (lineage B.1.1.7; alpha variant) and South Africa/KRISP-

K005325/2020 (lineage B.1.351; beta variant) were acquired from BEI Resources (Manassas, 

VA, USA; Supplemental Table 3).  Virus stocks were prepared by passaging on either Vero-

TMPRSS2 (WA-A, NY-B.1, CA-B.1.1.7, SA-B.1.351) or Calu3 cells (SA-B.1.351), and titers 

were determined using Vero-TMPRSS2 cells for tissue culture infectious dose 50% per mL 

(TCID50/mL) calculated using the Spearman-Karber method.  Virus stocks were sequenced by 

next generation sequencing (NGS) using the Illumina MiSeq.  All variant stock viruses retained 

the original identified mutations and were in consensus with the original sequenced strains in 

GenBank.  A mutation (PWRAR) in the S furin cleavage site of the SA/KRISP-K005325/2020 

Vero-TMPRSS2 passage 1 stock virus was detected as consensus; this stock was used for 

inoculation of hamsters.  The SA/KRISP-K005325/2020 stock was subsequently passaged on 

Calu3 cells and NGS results showed this stock to contain only 13% of the furin site mutation; 

this stock was used for the in vitro virus replication kinetic experiments. 

SARS-CoV-2 variant replication kinetics in human and hamster ACE2 expressing CRFK 

cells.  

SARS-CoV-2 variant replication kinetics were performed with CRFK-human ACE2 or CRFK-

hamster ACE2 cells. Cells were inoculated with approximately 0.01 MOI of each virus strain and 

cell culture supernatants collected at 24, 48 and 72 hours post infection (hpi).  Inoculum 

(defined as 0 hpi) and the time point collected supernatants were then titrated on Vero-

TMPRSS2 cells. 

Infection of SARS-CoV-2 variants in the Hamster model.  

Hamsters (lineage A, n=8; B.1.1.7, n=4; B.1.351, n=8) were inoculated intranasally with 1x105 

TCID50/mL of virus in 0.1 mL DMEM.  Half of the hamsters were humanely euthanized and 
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necropsied at 3 days post challenge (dpc) and the remaining at 5 dpc.  Nasal wash was 

collected from all hamsters at both 3 and 5 dpc and lungs were collected at necropsy.  Nasal 

wash samples were vortexed and stored at -80oC until analysis.  Lung homogenates were 

prepared by homogenizing 200 mg of tissue in a tube containing 1 mL DMEM and a steel bead 

with a TissueLyser LT (Qiagen, Germantown, MD, USA) for 30 s at 30 hertz, repeated 3 times.  

Nasal wash and lung homogenates were filtered through a 0.2 m filter prior to virus titration on 

Vero E6-TMPRSS2 cells.  

Neutralization assay of convalescent or virus-infected sera from human, cat or rabbit 

against pseudotyped virus expressing SARS-CoV-2 parental or mutant S protein. 

The effects of the mutations in the S on antibody neutralizing activity were examined with a 

panel of SARS-CoV-2 serum samples from humans, cats, and rabbits and pseudotyped virus 

carrying parental and mutant SARS-CoV-2 S. Serial 2-fold dilutions starting at either 1:12.5, 

1:25 or 1:50 of each heat-inactivated serum sample were mixed with a constant amount of each 

of the pseudotyped viruses carrying parental or mutant S and incubated for 1 h at 37˚C. Then, 

the serum-pseudotyped virus mixture was transduced onto CRFK-human ACE2 cells. Cell 

lysates were prepared at 48 h after transduction and the relative luminescent units (RLU) were 

measured. Inhibition curves with each serially diluted serum were generated and the 

neutralizing titers were calculated as the reciprocal of the serum dilution that showed 50% 

reduction using GraphPad Prism Software version 6 (San Diego, CA).

Structural modeling of ACE2-RBD interactions. 

