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Although the higher order mechanisms behind object representation and classification in the visual
system are still not well understood, there are hints that simple shape primitives such as ”curviness”
might activate neural activation and guide this process. Drawing on elementary invariance princi-
ples, we propose that a statistical geometric object, the probability distribution of the normalized
contour curvatures (NCC) in the intensity field of a planar image, has the potential to represent and
classify categories of objects. We show that NCC is sufficient for discriminating between cognitive
categories such as animacy, size and type, and demonstrate the robustness of this metric to variation
in illumination and viewpoint, consistent with neurobiological constraints and psychological exper-
iments. A generative model for producing artificial images with the observed NCC distributions
highlights the key features that our metric captures and just as importantly, those that it does not.
More broadly, our study points to the need for statistical geometric approaches to cognition that
build in both the statistics and the natural invariances of the sensory world.

Humans and other primates are adept at recognizing
objects within a visual field remarkably quickly and accu-
rately, and forming neural representations that are spa-
tially distributed in the inferotemporal cortex into gen-
eral cognitive categories such as animacy, size, type (faces
vs places) etc. How this happens is still not well under-
stood. There are at least two approaches to addressing
this question: via a bottom-up approach to understand-
ing the neural areas and circuits responsible by system-
atic microscopic studies, or by taking a top-down ap-
proach that ignores the details takes a perspective that
is deliberately a high-level approach to solving the inverse
problem: what kind of image representation could agree
with neural activation patterns measured in participants
in response to different aspects of chosen image features
and stimuli [1]? Eventually, we hope to be able to merge
these levels of understanding into a unified whole that
accounts for the natural statistics of categories in the vi-
sual world, and how the evolution, and development of
the visual cortex as it learns to compress, classify and
comprehend the external environment.

At a high level, visual processing in primates is roughly
divided across the ventral and dorsal pathways, with the
former responsible for characterizing objects in the vi-
sual field (“what”), and the latter for guiding interac-
tions with the objects (“how”) [2, 3]. Within the ventral
stream, object recognition is known to occur in the in-
ferotemporal (IT) cortex [4, 5]. Studies of fMRI in both
humans and non-human primates in response to view-
ing different stimuli have uncovered multiple cognitive
categories or dimensions — such as size (from small to
large objects), animacy (from animals to inanimate ob-
jects), body parts (such as faces, hands, bodies) — which
elicit neural activation in different spatial domains of the
IT cortex [6–9]. At the neural level, studies have iter-
atively simplified stimuli to recover “critical features”

which maximally activate a cell [10, 11]. In some re-
gions of the visual pathway, such features permit intu-
itive explanations – for instance, the middle temporal
(MT) cortex and middle superior temporal (MST) cor-
tex are known to represent visual motion through a col-
lection of neurons encoding direction and speed [12, 13].
Interestingly, within the intermediate subregions of the
ventral cortical pathway leading to the IT cortex – areas
V1, V2, and V4 – the critical features associated with
images of varying contours are found to represent both
simple properties, such as position and orientation, but
also a higher-order property: curvature [14–17], and met-
rics based on this quantity are strongly correlated with
neural dynamics [18, 19].

In psychology and psychophysics, the significance of
contour curvature in perception has been suggested at
least since the 1950s [20], when it was suggested that
perceptual information along a shape boundary is not
equally distributed, but rather concentrated in regions of
high curvature — a proposal has since been supported
both empirically and through an information-theoretic
framework [21, 22]. In particular, studies have shown
that we exhibit hyper-acuity in the perception of curved
lines [23–25]; in fact studies have found that the mech-
anisms for discriminating contour curvature are selec-
tive for spatial frequency and orientation, agreeing very
closely with studies of neural features [26]. Furthermore,
given the evidence for orientational selectivity in the vi-
sual cortex, curvature which is the spatial rate of change
of orientation is a relatively easy feature to extract. In
machine vision, while the notion of curvature has been
used widely used [27–32], most image descriptor for ob-
ject recognition and classification tasks are composed of
histograms of pixel-based metrics – most notably, the his-
togram of oriented gradients (HoG) approach [33]. While
several studies have combined HoG with locally binned
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histograms of curvature to show improved performance
in numerical tasks, they use curvature only to augment
existing methods [34, 35], rather than as a distinct met-
ric. A promising alternative is that of curvature scale
space (CSS) - a representation of shape through contour
curvature calculated at different magnitudes of Gaussian
smoothing [36] that has proved efficient and successful
in problems of corner detection, clustering, shape index-
ing and retrieval, and silhouette-based object recognition
[37–40]. However, while CSS is rooted in and motivated
by the mathematical invariances desirable for shape anal-
ysis, it does not seem to have been extended to quantify-
ing two-dimensional images, or to our understanding of
biological perception. Finally and most recently, while
neural networks have been successful at solving many
problems in computer vision [41], and are promising mod-
els of biological processing [42, 43], they do not usually
provide an interpretable understanding of the intermedi-
ary image representations that underlie perception.

