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Fiscore Package: Effective Protein
Structural Data Visualisation and
Exploration
Auste Kanapeckaite

Abstract The lack of bioinformatics tools to quickly assess protein conformational and topological
features motivated to create an integrative and user-friendly R package. Moreover, the Fiscore package
implements a pipeline for Gaussian mixture modelling making such machine learning methods
readily accessible to non-experts. This is especially important since probabilistic machine learning
techniques can help with a better interpretation of complex biological phenomena when it is necessary
to elucidate various structural features that might play a role in protein function. Thus, Fiscore builds
on the mathematical formulation of protein physicochemical properties that can aid in drug discovery,
target evaluation, or relational database building. In addition, the package provides interactive
environments to explore various features of interest. Finally, one of the goals of this package was to
engage structural bioinformaticians and develop more robust R tools that could help researchers not
necessarily specialising in this field. Package Fiscore (v.0.1.3) is distributed via CRAN and Github.

Introduction

Fiscore R package was developed to quickly take advantage of protein topology/conformational
feature assessment and perform various analyses allowing a seamless integration into relational
databases as well as machine learning pipelines (Kanapeckaitė et al., 2021). The package builds on
protein structure and topology studies which led to the derivation of the Fi-score equation capturing
protein dihedral angle and B-factor influence on amino acid residues (Eq.1&2) (Kanapeckaitė et al.,
2021). The introduced tools can be very beneficial in rational therapeutics development where
successful engineering of biologics, such as antibodies, relies on the characterisation of potential
binding or contact sites on target proteins (Kanapeckaitė et al., 2021; Du et al., 2020). Moreover,
translating structural data into scores can help with target classification, target-ligand information
storage, screening studies, or integration into machine learning pipelines (Kanapeckaitė et al., 2021;
Du et al., 2020). As a result, Fi-score, a first-of-its-kind in silico protein fingerprinting approach, created
a premise for the development of a specialised R package to assist with protein studies and new
therapeutics development (Kanapeckaitė et al., 2021).

Fiscore package allows capturing dihedral angle and B-factor effects on protein topology and
conformation. Since these physicochemical characteristics could help with the identification or charac-
terisation of a binding pocket or any other therapeutically relevant site, it is important to extract and
combine data from structural files to allow such information integration (Kanapeckaitė et al., 2021;
Fauman et al., 2011; Faraggi et al., 2009). Protein dihedral angles were selected as they contain infor-
mation on the local and global protein structural features where protein backbone conformation can be
highly accurately recreated based on the associated dihedral angles (Kanapeckaitė et al., 2021; Faraggi
et al., 2009). Furthermore, since Ramachandran plot, which provides a visualisation for dihedral angle
distributions, namely φ (phi) and ψ (psi), allows only a holistic description of conformation and cannot
be integrated with traditional parametric or non-parametric density estimation methods, a specific
transformation was required to use this data. An additional parameter, specifically the oscillation
amplitudes of the atoms around their equilibrium positions (B-factors) in the crystal structures, was
also used. B-factors encompass a lot of information on the overall biomolecule structure; for example,
these parameters depend on conformational disorder, thermal motion paths, and the rotameric state of
amino acids side-chains. B-factors also show dependence on the three-dimensional structure as well as
protein flexibility (Kanapeckaitė et al., 2021; Faraggi et al., 2009). Normalised dihedral angles (standard
deviation scaling to account for variability and distribution) and scaled B-factors (min-max scaling)
(Eq.1) were integrated into the Fi-score equation (Eq.2). It is important to highlight that B-factors need
to be scaled so that different structural files can be compared and the dihedral angle normalisation
transforms angular data into adjusted values based on the overall variability (Kanapeckaitė et al.,
2021).

Bi−norm = Bi−Bmin
Bmax−Bmin

Equation 1. Min-max normalisation and scaling of B-factor where Bi−norm is a scaled B-factor, Bi -
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B-factor for a selected Cα atom in a chain, Bmax - the largest B-factor value for all Cα B-factors in a
protein, Bmin - the smallest B-factor value for all Cα B-factors in a protein. B-factor normalisation is
based on the full length protein.