Protein structural models were produced for the ACE2 interaction with the S protein Receptor 

Binding Domain (RDB) using the ACE2 sequences for each species listed in Supplemental 

Table 1 using SWISS-MODEL [90]. The PDB entry 6LZG [91] was used as a template for model 

building. The ACE2 sequence for each species, corresponding to residues found in the 6LZG 
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template, were used and either the parental SARS-CoV-2 RBD sequence or the mutated 

sequence (N501Y-K417N-E484K) was added as a hetero target. Structures were analyzed and 

images created using PyMOL [92]. 

Statistical analysis.  

Statistical analysis was performed using GraphPad Prism Software version 6 (San Diego, CA).  

One way ANOVA followed by Tukey post-hoc test on the log10 transformed firefly luminescent 

units, or neutralization titers was used to compare the parental and mutant pseudotyped 

viruses. To identify significant differences between ACE2-expressing cell cultures or hamsters 

infected with the different SARS-CoV-2 strains, virus titer data was first log10 transformed and 

row means and standard deviations were calculated.  The data was then analyzed by two-way 

ANOVA, followed by Tukey’s multiple comparisons test; statistical differences are indicated as * 

(p<0.05).  Data are representative of at least two independent experiments. To identify 

significant differences between groups of hamsters challenged with the different SARS-CoV-2 

strains, virus titer data was first log10 transformed and row means and standard deviations were 

calculated.  The data was then analyzed by two-way ANOVA followed by Tukey’s multiple 

comparisons test and statistical differences indicated as * (p<0.05).  Data are representative of 

at least two independent experiments.
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Table 1. Neutralizing antibody titers of various human, cat, and rabbit sera against 

pseudotyped viruses carrying SARS-CoV-2 parental (PA) or mutant S proteins tested 

with human ACE2-expressing cells.  One-way ANOVA on the neutralizing titers was used to 

compare the parental and mutant groups. Statistical differences between the mutations and the 

parental group are indicated with * (p<0.05). 

 Humans Cats Rabbits

 Lotus 11 Lotus 25 Neg #247 #903 Neg #4A #7A Neg

PA 78.53±2.3 275.65±6.3 < 12.5 96.53±4.2 328.60±21.1 < 12.5 534.05±77.6 270.10±16.7 < 12.5

501Y 85.71±5.3 271.05±34.3 < 12.5 89.32±5.9 322.05±30.1 < 12.5 550.95±16.4 259.05±22.6 < 12.5

484K 33.56±0.5* 125.00±4.3* < 12.5 56.82±4.3* 201.40±2.3* < 12.5 395.30±22.7 201.40±2.3 < 12.5

452R 47.11±5.3* 161.25±12.7* < 12.5 64.18±6.9* 204.15±4.1* < 12.5 391.65±17.7 117.75±0.8* < 12.5

478K 78.73±0.3 290.85±14.9 < 12.5 92.37±3.4 282.35±5.8 < 12.5 563.40±14.5 239.55±55.0 < 12.5 

501Y-484K 34.38±2.3* 84.98±2.3* < 12.5 29.16±0.6* 135.60±16.7* < 12.5 265.10±30.7* 95.06±10.4* < 12.5

452R-484K 25.62±4.0* 114.02±23.2* < 12.5 37.19±0.6* 143.45±9.4* < 12.5 201.85±9.2* 111.10±3.0* < 12.5

452R-478K 27.40±0.6* 89.57±5.2* < 12.5 39.634±7.9* 103.34±9.9* < 12.5 228.20±12.9* 97.63±10.5* < 12.5

501Y-
484K-417N 25.9±0.0* 90.22±1.6* < 12.5 31.98±2.0* 103.20±3.0* < 12.5 197.05±3.5* 110.50±4.9* < 12.5 
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Figure legends 

Figure 1. Effects of various ACE2 constructs on the entry of pseudotyped viruses 

carrying SARS-CoV-2 S into CRFK cells stably expressing ACE2 from various animal 

species.  A. CRFK cells stably expressing various ACE2 receptors or mock cells (no ACE2 

transfection) were infected with pseudotyped virus carrying the parental SARS-CoV-2 S protein. 