Given these insights from neurobiology, psychology,
and computer vision, how might one construct a com-
putationally meaningful and interpretable image descrip-
tor? Here, guided by the need for an invariant description
to Euclidean motions, we propose the use of a simple
statistical geometric measure, the “normalized contour
curvature” (NCC) distributions: a probability distribu-
tion of curvatures within smoothed natural images. We
construct NCC through pooling of nonlinear transforma-
tions of an image’s contour curvature content – a simple
calculation which has plausible implementability within
neural circuitry, emphasizing that it is important to think
of a statistical measure of this geometric quantity given
the nature of noise in images. We show that NCC sat-
isfies desired properties of shape, interpret calculations
over example stimuli, and demonstrate that this metric
carries sufficient informational content for distinguishing
between cognitive categories. Finally, we derive a gen-
erative model for constructing images corresponding to
a given NCC distribution to help us understand when it
works and perhaps more importantly, when it does not
work.

CONTOUR CURVATURE COMPUTATION

For the compression, classification and comprehension
of images treated as shapes, any meaningful perception
should satisfy some basic invariances that include (i)
Global Translation Invariance:, i.e. shape is indepen-
dent of location in space (ii) Global Rotation Invariance:,
i.e. shape is independent of orientation (iii) Resizing/
Scale Invariance:, i.e. shape is independent of overall
scale (iv) Image Representation Invariance:, i.e. shape is
independent of rescaling the intensity map. While there
are known cognitive exceptions (e.g. squares/diamonds,
upside-down faces etc.), these are specialized and we will
not consider them here.

For an image that is characterized by a two-

dimensional intensity field, constant intensity contours
typically form closed contours. In a smooth differential-
geometric setting, the curvature of these curves is invari-
ant to global translation and rotation and thus forms
a natural candidate for an invariant description. Let-
ting f(x, y) represent the intensity at pixel (x, y) and
fx, fy, fxx, fyy and fxy represent the first and second
derivatives, we can write the contour curvature (CC) at
point (x, y) as

κ =
2fx fy fxy − f2y fxx − f2x fyy(

f2x + f2y
)3/2 . (1)

We note that this approach is different from using the in-
tensity values of a given image to describe a height map
and then compute the curvature tensor of the surface and
thence the Gaussian or mean curvature at each pixel [44],
although the two are of course related. Furthermore, we
note that calculation of curvature follows naturally from
orientational information that the retina is well known
to respond to; curvature is just the spatial variation in
orientational information and can be deduced approxi-
mately via a differencing scheme that is analogous to a
difference of Gaussians. Though the contour curvature is
invariant under translation, rotation and intensity scal-
ing, it is not invariant to scale changes. To overcome this
issue, we take the largest dimension of an image to be of
unit length, so that the curvature of a circle fitting just
inside the (square) image has radius r = 1/2 and hence
curvature κ = 2. Finally, it is numerically useful to map
the contour curvature defined on the whole real line to
a finite interval which we choose to be [−1, 1]. Thus we
define the normalized contour curvature (NCC) as

κ̂ =
κ

κ1/2 + |κ|
, (2)

The parameter κ1/2 sets the value of κ which maps
to κ̂ = 1/2, and makes the NCC easier to interpret; by
taking κ1/2 = 2, a circle with curvature κ = 2 (i.e. a
circle inscribed in a square image) is mapped to κ̂ =
1/2 (Fig. 1). Note that this definition corresponds to a
closed-form inverse relation.