Fiscore =
1
N ∑i

φiψi
σφi σψi

Bi−norm

Equation 2.Fi-score evaluation where N is the total number of atoms for which dihedral angle
information is available, φ and ψ values represent dihedral angles for a specific Cα atom, σφi and σψi

represent corresponding standard deviations for the torsion angles and Bi−norm is a normalised B-
factor value for the Cα atom. B-factor, σφi and σψi normalisation is based on the full length protein.

In order to identify meaningful clusters based on the structural complexity, Gaussian mixture
models (GMM) were selected as a primary machine learning classifier (Kanapeckaitė et al., 2021).
The strength of GMM lies in the probabilistic model nature since all data points are assumed to
be derived from a mixture of a finite number of Gaussian distributions with unknown parameters
(Kanapeckaitė et al., 2021; Reynolds, 2015). Consequently, the soft classification of GMM where a data
point has a probability of belonging to a cluster is much more suitable to assess biological parameters
compared to other hard classification techniques in machine learning, such as k-means, which provide
only a strict separation between classes. GMM pipeline offers a number of benefits to categorise
protein structural features and the information can be used to explore amino acid grouping based on
their physicochemical parameters. The designed GMM implementation takes care of the information
criterion assessment to fine tune the number of clusters for modelling and predicts the best suited
model for the expectation-maximisation (EM) algorithm to maximise the likelihood of data point
assignments (Kanapeckaitė et al., 2021; Reynolds, 2015).

Nur77 protein was used as a case example to demonstrate various package functionalities. Nuclear
receptor subfamily 4 group A member 1 (NR4A1), also known as Nur77/TR3/NGFIB, is a member
of the nuclear receptor superfamily and regulates the expression of multiple target genes (Wu and
Chen, 2018). This nuclear receptor is classified as an orphan receptor since there are no known
endogenous ligands. Nur77 has the typical structure of a nuclear receptor which consists of an N-
terminal domain, a DNA binding domain, and a ligand-binding domain. This regulatory protein
plays many potentially therapeutically relevant roles regulating cell proliferation and apoptosis (Wu
and Chen, 2018). Consequently, the Nur77 protein is an excellent example to highlight how in-depth
structural analysis and classification could be beneficial in better understanding protein functions and
finding potentially druggable binding sites or identifying ligands.

Based on the need to develop integratable and specialised tools for protein analyses, the Fiscore
package was developed to assist with a wide spectrum of research questions ranging from exploratory
analyses to therapeutic target assessment (Fig. 1) The introduced set of new tools provides an inter-
active exploration of targets with an easy integration into downstream analyses. Importantly, the
package and associated tools are written to be easy to use and facilitate analyses for non-specialists in
structural biology or machine learning.

Methods

Fiscore package architecture is divided into exploratory and advanced functions (Fig. 1). Several
key packages, such as ggplot2 (Wickham, 2016), Bio3D (B.J. et al., 2006), plotly (Sievert, 2020), and
mclust (Scrucca et al., 2016), are also employed to create an easy-to-use analytical environment
where a user-friendly machine learning pipeline of GMM (Kanapeckaitė et al., 2021) allows for a
robust structural analysis. GMM implementation is designed to include the optimal cluster number
evaluation (Bayesian information criterion; BIC), automatic model fitting in the EM phase of clustering,
model-based hierarchical clustering, density estimation, as well as discriminant analysis (Kanapeckaitė
et al., 2021; Kanapeckaite, 2021). Researchers also have an option to perform advanced exploratory
studies or integrate the package into their development pipelines. Fiscore also takes care of raw data
pre-processing and evaluation with optional settings to adjust how the analyses are performed. The
package was built using functional programming principles with several R S3 methods to create
objects for PDB files (Chambers, 2014). Fiscore is accompanied by documentation and vignette files
to help the users with their analyses (Kanapeckaite, 2021). Since PDB files are typically large, the
documentation provides a compressed testing environment as well as a detailed tutorial. Additional
visualisations were generated with PyMol (DeLano, 2021). Proteins were retrieved from Protein
Data Bank database (Berman et al.). Protein sequence alignments were performed with PSI-BLAST
using default parameters and a single iteration (Altschul et al., 1997). Hydrophobicity plots for
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Figure 1: Schematic visualisation of the package features.

Nur77 functional analysis were generated with the following parameters: window = 15,weight =
25, model="exponential". Student t-test (two-sided, unpaired, sig. level=95%) was performed in R
programming environment.

