Summary
Calpains are cysteine proteases that control cell fate transitions. Although calpains are viewed as modulatory proteases displaying severe, pleiotropic phenotypes in eukaryotes, human calpain targets are also directed to the N-end rule degradatory pathway. Several of these destabilized targets are transcription factors, hinting at a gene regulatory role. Here, we analyze the gene regulatory networks of Physcomitrium patens and characterize the regulons that are deregulated in DEK1 calpain mutants. Predicted cleavage patterns of regulatory hierarchies in the five DEK1-controlled subnetworks are consistent with the gene’s pleiotropy and the regulatory role in cell fate transitions targeting a broad spectrum of functions. Network structure suggests DEK1-gated sequential transition between cell fates in 2D to 3D development. We anticipate that both our method combining phenotyping, transcriptomics and data science to dissect phenotypic traits and our model explaining the calpain’s role as a switch gatekeeping cell fate transitions will inform biology beyond plant development.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
Added Methods sections and Supplementary Figures. Added additional contributing authors. Updated main text.