In a discrete computational setting, pixel intensities
can be used to construct level sets of constant intensity
and compute the curvature of these contours at every
pixel. While rescaling the intensity map does change
the intensities of the contours, it does not change their
overall shape, and so this method is manifestly invariant
under intensity rescaling. To get a smooth surface in-
terpolant from the image intensities, we filter the image
using a Gaussian kernel that has zero mean and a stan-
dard deviation ρ, and thus avoid the computational task
of constructing the contours passing through each pixel
and calculate the contour curvature directly in terms of
numerical derivatives [45] of the filtered image intensity,
and directly apply Eq. 1. This produces an “image”
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FIG. 1. (a) The NCC is defined (by Eq. 2) such that the
NCC along a circle inscribed in a square of side length 1 is
mapped to 1/2. (b) When calculating NCC, we consider the
level curves of a 3D surface defined by the pixel intensities
of an image. This figure shows the level curves for the light-
bulb image in (c). (c) This sequence shows the pipeline for
calculating NCC. Starting with an image of a lightbulb, we
apply Gaussian smoothing, calculate NCC for each pixel fol-
lowing Eq. 2, and finally histogram the values to result in a
probability density.

of the contour curvature, which can be converted to the
normalized contour curvature via Eq. 2.

Finally, we use the normalized contour curvature image
to construct a histogram for the original image, which we
then convert to a probability density to produce the NCC
distribution. We use equally-spaced bins spanning from
κ̂ = −1 to κ̂ = 1, choosing an odd number of bins in
order to have a bin centered on κ̂ = 0. In order to count
only curvatures corresponding to the object in the image,
we ignore pixels corresponding to background elements.
This image processing pipeline along with some examples
is shown in Fig. 2 (see also Supplmentary Information -
SI, Section A).

BAYESIAN IMAGE CLASSIFICATION OF
ANIMACY AND SIZE

To evaluate the role of NCC as an image classifier,
we investigate whether the NCC metric carries sufficient
informational content for a simple binary classifier to dis-
tinguish between different cognitive categories. Our data
were drawn from those used in fMRI studies on human
participants who were shown real images distinguished
by features such as animacy and size [7] that led to spa-
tially localized responses in the IT cortex, and various
artificial image sets [46] titled “texforms” – which, while
designed to be unrecognizeable, preserved enough low-
level structure to elicit a similar neural response to the
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FIG. 2. NCC probability densities calculated for example
images from the stimulus dataset presented in [7], across four
categories: a moose (large animate), mouse (small animate),
telephone booth (large inanimate), computer mouse (small
inanimate). Notice that the prevalence of straight lines in the
telephone booth and computer mouse results in peaks near
κ̂ = 0, and that both mice contain higher probability mass
in the low positive values (around κ̂ = 0.5). We find both of
these features to be characteristic of animacy and size (Fig.
4).
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FIG. 3. The solid line indicates mean NCC probability den-
sities for each of the four image categories from the stimulus
dataset presented in [7], and the shaded region indicates one
standard deviation. We see that NCC for the inanimate cat-
egory is characterized by high density at κ̂ = 0 (representing
the amount of straightness in the image) and NCC for the
small category is characterized by slightly higher probability
density in intermediate positive NCC values (around κ̂ = 0.5).

images from which they were generated.

Methods

For the natural images, the stimulus set contained 60
objects per each of four subcategories [7] – small ani-
mate, small inanimate, large animate, large inanimate –
for a total of 240 images. The animate images spanned
the phylogenetic tree, including mammals, reptiles, birds,
and fish; the inanimate objects featured everyday items
varying from a thimble to a firetruck. In all images, ob-
jects were centered on white background.

To classify a given image into one of two predefined
classes C1 or C2, we use a slightly-modified log-likelihood
scheme that relies on the supervised learning of two prob-
ability distributions, P (κ̂ |C1) and P (κ̂ |C2), representing
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FIG. 4. Here, we consider distributions for each of the four
sub-categories of images from the stimulus dataset presented
in [7], separated both by size and by animacy. We observe
similar characteristics as described in Figure 3, though find
that the distinction between large and small is much more
prominent for inanimate images, which is consistent with the
tripartite cognitive organization found in [7].

the probability for a pixel in a given image to have nor-
malized curvature κ̂ given that it belongs to either C1 or
C2. In practice, we bin the normalized curvatures, and
the aforementioned distributions become probability vec-
tors: P (κ̂ |C1) = pC1 and P (κ̂ |C2) = pC2 , where the nth
element pC1

n (or pC2
n ) describes the probability for κ̂ to

be in the nth bin.
To construct pC1 (or pC2), we simply calculate NCC

histograms for all images in the C1 (or C2) training set,
add them together, and normalize by the total number
of counts. Then, we can classify an image by calculating
its NCC distribution pn, dividing by the total number of
counts to obtain qn, and compute the log-likelihood:

L =
N∑
n

qn log

[
pC1
n

pC2
n

]
, (3)

where N is the number of bins. If L > 0, the image is
classified as belonging to C1; is L ≤ 0, it is classified as
belonging to C2. We note that L can also be thought
of as the difference between the Kullback-Leibler (KL)
divergence of q from pC1 and the KL divergence of q from
pC2 . Although we only use the sign of L for predicting
the category of an image, the magnitude of L can inform
the classification likelihood; large values of |L| are linked
with a higher confidence of classification, while values
with |L| ∼ 0 have a lower confidence.