Results

Data preparation

The workflow begins with the PDB file pre-processing and preparation. The user should also
generally assess if the structure is suitable for the analysis; that is, the crystallographic data pro-
vides a good resolution and there are no or a minimal number of breakages within the reported
structure. Function PDB_process takes a PDB file name which can be expressed as ‘6KZ5.pdb’ or
‘path/to/the/file/6KZ5.pdb’. One of the function’s dependencies is package Bio3D (B.J. et al., 2006),
this useful package provides several tools to begin any PDB file analysis. In addition, the PDB_process
function can take a ‘path’ parameter which can point to a directory where to split PDB files into
separate chain files (necessary for the downstream analysis). If this option is left empty, a folder in the
working directory will be created automatically. If the user splits multiple PDB files in a loop, they
will be continuously added to the same folder. After the processing, the function PDB_process returns
a list of split chain names. It is important to highlight that for the downstream processing PDB files
need to be split so that separate chains can be analysed independently.

After a file or files are pre-processed the function PDB_prepare can be used to prepare a PDB file to
generate Fi-score and normalised B-factor values as well as secondary structure designations. The
function takes a PDB file name that was split into separate chains, e.g.‘6KZ5_A.pdb’, where a letter
designates a split chain. The file is then cleaned and only the complete entries for amino acids are kept
for the analysis, i.e. amino acids from the terminal residues that do not contain both dihedral angles
are removed. The function returns a data frame with protein secondary structure information ’Type’,
Fi-score values per residue ’Fi_score’, as well as normalised B-factor values for each amino acid Cα

’B_normalised’ (Fig. 2). Extracting protein secondary structure information, i.e. ’Type’, helps to prepare
a data object so that the information about a target could be supplied into cheminformatics or other
bioinformatics pipelines where structural features are important to assess protein sites and amino acid
composition.

Function calls are simple and user-friendly:

#General function for pre-processing raw PDB files
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pdb_df<-PDB_process(pdb_path)

#Cleaning and preparation of PDB file

pdb_df<-PDB_prepare(pdb_path)

#Explore the output

head(pdb_df)

#The package allows to call test data directly for the Nur77 example file

pdb_path<- system.file("extdata", "6kz5.pdb", package="Fiscore")

Figure 2: PDB file processing output.

Exploratory analyses

The scope of the exploratory analyses provides options to evaluate physicochemical parameters, such
as dihedral angles, B-factors, or hydrophobicity scores, and visualise their distribution (Fig. 1).

Basic analyses are accessed through simple function calls to explore how dihedral angles and
B-factors are distributed. These analyses offer interactive and easy visualisations of key parameters
that are currently not offered in any other package.

#Calling a Ramachandran plot function

phi_psi_plot(pdb_df)

#Visualisation of dihedral angle juxtaposed distributions

phi_psi_bar_plot(pdb_df)

#B plot value visualisation

B_plot_normalised(pdb_df)

#Interactive plot to map amino acids via 2D distribution
#to precisely see what parameters an individual amino acid has

phi_psi_interactive(pdb_df)

#3D visualisation of dihedral angles and B-factor values

phi_psi_3D(pdb_df)
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Especially useful functionality is the hydrophobicity visualisation with the superimposed sec-
ondary structure elements. To the author’s knowledge, there are currently no tools implementing such
a visualisation (Fig. 3). The package provides an easy to use wrapper:

hydrophobicity_plot(pdb_df,window = 9,weight = 25,model = "linear")

#Alternatively an exponential model can be selected

hydrophobicity_plot(pdb_df,window = 9,weight = 25,model = "exponential")

Employing the introduced hydrophobicity analysis to assess the nuclear receptor reveals an overall
dynamic profile for the protein. Moreover, Nur77 evidently contains a relatively large number of
right-handed alpha helices with the majority showing a hydrophobic profile, i.e. the larger the score,
the more hydrophobic the region. Some likely disordered regions can be seen spanning 50-70 amino
acids (Fig. 4). Another interesting region is around 126-136 amino acids since these amino acids
undergo significant shifts in their hydrophilicity and hydrophobicity. Similarly, the region around
180-210 amino acids appears to be actively changing preferences from little solvent to being solvent
exposed. This might suggest that the site undergoes considerable movements or actively engages
other proteins or the DNA sequence. The disordered elements in this sequence stretch also imply
that the region has to likely accommodate various rearrangements. Thus, studying these sites could
provide hints at functionally important protein domains or subdomains (Fig. 3& 4). Finally, evaluating
N and C terminal sites for the purpose of protein engineering, we can see that a histidine tag would
not significantly disrupt the conformation of the molecule and the C-terminus is probably the best site
for the tag.

