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Abstract

Balance indices that quantify the symmetry of branching events and the compactness of
trees are widely used to compare evolutionary processes or tree-generating algorithms. Yet
existing indices have important shortcomings, including that they are unsuited to the tree types
commonly used to describe the evolution of tumours, microbial populations, and cell lines. The
contributions of this article are twofold. First, we define a new class of robust, universal tree
balance indices. These indices take a form similar to Colless’ index but account for node sizes,
are defined for trees with any degree distribution, and enable more meaningful comparison of
trees with different numbers of leaves. Second, we show that for bifurcating and all other full
m-ary cladograms (in which every internal node has the same out-degree), one such Colless-
like index is equivalent to the normalised reciprocal of Sackin’s index. Hence we both unify
and generalise the two most popular existing tree balance indices. Our indices are intrinsically
normalised and can be computed in linear time. We conclude that these more widely applicable
indices have potential to supersede those in current use.

Tree balance indices – most notably those credited to Sackin (1972) and Colless (1982) – are
widely used to describe speciation processes, compare cladograms, and assert the correctness of
tree reconstruction methods (Shao and Sokal, 1990; Mooers and Heard, 1997). These indices have
recently been introduced to oncology (Chkhaidze et al., 2019; Scott et al., 2020) because methods
for determining and classifying modes of tumour evolution have clinical value (Maley et al., 2017).
A problem here is that the trees that best describe tumour evolution are clone trees in which node
sizes are informative and which frequently contain linear sections; indeed, developing methods to
distinguish linear from branching tumour evolution is an important area of ongoing research (Davis
et al., 2017). Existing tree balance indices are unsuited to these topologies and take no account
of node size. Moreover, even when applied only to bifurcating cladograms, existing indices are
unreliable for comparing trees with different numbers of leaves.

Here we develop a new class of robust, universal tree balance indices. Our definitions not only
extend the tree balance concept and open up new applications but also unify the two main approaches
to quantifying balance as proposed by Sackin and Colless. We describe several general advantages
of our indices compared to those in current use.

Materials and Methods

Rooted trees

We consider exclusively rooted trees in which all edges are oriented away from the root (which
will be topmost in our figures). This orientation defines a natural order on the tree, from top to
bottom: all edges are assumed to extend from the root to the other internal nodes and finally to
the terminal nodes or leaves. The out-degree of a node i, written d+(i), is the number of direct
descendants, ignoring any descendant branches in which all nodes have zero size. Internal nodes
have out-degree at least one, whereas leaves have out-degree zero.

1

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 20, 2021. ; https://doi.org/10.1101/2021.08.25.457695doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.25.457695
http://creativecommons.org/licenses/by/4.0/


a
0

1 2

3 4 5 6

7 8 9 10 11 12 13 14

b
0

1 2 3 4 5 6 7 8

c d

Figure 1: Contrasting trees. a: Caterpillar tree with IS = 35, IS,norm = 1, IC = 21, IC,norm =
1, IΦ = 56, IΦ,norm = 1. b: Fully symmetric bifurcating tree with IS = 24, IS,norm ≈ 0.59,
IC = IC,norm = 0, IΦ = 16, IΦ,norm ≈ 0.29. c: Star tree with IS = 8, IS,norm = 0, IC and IC,norm
undefined, IΦ = IΦ,norm = 0. d: Clone tree of the lung tumour CRUK0065 in the TRACERx cohort
(Jamal-Hanjani et al., 2017). In the clone tree, nodes represented by empty circles correspond
to extinct clones, and the diameters of other nodes are proportional to the corresponding clone
population sizes.

Some tree types have particular names. A caterpillar tree (Fig. 1a) is a bifurcating tree in which
each internal node has one leaf. A fully symmetric tree (Fig. 1b) is such that every internal node
with the same depth has the same degree or, equivalently, for each internal node i all the subtrees
rooted at i are identical. A star tree (Fig. 1c) is a tree whose leaves are all attached to the root,
which is the only internal node.

Cladograms, species trees and clone trees

Cladograms are trees that represent relationships between extant biological taxa (leaves) via edges
linking them to hypothetical extinct ancestors (internal nodes). A common conception is that only
bifurcating cladograms can be considered fully resolved and linear parts are inadmissible. However,
linear sections in cladograms are appropriate for representing anagenesis (in which a descendant
replaces its ancestor), while budding (in which an ancestor produces a descendant and remains
extant) can give rise to cladogram nodes with out-degree greater than two (Podani, 2013). An
extant ancestor is represented in a cladogram by a leaf stemming from the internal ancestor node
(so the two nodes represent the same taxon).