Following incubation of the cells with the pseudotyped virus for 48 h, cells were lysed, and 

luminescence units were measured. Each bar indicates the mean and the standard error of the 

means. B. Summary of the results from the pseudotyped virus entry assay in Figure 1A. Virus 

entry levels were considered high, medium, or low when > 80%, 10-80%, or 1-10% of virus 

entry in ACE2-expressing cells (compared to human ACE2 cells) was observed, respectively, 

based on the criteria suggested by Damas et al. [18]. *In silico predictions by Damas et al [18]. 

Figure 2.  Entry of pseudotyped viruses carrying SARS-CoV-2 S with single or multiple 

substitutions on the RBD site of the S protein into non-transfected CRFK or CRFK cells 

stably expressing human ACE2. CRFK cells expressing human ACE2 (A) or mock (non-

ACE2 transfected) CRFK cells (B) were infected with pseudotyped viruses with single or 

multiple substitutions. Following incubation of the cells for 48 h, luminescence units were 

measured. Each bar indicates the mean and the standard error of the means. PA indicates 

parental pseudotyped virus (no mutation in the S protein). One way ANOVA on the log10-

transformed raw relative luminescence units were used to compare the parental (PA) and other 

groups. Statistical differences between mutation and the parental virus groups are indicated with 

* (p<0.05). 
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Figure. 3.  Entry of pseudotyped viruses carrying SARS-CoV-2 S with single or multiple 

mutations on the RBD site of S protein into CRFK cells expressing ACE2 of various 

species. CRFK cells expressing ACE2 were infected with pseudotyped viruses expressing 

single or multiple S protein substitutions. Following incubation of the cells for 48 h, cells were 

lysed, and relative luminescence units were measured. Each mutant pseudotyped virus was 

compared with the parental pseudotyped virus (PA), and data are presented as the fold-change 

to PA. One way ANOVA on the log10 transformed raw relative fluorescence units were used to 

compare the parental and other groups. Statistical differences between mutation and the 

parental virus groups are indicated with * (p<0.05). 

Figure 4. Replication and infection dynamics of SARS-CoV-2 variant strains in cells and 

hamsters.  Replication kinetics were performed in CRFK-human ACE2 (A) or CRFK-hamster 

ACE2 (B) cells. Virus titrations were performed on infected cell culture supernatants collected at 

24, 48, and 72 hours post infection (hpi), and the virus inoculum (timepoint 0). Virus titrations 

were also performed on the nasal wash (C) and lungs (D) collected from hamsters inoculated 

intranasally with 1x105 TCID50 of each virus strain at 3- and 5-days post challenge (DPC). Mean 

and standard deviations are shown for each data set. Two-way ANOVA of transformed virus 

titer data was performed, and statistical differences of the variants compared between each of 

the strains per time point are indicated by * (p<0.05).  

Figure 5. Neutralizing activity of various human, cat, and rabbit (sera against 

pseudotyped viruses carrying SARS-CoV-2 parental or single mutant S in cells 

expressing human ACE2. CRFK cells expressing human ACE2 were infected with 

pseudotyped viruses and tested for neutralizing activity against various human (A, B, C), cat (D, 

E, F), and rabbit (G, H, I) sera. Following incubation of the cells for 48 h, cells were lysed, and 
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the relative luminescence units were measured. Each bar indicates the mean and the standard 

error of the means. PA indicates parental pseudotyped virus. 