In addition to analyzing natural images, we also con-
sidered the paired image/texform stimulus set introduced
in [46], which contains a dataset of 120 objects (30
from each of the four size/animacy sub-categories), along
with corresponding texforms. We perform the same pre-
processing steps as described previously, with one differ-

ence in the processing of the background, whereby we
take advantage of the provided green-screen variant to
isolate the background pixels and set them to white to
match prior analysis; applying this same “background
mask” introduces an outline and background to the tex-
form.

Natural image classification

To test the efficacy of the normalized contour curva-
ture as an image statistic and visualize the distinctions
between classes, we plot the mean and variance of NCC
distributions for each class in Figure 4. We highlight two
important features. First, unlike animals, inanimate ob-
jects have a high prevalence of straight lines and edges,
leading to a peak at κ̂ = 0. Second, small objects contain
a higher density of intermediate curvature values, while
the NCC of larger objects is more heavily concentrated
at the ends of the distribution. This is likely because the
characteristics and details of small objects are propor-
tionately larger, resulting in lower absolute curvatures,
while the fine-scale detail of images of large objects re-
sults in higher absolute curvatures.

To classify animacy over both large and small objects,
and classify size on both animate and inanimate objects,
we ran 1000 randomized trials for both tasks, adhering
to a 30%/70% training/testing split. Our aggregate re-
sults are shown in Figure 5. From the comparison of
true positive and false positive rates in Figure 5, we see
that these distinctions are sufficient for a simple Bayesian
classifier to distinguish animacy within both large and
small objects, and size within inanimate objects (with
poorer performance on classifying size within animals).
But in fact, this general tripartite organization – of small
objects, animals, and large objects – is consistent with
studies of neural activation within the occipito-temporal
cortex for human observers [7].

The failure of the classifier exposed via misclassified
samples, i.e. false positives and false negatives for each
of the four classification tasks are shown in Fig. 6.
Interpreting these mistakes in the NCC-based classifier
is illuminating. For instance, in classifying large ob-
jects by animacy, most errors occur in inanimate objects
with thin protruding “appendages”. This is likely be-
cause the thin components fade due to Gaussian blur-
ring, resulting in high magnitude curvatures at their end-
points, which align more closely with the animate distri-
butions than with characteristically (straight) curvature-
free inanimate distributions. When classifying small ob-
jects, most errors occur in inanimate objects which re-
semble animacy, such as a pinecone, and floral-patterned
household items, all of which have rounded features. On
the other hand, the snail is a false negative, suggesting
that the shell is uncharacteristic of animate images. In
this context, we find that the most difficult task is distin-
guishing size within animate images: misclassified sam-
ples include both large animals with the rounded shape
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FIG. 5. We examine the accuracy of a binary classifier (Eq. 3)
by visualizing 2D histograms of the false positive rate against
true positive rate over 1,000 randomized trials. Classifica-
tion is performed separately across the four categories for the
stimulus dataset presented in [7]; for instance, the top right
histogram shows results for a binary classification tasks in
which images with large objects are classified as animate or
inanimate. We find that it is significantly more difficult to
differentiate large animate and small animate images, while
the other categories have high classification accuracy. These
results are consistent with the tripartite domain separation
observed in [7] across large inanimate, small inanimate, and
animate objects.

usually associated with small objects, and small animals
of more irregular and elongated shapes. Inanimate ob-
jects can more successfully be separated by size, and the
mistakes often correspond to box-like large objects and
elongated small objects.

All our results so far use a particular value of the Gaus-
sian blurring filter to remove high frequency information,
namely ρ = 0.04 and a training fraction of 30%. Classifi-
cation success rates exhibit some dependence on ρ and a
weak dependence on the training fraction; performance
suffers when ρ is very small (image noise dominates) and
when ρ is very large (image details begin to be entirely
washed out), but the success rates are not sensitive to
small changes in ρ near the optimally-performing value
(see SI- Section B and Figs. S2, S3, S4 for visualizations
of these dependencies).