Figure 3: Hydrophobicity plot with secondary structure superimposition.

It is worth commenting on the derivation of the hydrophobicity scoring since the algorithmic nature
of the process provides several important analytical angles. The function builds on the Kyte-Doolittle
hydrophobicity scale (Kanapeckaitė et al., 2021; Kyte and Doolittle, 1982) to detect hydrophobic
regions in proteins. Regions with a positive value are hydrophobic and those with negative values
are hydrophilic. This scale can be used to identify both surface-exposed as well as transmembrane
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Figure 4: Nur77 protein where magenta highlights are used to define a likely disordered region
between 50 and 70 amino acids and cyan indicates a region between 127 and 140 amino acids.

regions, depending on the window size used. However, to make comparisons easier, the original scale
is transformed from 0 to 1. The function requires a PDB data frame generated by PDB_prepare and the
user needs to specify a ‘window’ parameter to determine the size of a window for hydrophobicity
calculations. The selection must be any odd number between 3 and 21 with the default being 21.
Another parameter is ’weight’ that needs to be supplied to the function to establish a relative weight of
the window edges compared to the window center (%); the default setting is 100%. Finally, a ‘model’
parameter provides an option for weight calculation; that is, the selection determines whether weights
are calculated linearly (y = k · x + b) or exponentially (y = a · bx); the default model is ’linear’. The
function evaluates each amino acid in a selected window where a hydrophobic influence from the
surrounding amino acids is calculated in. While the terminal amino acids cannot be included into the
window for centering and weighing, they are assigned unweighted values based on the Kyte-Doolittle
scale (Kyte and Doolittle, 1982). The plot values are all scaled from 0 to 1 so that different proteins can
be compared without the need to convert.

Thus, the hydrophobicity analysis can be especially useful when preparing to engineer proteins
for various expression systems as the superimposition of structural features and hydrophobicity
scores can help deciding if a protein region or domain is likely to be solvent exposed or prefer
hydrophobic environments. For example, assessing the N or C terminal amino acid hydrophobicity
and structural milieu can help selecting which terminal should be tagged (as was demonstrated
with Nur77). Moreover, this tool could be broadly applied in drug discovery studies involving the
assessment of protein-protein interactions, protein-nucleic acid interactions, and membrane association
events.

Advanced analyses

Advanced analyses provide an opportunity to evaluate Fi-score distributions and take advantage of
a streamlined GMM pipeline. The main impetus for the development of this pipeline was the need
for functions and data modelling tools that could be made accessible to non-experts. More advanced
users can supply custom parameters for the GMM workflow and extract probabilities from the output
to use scores in other analyses or integrate the values in their own discovery pipelines.

#Fi-score distribution plot to explore scores for corresponding amino acids
Fi_score_plot(pdb_df)

#Fi-score for a selected region
#this value for multiple sites can be stored in relational databases
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Fi_score_region(pdb_df,50,70)

#Plot of Fi-score values with superimposed secondary structures
Fiscore_secondary(pdb_df)

For example, a Fi-score distribution plot captures several interesting regions in Nur77 around
the 50, 130, and 180 amino acids (Fig. 5). Some other regions are also picked up which should be
studied in more detail based on the amino acid composition and 3D conformations. The uncovered
characteristics can be juxtaposed to other similar sites to better understand interaction mechanisms.
Such approaches are especially useful when comparing known structures with newly identified ones.

Figure 5: Fi-score distribution for Nur77.

Extracted Fi-score values can be used in machine learning modelling and this is enabled through
the function cluster_ID. This function groups structural features using the Fi-score and Gaussian
mixture modelling where an optimal number of clusters and a model to be fitted during the EM phase
of clustering for GMM are automatically selected (Fig. 6). The output of this analytical tool summarises
cluster information and also provides plots to visualise the identified clusters based on the cluster
number and BIC value (Fig. 7).

df<-cluster_ID(pdb_df)

#User selected parameters

df<-cluster_ID(pdb_df,clusters = 5, modelNames = "VVI")

The users are advised to set seed for more reproducible results when initiating their projects.
cluster_ID takes a data frame containing a processed PDB file with Fi-score values as well as a number
of clusters to consider during model selection; by default 20 clusters (’max_range’) are explored. In
addition, a ’secondary_structures’ parameter is needed to define whether the information on secondary
structure elements from the PDB file needs to be included when plotting; the default value is TRUE.
Researchers also have an option to select a cluster number to test ’clusters’ together with ’modelNames’.
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Figure 6: Gaussian mixture modelling output showing Bayesian information criterion evaluation.