An alternative way to represent extant ancestors is as internal nodes (like in a genealogy with
overlapping generations). Such diagrams are known to organismal biologists as species trees and to
oncologists as clone trees. In a clone tree, each node represents a clone (a set of cells that share
alterations of interest due to common descent) and edges represent the chronology of alterations.
Clone tree nodes can have any out-degree, including d+ = 1, and each node – including internal
nodes – can be associated with a non-negative size, related to the clone population size at the time
of observation (as in Figure 1d). The size of a tree or subtree can then be defined as the sum of its
node sizes.

When nodes are associated with sizes, the addition or removal of even vanishingly small terminal
branches can change leaves into internal nodes or vice versa and so substantially change the value of
existing tree balance indices. This behaviour is unsatisfactory because these small branches typically
represent either newly-created types that have yet to experience evolutionary forces or types on the
verge of extinction, and in either case their relative sizes convey negligible information about the
mode of evolution. Data sets may also omit rare types due to sampling error or because genetic
sequencing methods have imperfect sensitivity (Turajlic et al., 2018).

The change due to the addition of terminal nodes is greater when the tree is a cladogram rather
than a species or clone tree. For example, when a three-node, two-leaf tree (Fig. 2a) is augmented
by adding a node j to a leaf i (Fig. 2b), the three original nodes retain their positions in the species
or clone tree (middle column of Figure 2), but in the cladogram (right column) node i becomes two
nodes (i1 and i2), the larger of which is now further from the root. As the size of the new node j is
continuously reduced to zero, the species or clone tree changes continuously, whereas the cladogram
undergoes an abrupt change of topology when the size of node j reaches zero. We conclude that
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Figure 2: Muller plots (left column), species or clone trees (middle column), and cladograms (right
column) representing evolution by splitting only (a) and both splitting and budding (b). Nodes
represented by empty circles correspond to extinct types.

the species or clone tree representation is more robust than the cladogram representation in the
general case in which nodes are associated with sizes and ancestors can be extant. Also an index
that accounts for non-zero internal node sizes can be made more robust than one that does not.

Existing tree balance indices

The most widely used tree balance indices are in fact imbalance indices, such that more balanced
trees are assigned smaller values. These indices were introduced to study cladograms and take no
account of node size. The most popular are Sackin’s index and Colless’ index.

Sackin’s index

Let T be a tree with set of leaves L(T ). For a leaf l ∈ L(T ), let νl be the number of internal
nodes between l and the root, which is included in the count. Then the index credited to Sackin
(1972) is

IS(T ) =
∑

l∈L(T )

νl.

For two bifurcating trees on the same number of leaves, a less balanced tree has higher values of ν
as the tree is in a sense less compact (compare trees a and b in Figure 1).

Since the value tends to increase with the number of nodes, Shao and Sokal (1990) proposed
normalising IS with respect to trees on n > 2 leaves by subtracting its minimum possible value for
such trees and then dividing by the difference between the maximum and minimum possible values.
The minimal IS is reached on the star tree, such as tree c in Figure 1, and hence minn(IS) = n.
The maximum is attained on the caterpillar tree, such as tree a:

max
n

(IS) = n− 1 +

n−1∑
ν=1

ν = n− 1 + n(n− 1)/2 = (n− 1)(n+ 2)/2.

The normalised index is then

IS,norm(T ) =
IS(T )− n

(n+ 2)(n− 1)/2− n
.

This normalised index is not very satisfactory as a balance index because it fails to capture an
intuitive notion of balance. For example, it is not obvious why fully symmetric tree b should be
considered less balanced than star tree c in Figure 1, yet its IS,norm value is much larger. To address
this issue, Shao and Sokal (1990) further suggested normalising IS relative to its extremal values
among trees with the same number of internal nodes as well as the same number of leaves. But even
then the index remains unreliable for comparing trees with different numbers of leaves. For example,
the index is 1 for every caterpillar tree, yet long caterpillar trees are intuitively less balanced than
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Figure 3: Trees with extremal J values. Numbers shown below nodes are node sizes. Empty nodes
have null size. a: A tree in which each internal node has null size and splits its descendants into
subtrees of equal size, and hence J = 1. This tree can be considered balanced only according to an
index that accounts for node size. b: A linear tree, for which J = 0.

short ones. The conventional IS normalisations are not defined for trees containing linear parts.
Moreover, since IS doesn’t account for node size, it is highly sensitive to the addition or removal of
relatively tiny terminal branches. Hence Sackin’s index is neither universal nor robust.