Texform image classification

Images of natural objects are distinguished by their
correlation statistics. Texforms attempt to scramble
these [46] and thus serve as a test of our binary Bayesian
classifier for distinguishing animacy and size. In Figure 7,

P(animate | large) Misclassifications P(animate | small) Misclassifications

P(large | animate) Misclassifications P(large | inanimate) Misclassifications

false negative false positive false negative false positive

false negative false positive false negative false positive

FIG. 6. To understand the sources of error within our clas-
sifier (Eq. 3), we consider and interpret misclassified images.
Specifically, we show a false negative and a false positive sam-
ple for each of the four classification tasks. We find that
these mistakes are consistent with our observed differences in
large/small and animate/inanimate NCC distributions. Since
small objects are characterized by a peak in intermediate pos-
itive curvature, large objects are often misclassified when they
have a rounded form, and small objects are often misclassified
when comprising an elongated or irregular form. On the other
hand, inanimate objects can be misclassified due to textured
structure or when containing ”appendages”. Animate objects
are rarely misclassified as inanimate.

we show that texforms preserve similar features as natu-
ral images, and moreover, have very similar classification
result. The top row of shows the NCC distributions for
texforms across both animacy and size. While texforms
do not retain the large straight or flat regions character-
istic of inanimate images, we do see slightly higher zero-
curvature content in the inanimate distribution, and find
that this difference is sufficient for classifying animate
from inanimate texforms with relatively high confidence.
In addition, the primary difference between large and
small texforms is in intermediate positive curvatures, as
in natural images. The bottom row of Figure 7 shows
the true positive / false positive results from 1000 trials
of a Bayesian classifier (see SI, Section B, and Figure S5
for results across all four animacy/size subcategories).

Overall, we see that the accuracy of the classifier for
texforms is very similar to those of natural images; in
fact, two of the categories yield marginally higher results.
Additionally, Figure 8 shows false positive and false neg-
ative samples across each of the four categories. When
classifying samples by animacy, we find that some im-
ages with considerable straight regions – such as the bull
and bird – are confused for inanimate objects, while some
highly textured samples – such as the stroller and wreath
– are confused for animals. On the other hand, the sam-
ples mistakenly classified as small – such as the seal and
armchair – are very rounded, contributing intermediate,
positive curvatures, while the samples mistakenly classi-
fied as large – such as the Chihuahua and mouse running
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FIG. 7. Similarly to Figure 3, the top two subfigures show
the mean ± standard deviation of the NCC distributions for
texforms corresponding to images of animate/inanimate and
large/small objects (from [46]). The bottom two subfigures
show the corresponding histograms of true positives and false
positives from 1000 runs of a binary classifier (Eq. 3).

P(animate | large) Misclassifications P(animate | small) Misclassifications

P(large | animate) Misclassifications P(large | inanimate) Misclassifications

false negative false positive false negative false positive

false negative false positive false negative false positive

FIG. 8. Following our analysis of natural images, we exam-
ine the errors made by a Bayesian classifier over the texform
dataset (from [46]). We find similar qualitative characteristics
in misclassified samples to those described in Figure 6: round
large objects may be misclassied as small; inanimate objects
with textured features may be misclassified as animate; ani-
mals are more difficult to classify by size.

wheel – have a disproportionate amount of high or near-
zero curvatures for their category.

NCC DISTRIBUTION AS AN IMAGE FEATURE

Our results so far suggest that NCC statistics are con-
sistent with experimental observations of cognitive cate-

gories across size and animacy, and thus raise the ques-
tion of its use as an image feature in other downstream
neural classification tasks. Complementing fMRI stud-
ies with human subjects, studies with macaque mon-
keys that directly measure neural activity in the brain
have shown spatial localization and distinct topograph-
ical ordering of the neural responses in the visual cor-
tex associated with the recognition of data types such
as alpha-numeric characters in the Helvetica font, Tetris-
like shapes, and simple cartoon faces [47], each of which
are clearly distinguished by different geometric statistics,
as shown in Fig. 9a,b along with their topographical or-
dering in the IT cortex. This raises the question: can
normalized contour curvature reveal any structure across
these categories? In line with standard image classifi-
cation approaches, we can think of the calculated NCC
distribution as a “feature vector” representing an image.
Thus the NCC distribution can be combined with any
other image features (such as average intensity, color in-
formation, etc.) by concatenation into a larger feature
vector.