Figure 7: Output table for Gaussian mixture modelling evaluation.
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However, it is important to stress that both optional entries need to be selected and defined, if the user
wants to test other clustering options that were not provided by the automated BIC output. This is an
advanced option and the user should assess the BIC output to decide which model and what cluster
number he or she wants to try out.

A dimension reduction method for the visualisation of clustering is also automatically provided
(Fig. 10). Dimension reduction is a useful technique to explore multi-dimensional biological data
through key eigenvalues that define the largest information content of the explored features (Scrucca
et al., 2016). In other words, one can infer how well the explored characteristics define the data and
if the classification is sufficient for downstream analyses. For example, in the case of Nur77 Fi-score
clustering, this analysis allowed assessing how well the number of clusters separates data points
based on their distribution features. Nur77 has six clusters which might indicate functionally and
structurally distinct regions in the target protein. It appears that the data points are well separated
into groups accounting for the different variability. The dimension reduction approach could also help
deciding if a different number of clusters might better classify Fi-scores.

In addition, one of the most valuable features of this set of functions is to generate clusters with
secondary structure information (Fig. 8& 9).The produced interactive plots enable researchers to
explore structural characteristics of a protein of interest (Fig. 8& 9). Thus, the subdivision of a protein
structure based on the physicochemical features offers a new way to detect and explore functional
sites or structural elements. Figures 9 and 10 clearly indicate that some structural elements in Nur77
are likely similar in their function and physicochemical characteristics. For example, different types of
helices as well as beta sheets in some cases overlap in their Fi-score characteristics and the assigned
cluster type. This detailed capture of structural elements can help evaluate conformational outliers
or infer similarities for different motifs. Moreover, it can be clearly seen that the region around the
50 amino acid is set to be distinct from the other two sites around 130 and 180 amino acids which
could suggest overall different motion and interaction profiles. These findings also correspond to the
earlier observations for the hydrophobicity features (Fig. 3). A similar trend can be seen for N and C
terminus clusters which form distinct groups and might indicate sites where the receptor mediates
specific functions (Wu and Chen, 2018).

Figure 8: The Nur77 protein cluster identification with secondary structure elements.

All previous analyses tie in with the function density_plots which provides a density plot set
for φ/ψ angle distributions, Fi-score, and normalised B-factor. 3D visualisation of dihedral angle
distribution for every residue is also included. The plots can be used for a quick assessment of the
overall parameters as well as to summarise the observations. Density plots are optimal to evaluate how
well the selected features or scores separate protein structural elements and if, for example, a protein
structure is of good quality (i.e., dihedral angles, B-factors, or Fi-scores provide reasonable separation
between elements). The function also gives another reference point to establish if the selected number
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Figure 9: Nur77 cluster identification.

Figure 10: Dimension reduction plot for the identified clusters.
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of clusters differentiates residues well based on the secondary structure elements. In order to get this
information, the user is only required to supply the output from the cluster_ID function (Fig. 11).

# Data summary and evaluation

density_plots(pdb_df)

# Data summary and evaluation including GMM outputs

cluster_IDs<-cluster_ID(pdb_df)

density_plots(cluster_IDs)

Figure 11: Protein cluster density plots.