Colless’ index

For an internal node i of a bifurcating tree T , define ni1 as the number of leaves of the left
branch of the subtree rooted at i, and ni2 as the number of leaves of the right branch. Then the
index defined by Colless (1982) is

IC(T ) =
∑

i∈Ṽ (T )

|ni1 − ni2 |,

where Ṽ (T ) is the set of internal nodes. The index can be normalised for the set of trees on
n > 2 leaves by dividing by its maximal value,

(
n−1

2

)
, which is reached on the caterpillar tree (as in

Figure 1a).
To generalise Colless’ index to multifurcating trees, Mir et al. (2018) recently introduced a family

of Colless-like balance indices, including IC as a special case. Each of these indices CD,f is determined
by a weight function f , which assigns a size to each subtree as a function of its out-degree, and a
dissimilarity function D. By definition of D, Colless-like indices are zero if and only if each internal
node divides its descendants into subtrees of equal size according to f . But since these indices
are normalised by dividing by the maximal value for trees on the same number of leaves, they are
unreliable for comparing trees with different numbers of leaves. In common with Sackin’s index,
the total cophenetic index IΦ (Mir et al., 2013) (see Appendix), and other existing indices, the
Colless-like indices so far defined are neither universal nor robust.

Desirable properties of a universal, robust tree balance index

Our aim is to derive a tree balance index J that is useful for classifying and comparing rooted
trees that can have any distributions of node degrees and node sizes. Here we specify five desirable
properties that such an index should have. The first two axioms relate to extrema and universality,
in the sense of an index being defined for trees with any degree distribution. The other three axioms
are concerned with robustness and are relevant only when nodes can have arbitrary sizes.

Conventionally, a tree is considered maximally balanced only if every internal node splits its
descendants into subtrees on the same number of leaves (Shao and Sokal, 1990). We generalise
this concept by requiring that every internal node splits its descendants into at least two subtrees
of equal size, as in Figure 3a. We term this the equal splits property. We then set necessary and
sufficient conditions for maximal balance:

Axiom 0.1 (Maximum value). J(T ) ≤ 1 for all trees T , and J(T ) = 1 only if T has equal splits.
Furthermore, if T has equal splits and every internal node of T has null size (or equivalently repre-
sents an extinct taxon) then J(T ) = 1.
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Another convention is that narrow trees with relatively many internal nodes are considered highly
imbalanced. Linear trees (that is, trees in which every node i has d+(i) ≤ 1, as in Figure 3b) are
even narrower than caterpillar trees. Also the most unequal binary split is one that assigns all
descendants to one branch and none to the other. Hence our second desirable property:

Axiom 0.2 (Minimum value). J(T ) ≥ 0 for all trees T , and J(T ) = 0 if and only if T is a linear
tree.

Our third desirable property is that our index should be insensitive to the presence of uninfor-
mative terminal branches:

Axiom 0.3 (Leaf limit). Let T be a tree with finitely many nodes and l be a leaf of T . Suppose we
create a new tree T ′ by adding to T a subtree Tl with finitely many nodes, rooted at l. As the size of
Tl excluding its root approaches zero, so J(T ′)→ J(T ).

Our fourth desirable property ensures that a linear section of a tree is regarded as a maximally
unequal split:

Axiom 0.4 (Linear limit). Let j be a node of a tree T with d+(j) = 1. Suppose we create a new
tree T ′ by adding to T a subtree with finitely many nodes, rooted at j. As the size of Tj excluding
its root approaches zero, so J(T ′)→ J(T ).

Lastly, we require continuity with respect to varying node size:

Axiom 0.5 (Continuity). If the population of any node of any tree T varies continuously in R>0,
then J(T ) varies continuously.

The wording of Axiom 0.1 raises an important question: Can trees with non-zero-sized internal
nodes be considered maximally balanced? The following proposition provides the answer.

Proposition 0.6. Axioms 0.3 and 0.4 each imply that equal splits are not sufficient for maximal
balance.

Proof. Suppose that equal splits are sufficient for maximal balance. First consider a one-node tree
T . If we add a vanishingly small linear subtree to T then the new tree T ′ will have J(T ′) = 0.
But if we instead add two vanishingly small subtrees of equal size to T then we obtain J(T ′) = 1.
This implies that whatever value we assign to J(T ), we cannot satisfy Axiom 0.3. Second, consider
a linear tree T in which the sum of the non-root node sizes is δ. Then J(T ) = 0. But if we add
another subtree to the root, also of size δ, then the new tree T ′ will have J(T ′) = 1, even as δ → 0.
This contradicts Axiom 0.4.

We therefore face a choice: either weaken Axioms 0.3 and 0.4 or accept that equal splits are not
sufficient for maximal balance. We choose the second option (and as a corollary obtain J = 0 for
the single-node tree) because we want our indices to be not only universal but also highly robust
when applied to real, imperfect data. We will further argue that this choice is appropriate from a
biological viewpoint and is consistent with the ideas underlying previous tree balance indices.