Methods

To visualize the relative clustering of NCC distribu-
tions across the different image categories, we project the
features to a lower-dimensional space by applying prin-
cipal component analysis (PCA). To carry out this ap-
proach, we construct a data matrix in which each column
corresponds to an NCC distribution for a specific image,
and calculate its singular value decomposition (SVD).
Then, any NCC distribution can be approximated as a
linear combination of orthonormal basis vectors (com-
ponents). As we will see, the first three principal com-
ponents have a natural geometric interpretation, and the
projections of the data vectors into the three-dimensional
space corresponding to these components allows us to
evaluate separability across categories using the NCC as
a feature vector.

Results

In calculating the NCC for these, we use a relative
filter size of ρ = 0.018 (as for the analysis of other im-
ages, the choice of this parameter does not change our
results qualitatively). In Fig. 9c, we see clear structure
in the principal components. In particular, the first com-
ponent, which captures 89% of the variation in the data,
represents a simple peak at a curvature of 0, therefore
describing the amount of “straightness” in the data. The
second component can be interpreted to represent con-
cave content – from regions of the intensity surface which
contain both positively- and negatively- curved contours
– and the third component can be interpreted to rep-
resent convex content – which contains positive but not
negative curvature content. This observation agrees with
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the finding that convexity and concavity drive differential
neural responses to visual stimuli [48].

Visualizing the projections of the images onto the first
3 principal components shown in Fig. 9d, we see that
the Tetris pieces with straight sides and corners, cluster
tightly due to a high contribution from the first com-
ponent. Similarly, the cartoon faces also cluster tightly
due to their distinct structure – large positive curvatures
(due to the round face), with small amounts of nega-
tive and zero-curvature content due to the eyes, nose,
and other facial features. Finally, the Helvetica glyphs
span the space between the latter two categories, as they
contain a varied combination of straight rectangular por-
tions and curved segments. In particular, a few are struc-
turally very similar to “Tetris pieces” (such as the letters
“I”, “L” and “H”). This ordering is particularly evident
when we project the images onto the first two singular
vectors; we see that it roughly matches the topograph-
ical organization observed in the brain (see Ref. [47],
Fig. 3). Overall, we see that using the NCC statistics
as a feature vector allows for linear separability of image
classes in terms of a few geometrically interpretable prin-
cipal components. **** We note that NCC permits in-
terpretable geometric explanation for qualitative dimen-
sions of “animate-inanimate” and “stubby-spiky” discov-
ered by an artificial neural network in [49]: animate-
inanimate distinctions are defined by zero-curvature con-
tent, while stubby-spiky distinctions are defined through
high-curvature content.

NCC AS A CLASSIFIER UNDER VARYING
ILLUMINATION AND VIEWPOINT

Robust cognitive classification based on vision not only
needs to be invariant to transformations of scaling, trans-
lation, and rotation, but also to variations in illumination
and viewpoint. In the current context, we can ask if
NCC-statistics based classifiers are robust to these varia-
tions? While it is difficult to provide theoretical guaran-
tees in this context, we performed an experimental eval-
uation by quantifying the variation in NCC across illu-
mination/viewpoint changes for individual objects, and
comparing against inter-object variation using the Ams-
terdam Library of Object Images (ALOI) [50]. The ALOI
is a dataset of 1000 household items, systematically pho-
tographed to vary viewing angle, lighting direction, and
lighting color, for a total of 24 varied lighting conditions
and 72 varied viewpoints, samples from which are shown
on the left side of Fig. 10.

Methods

For our analysis, we choose six example object cat-
egories from the ALOI dataset, and randomly sample
15 images of varying lighting and viewpoint per object.
To measure the similarity between probability distribu-

tions, we calculate the Jenson-Shannon divergence – a
symmetric and smooth extension of the KL divergence –
between NCC values for each pair of images. We then
perform a multi-dimensional scaling (MDS) analysis to
find a two-dimensional mapping which best preserves the
“distances” between every pair of image samples, allow-
ing us to visually evaluate inter- and intra- object simi-
larity for varying illumination and viewpoint conditions.

Results

In the right panels in Fig. 10, we show that the
two-dimensional representations derived from NCC
distributions represent consistent, and almost separable,
clustering of images within object categories for vari-
ations in viewpoint and illumination. This is notable,
as NCC is a simple metric which retains no correlative
spatial information for an image. For example, in the
case of illumination, there is larger variability for the
seashell – for which some illumination angles cause
part of the shell to fall into deep shadow, making it
difficult to recognize – and the clock – in which the
light casts shadows through the glass surface. In the
case of changing viewpoint, we see very low variability
within the spool of string and the shuttlecock, as these
are radially symmetric, and higher variability in objects
that look very different from behind, such as the cat and
clock. All together, our results suggest that NCC is rel-
atively robust to changes in illumination and viewpoint.
Additionally, the spread of the clusters reflect sources of
error that may be similar to those of human observers.