Case study: exploring potential ligands for the Nur77 orphan receptor

To demonstrate some Fiscore applications, potential ligands were searched for the Nur77 receptor.
The first analysis step involved searching for other similar human proteins that did not belong to the
nuclear receptor subfamily 4. PSI-BLAST alignment analysis led to several candidate proteins, namely
retinoic acid receptor alpha (PDB ID: 1FBY) and estrogen-related receptor gamma (PDB ID: 6KNR)
(Altschul et al., 1997). These proteins showed a good alignment to the Nur77 ligand binding domain
sequence (average percent identity 31.68 %; Suppl. Table 1) and were subsequently used for structural
and functional exploration. Comparing Nur77 Fi-scores with the retinoic acid receptor alpha and
estrogen-related receptor gamma Fi-score distributions revealed several interesting patterns (Fig. 12).
The shaded blue region highlights a matching distribution pattern for all the proteins and Student t-test
confirmed that none of the distributions differed significantly (Fig. 12; Suppl. Table 2). Intriguingly,
this region is involved in mediating interaction with retinoic acid in the retinoic acid receptor alpha
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(Fig. 13). Moreover, despite different amino acid composition, the key physicochemical features are
preserved in this site across the investigated proteins as can be seen from the superimposition studies
(Fig. 13). This suggests an interesting possibility that Nur77 with no known ligands might bind to
chemical entities similar to retinoic acid (Wu and Chen, 2018). This is also supported by the alignment
data and hydrophobicity plots (Suppl Fig. 1-3) where Nur77 and the retinoic acid receptor alpha show
substantial structural and physicochemical overlaps for this interactor site. Thus, these examples
reveal that extracting patterns for database search could help with identifying proteins that have
shared features without necessarily performing multiple alignments and visual inspections of the
structures. These analytical principles can also be applied to explore other proteins of interest and
their potential ligands.

Figure 12: Fi-score distribution plots with Nur77 ligand binding domain (PDB ID:6KZ5), Retinoic
acid receptor alpha (PDB ID: 1FBY), and estrogen-related receptor gamma (PDB ID: 6KNR). Rainbow
spectrum of the Nur77 structure allows to visualise the sequence from N-terminal (blue) to C-terminal
(red).

Discussion

Fiscore package (Fig. 1) allows a user-friendly exploration of PDB structural data and integration
with various machine learning methods. The package was benchmarked through several analytical
stages that involved a diverse set of proteins (3352) to assess scoring principles (Kanapeckaitė et al.,
2021) and package functionalities (1337 structures) (Kanapeckaite, 2021) . With a number of helpful
functions, including distribution analyses or hydrophobicity assessment in the context of structural
elements, Fiscore enables the exploration of new target families and comprehensive data integration
since the described fingerprinting captures protein sequence and physicochemical properties. Such
analyses could be very helpful when exploring therapeutically relevant proteins. Similarly, Fiscore
could aid in drug repurposing studies when a chemical compound needs to be juxtaposed to a number
of potential targets. This was also demonstrated during a native ligand search for Nur77. In addition,
provided tutorials and documentation should guide researchers through their analysis and allow
adapting the package based on individual research needs (Kanapeckaitė et al., 2021). A case study
of a selected complex target, the Nur77 nuclear receptor, helped to demonstrate the usefulness of
capturing physicochemical data in visual representations. Furthermore, a novel scoring system as
well as machine learning applications can lead to interesting insights about sites of structural and
functional importance. The retrieved information could be used in comparative studies to search for
other proteins that share similar features. Intriguingly, some of the shifts in Fi-score values coincide or
precede post-translational modifications in Nur77 (Fig. 5) (Hornbeck et al., 2015) which could be used
to classify and fingerprint this data in larger scale exploratory studies.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 23, 2021. ; https://doi.org/10.1101/2021.08.25.457640doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.25.457640
http://creativecommons.org/licenses/by-nc-nd/4.0/


13

Figure 13: PyMol generated plots to visualise protein structures where blue colors indicate the region
identified through Fi-score patterns where cis-9 retinoic acid is highlighted in red.

Another important aspect of the Fiscore package is the simplification of complex analytical steps so
that the researchers without an extensive background in structural bioinformatics or machine learning
could still use the tools for their analyses, such as protein engineering, protein assessment, and data
storage based on specific target sites. Thus, the interactive analytical and visualisation tools could
become especially relevant in the pharmaceutical industry and drug discovery studies as more complex
targets and protein-protein interactions need to be assessed in a streamlined fashion. In other words,
ability to translate structural data into parameters could accelerate target classification, target-ligand
studies, or machine learning integration. Since target evaluation is paramount for rational therapeutics
development, there is an undeniable need for specialised analytical tools and techniques that can
be used in R&D or academic research and implementing these novel approaches could significantly
improve our ability to assess new targets and develop better therapeutics. As a result, Fiscore package
was developed to aid with therapeutic target assessment and make machine learning techniques more
accessible to a wider scientific audience.
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