Figure 6. Neutralizing activity of various human, cat, and rabbit sera against pseudotyped 

viruses carrying SARS-CoV-2 parental (PA) or multiple S mutations in cells expressing 

human ACE2. CRFK cells expressing human ACE2 were infected with pseudotyped viruses 

and tested for neutralizing activity against various human (A, B, C), cat (D, E, F), and rabbit (G, 

H, I) sera. Following incubation of the cells for 48 h, cells were lysed, and the relative 

fluorescence units were measured. Each bar indicates the mean and the standard error of the 

means. PA indicates parental pseudotyped virus. 

Figure 7. Structural modeling insights into the ACE2-RBD interaction in different species. 

A. Illustration of the human ACE2 (green) interaction with the SARS-CoV-2 RBD (cyan) as 

determined by Protein DataBank (PDB) entry 6GLZ [91]. The inset outlines the location of the 

ACE2-RBD interface illustrated in (B). B. Summary of significant differences from the human 

ACE2-RBD interface in the investigated species, highlighting notable differences in (i) dog, (ii) 

horse, (iii) camel, and (iv) mink. C. Alignment of the ACE2 amino acid sequences of each 

species (Supplemental Table 1), with K417 (pink), E484 (green), and N501 (purple) interacting 

residues highlighted. Significant differences outlined in (B) are highlighted in yellow.  
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Supplemental Table 1. Sources of human and animal ACE2 gene sequences. 

Species Scientific name Source

Human Homo sapiens NP_068576.1

Cat Felis catus NP_001034545.1 

Dog Canis lupus NP_001158732.1 

Cattle Bos taurus NP_001019673.2 

Horse Equus caballus XP_001490241.1 

Camel – dromedary Camelus dromedarius XP_010991717.1 

Hamster Mesocricetus auratus XP_005074266.1

Rabbit Oryctolagus cuniculus XP_002719891.1 

European mink Mustela lutreola biedermanni MT560518 

White tailed deer Odocoileus virginianus XP_020768965.1 
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Supplementary Table 2. Primers used for mutagenesis of the SARS-CoV-2 S gene. 

Name Sequences 

SA2-D614G-F 5-TTGCTGTTCTTTATCAGGGTGTTAACTGCACAGAAGT-3

SA2-D614G-R 5-ACTTCTGTGCAGTTAACACCCTGATAAAGAACAGCAA-3

SA2-N501Y-F 5- GGTTTCCAACCCACTTATGGTGTTGGTTACCAAC-3

SA2-N501Y-R 5- GTTGGTAACCAACACCATAAGTGGGTTGGAAACC-3

SA2-E484K-F 5- CCTTGTAATGGTGTTAAAGGTTTTAATTGTTAC-3

SA2-E484K-R 5- GTAACAATTAAAACCTTTAACACCATTACAAGG-3

SA2-K417N-F 5- CCAGGGCAAACTGGAAACATTGCTGATTATAAT-3

SA2-K417N-R 5- ATTATAATCAGCAATGTTTCCAGTTTGCCCTGG3-

SA2-T478K-F 5' – ATCTATCAGGCCGGTAGCAAACCTTGTAATGGTGT-3

SA2-T478K-R 5' – ACACCATTACAAGGTTTGCTACCGGCCTGATAGAT-3

SA2-L452R-F 5-GGTTGGTGGTAATTATAATTACCGGTATAGATTGTTTAGGAAGTCTA-3

SA2-L452R-F 5-TAGACTTCCTAAACAATCTATACCGGTAATTATAATTACCACCAACC-3
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Supplementary Table 3.  SARS-CoV-2 strains used for in vitro replication kinetics and 

hamster infection experiments.

Strain BEI number Lineage Clade Spike Mutations Variant

USA/WA1/2020 NR-52281 A S na

USA/NY- PV08410/2020 NR-53514 B.1 GH D614G B.1

USA/CA CA_CDC_5574/2020 NR-54011 B.1.1.7 GR D614G, N501Y Alpha

South Africa/KRISP-K0053252020 NR-54009 B.1.351 GH
D614G, N501Y, 

E484K, K417N
Beta

na=not applicable 
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