A GENERATIVE MODEL FOR NCC
DISTRIBUTIONS

Our use of the normalized contour curvature distri-
bution as an cognitive classifier has highlighted how its
invariance properties allow for an interpretable differ-
entiation between image categories. We now turn to
ask if it possible to create a generative model for con-
structing artificial images with specified NCC statistics
related to known cognitive categories. To do so, we
consider the theoretical distributions for the curvature
statistics of a spatially varying Gaussian field with a
correlation length distribution corresponding to a given
NCC probability density, determined through an opti-
mization procedure. This allows us to generate artificial
images patch-by-patch with sampled correlation lengths,
and thus compare the empirical, theoretical, and gener-
ated NCC statistics (see SI - Section F for more details
on Gaussian random fields).
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FIG. 9. (a) Images of Tetris, Helvetica and cartoon face stimuli used by Ref. [47] to demonstrate proto-structure of the macaque
IT cortex. (b) Spatial structure of neural activation measured in macaques in response to the stimuli, with cartoon faces in
cyan, Helvetica in blue, tetris in green, and monkey faces in red (by Ref. [47]). (c) We apply principal component analysis of the
NCC distributions across all stimuli. The first three components yield interpretation: Component 1 represents the amount of
zero-curvature content, or straightness, Component 2 represents relative concave content, and Component 3 represents relative
convex content. (d) By visualizing the 3D space of PCA coefficients corresponding to the first three components, we see
clustering across categories consistent with the neural activation shown in (b).

Methods

We start with the assumption that Gaussian-filtered
natural images can be roughly described in terms of
distinct local patches drawn from Gaussian-correlated
Gaussian fields with different correlation lengths ξ. For-
mally, this can be expressed as

P (κ̂) =

∫ ∞

0

dξ P (κ̂ | ξ) P (ξ), (4)

where P (κ̂) is the NCC distribution, P (ξ) is the corre-
lation length distribution for a given cognitive category
(e.g. animate) and P (κ̂ | ξ) represents the single-pixel
distribution for the NCC given that the local patch is
described by a Gaussian-correlated Gaussian field with
correlation length ξ. In discrete form, the probability
distribution P (κ̂) becomes the probability vector pκ̂model,
P (ξ) becomes pξ, and P (κ̂ | ξ) becomes Ξ, a matrix whose
columns represent the NCC distribution for a Gaussian
field with the corresponding correlation length ξ, such
that

pκ̂model = Ξ pξ. (5)

Formally, the elements of Ξ can be written in terms of
the conditional cumulative distribution function C(κ̂ |ξ)
(See SI - Section G):

Ξnm = C (κ̂n+1 | ξm)− C (κ̂n | ξm) . (6)

Then, we fit the correlation length probability vector
pξ by taking it to be the probability vector minimizing
the Kullback-Leibler divergence of the model distribution
pκ̂model from the measured distribution pκ̂data,

pξfit = argmin
pξ

DKL

(
pκ̂data

∥∥ pκ̂model) . (7)

Note that this is a convex problem, which can be com-
puted with standard optimization solvers (we used the

“cvxpy” toolbox). Once we extract pξfit, we can start gen-
erating artificial images. We first divide the image into
patches of a chosen patch size. Then, for each patch, we

draw a correlation length ξ from pξfit, and fill in pixel val-
ues from a Gaussian-correlated Gaussian field with this
correlation length, conditioning on pixels in the neigh-
boring frames to maintain continuity across patches. Fi-
nally, once all panels have been filled in, we threshold the
image, ignoring all pixels with intensities less than −σf
(where σf is the standard deviation of the image).
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FIG. 10. We examine robustness of NCC to two additional perceptual factors – viewpoint and illumination – by analyzing
images of household objects taken under varying conditions from the Amsterdam Library of Object Images (ALOI) [50]. We
consider six objects: a shoe, spool of thread, cat statue, small clock, tennis shuttlecock/birdie, and a seashell. After calculating
NCC for images of the objects taken at varying conditions (varying viewpoint in the top row, or illumination in the bottom
row), we project the NCC distributions to two dimensions through multi-dimensional scaling (MDS). The relative clustering of
points in two dimensions can be considered a representation of the similarity of the NCC distributions for a given object. For
instance, in the analysis of viewpoint variation, we find the birdie (black) and the spool of thread (green) have a very tightly
clustered distribution, while objects such as the clock (cyan) and the seashell (purple) do not. This is understandable, as the
former pair are radially symmetric, while the latter pair are difficult to recognize from the back. In the analysis of illumination
variation, we find that reflective objects (such as the clock and shell) once again have more variance in the distributions, while
objects with a more matte texture (such as the shoe and cat) have more consistent NCC.

Results

In Fig. 11a, we show the fit for the correlation length
distribution and see that it has a sparse three-peak struc-
ture. The first peak, occurring close to ξ = 0 is a bound-
ary artifact, as calculated NCC distributions will have
nonzero densities in the very first and last bin, which is
theoretically impossible with nonzero correlation length.
The second peak captures the majority of the distribu-
tion, while the last peak contributes to the bump at inter-
mediate positive curvature values (around [0.5, 0.75]) –
which, as we have argued earlier, is indicative of the circu-
lar characteristics of small objects. The relative weights
associated with the peaks in the correlation length dis-
tribution allow P (ξ) to effectively capture the differences
across both dimensions of animacy and size. Inanimate
images have an additional peak at the maximum nor-
malized correlation length, corresponding to a peak at
κ̂ = 0, while large images have higher second peaks rela-
tive to third peaks, indicating greater probability density

at the edges of the NCC distribution (see SI - Section
E Fig. S7 for additional intuition and analysis of the
structure of P (ξ)). In Fig. 11b we show that there is
a good match between the NCC distribution of images
from a category (e.g. animate), the theoretical distribu-
tion computed using the above optimization procedure,
and the NCC of the images created using the generative
algorithm. However, when the intensity fields associated
with the generative approach are visualized, as shown in
Fig. 11c, we note that they do not correspond to either
natural images or even texforms. This is because the sim-
ple generative procedure captures only local – not global
– spatial correlations, leading to generated images that
exhibit smooth characteristics with irregular global ge-
ometric and topological structure, but do not represent
individual objects.
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FIG. 11. (a) Correlation length probability distribution
for the animate image class extracted according to Eq. 7.
(b) Comparison of animate NCC distribution, the model
fit pA

fit from Eq. 5 and the NCC distribution calculated
from 100 thresholded (at an intensity of −σf ) artificial im-
ages. (c) Three images generated by constructing a Gaussian-
correlated Gaussian random field with correlation length
drawn from the distribution in (a).

DISCUSSION

While many modern neural network based approaches
are remarkable in their ability to categorize visual stim-
uli, there remains a need for simple, interpretable, prop-
erly invariant metrics to describe cognitive categoriza-
tion, because the latter is more likely to illuminate the
underlying mechanisms in both artificial neural networks
and the neural processing behind human cognition. Our
use of the normalized contour curvature distribution aims

to rejuvenate a geometric idea in a probabilistic setting,
recognizing that we need metrics that are invariant to
the Euclidean group of rotations and translations, and
intensity scaling, but also accounting for statistical vari-
ability within and across images. We have shown that
simple metrics based on the NCC distribution are con-
sistent with multiple experimental findings in humans
and monkeys; it can distinguish between cognitive cat-
egories, is robust to changes in lighting conditions and
viewpoint, and has plausible implementability in neural
circuitry given that curvature has roots in characterizing
orientational information, and can then be pooled.

One limitation of the proposed NCC distribution as a
metric is that it does not account for the spatial distri-
butions of curvature content. When perceiving complex
natural scenes, or even more detailed objects, we clearly
rely on non-local and/or higher-order statistics of the vi-
sual field. To mitigate this, future development of this
metric could integrate NCC with a pyramid framework,
in which a feature descriptor is applied at varying loca-
tions and scales [51]. However, it has also been shown
that the neural response to an image is not distinct. By
estimating the size of receptive fields it is possible to con-
struct artificial images with distorted peripheral intensi-
ties which are perceptually indistinguishable for a human
observer - metamers [52], which then led to alternative
artificial stimuli, such as texforms [46, 53] which we also
considered here. This coarse-graining of spatial infor-
mation suggests that local pooling of neural activation
is an important aspect of image processing, consistent
with our results that show that the NCC distributions
of modified texforms contain similar defining curvature
characteristics across animacy and size as in natural im-
ages. Finally, our generative model for NCC highlights a
particularly difficult problem by failing to capture global
geometric and topological considerations in images; how
we might augment a statistical-geometric approach such
as the one used here with ideas from integral geometry
[54] remains an open question.
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