Results

General definition of universal, robust tree balance indices

Before defining a new class of balance indices we need to introduce some more notation. For a
tree T , we will use V (T ) to denote the set of all nodes of T , which we will abbreviate to V when
the identity of the tree is unambiguous. Let f(v) ≥ 0 denote the size of node v (not necessarily a
function of the out-degree). Then Si denotes the size of the subtree Ti rooted at i, and S∗i is the
size of Ti excluding its root:

Si :=
∑

v∈V (Ti)

f(v); S∗i :=
∑

v∈V (Ti)
v 6=i

f(v) = Si − f(i).

We will use Ṽ (T ) or simply Ṽ to denote the set of all internal nodes such that {i ∈ Ṽ } := {i ∈ V :
S∗i > 0}.

We then introduce three continuous functions of subtree sizes:
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• An importance factor g : R>0 → R>0 with g(x)→ 0 as x→ 0;

• A non-root dominance factor h : R>0 × R>0 → (0, 1] with h(x1, x2) → 0 as x1 → 0, and
h(x1, x2) = 1 if and only if x1 = x2;

• A balance score W that assigns Wi ∈ [0, 1] to each internal node i such that Wi = 0 if and
only if d+(i) = 1, and Wi = 1 if and only if i splits its descendants into at least two equally
sized subtrees.

To allow us to define W more rigourously, let S denote the set of vectors with positive components
that sum to unity:

S := ∪k≥1{(x1, . . . , xk)|x1, . . . , xk > 0, x1 + . . .+ xk = 1}.

Then W : S → [0, 1] is such that, for all (x1, . . . , xk) ∈ S:

• For every permutation π, W (x1, . . . , xk) = W (xπ(1), . . . , xπ(k));

• W (x1, . . . , xk) = 1 if and only if k > 1 and x1 = . . . = xk;

• W = 0 if and only if max(x1, . . . , xk) = 1;

• W is a continuous function with respect to each of its arguments.

We then define a balance index in terms of subtree sizes as

J :=
1∑

k∈Ṽ g(S∗k)

∑
i∈Ṽ

g(S∗i )h(S∗i , Si)Wi, (1)

where Wi = W (Si1/S
∗
i , . . . , Sip/S

∗
i ) and i1, . . . , ip are the children of node i. A short proof that this

type of index satisfies our five axioms for robustness and universality is presented in the Appendix.

Interpretation of factors W , g and h

The balance score W in our general definition (Equation 1) measures the extent to which an
internal node splits its descendants into equally sized subtrees. The importance factor g assigns
more weight to nodes that are the roots of large subtrees. In biological terms, this means giving
more weight to types that have more descendants. The continuous function h quantifies the extent
to which a node should be considered a leaf (which doesn’t contribute to determining tree balance
in Colless-like indices) as opposed to an internal node (which does). From a biological point of view,
nodes that are large relative to their descendants represent extant populations whose evolutionary
fate remains largely undetermined.

Factors g and h together ensure that our indices consider a tree imbalanced unless there is strong
evidence to the contrary. For example, the one-node tree provides no evidence and is considered
maximally imbalanced. The inclusion of h also means that a tree can achieve maximal balance only
if all its internal nodes have zero size, which is equivalent to all ancestors being extinct, as in a
cladogram. This requirement can be removed simply by omitting h from the definition, but then,
as per Proposition 0.6, our robustness Axioms 0.3 and 0.4 will not be satisfied.

Sackin’s and Colless’ indices similarly assign more weight to nodes that have more descendant
leaves or are closer to the root. As Mooers and Heard (1997) have remarked, it is reasonable to put
more weight on nodes deeper within the tree because “those nodes are the most informative, as the
subclades they define are older and therefore sample longer periods of evolutionary time.”

A specific index based on the Shannon entropy

In defining a specific index, we start by opting for the simplest choices of importance and non-root
dominance factors:

g(x) = x, h(x1, x2) = x1/x2.

The role of the balance score functionW is to quantify the extent to which a set of objects (specifically
subtrees) have equal size. A well-known index that satisfies the necessary conditions is the normalised
Shannon entropy.
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Figure 4: All multifurcating cladograms on six leaves without linear parts and with equally sized
leaves, sorted and labelled by J1 value.

Assume a population is partitioned into n ∈ N types, with each type i accounting for a proportion
pi. Then the Shannon entropy with base b is defined as 1Hb := −

∑n
i=1 pi logb pi. If all types have

equal frequencies pi = 1/n then 1Hb = logb n. If the types have unequal sizes then 1Hb < logb n.
And if the abundance is mostly concentrated on one type j, such that pj → 1, then 1Hb → 0.

Let C(i) denote the set of children (immediate descendants) of a node i, and for j ∈ C(i) let
pij := Sj/S

∗
i denote the relative size of subtree Tj compared to all subtrees attached to i. A balance

score based on the normalised Shannon entropy is then

W 1
i =

∑
j∈C(i)

W 1
ij , with W 1

ij =

{
−pij logd+(i) pij if pij > 0 and d+(i) ≥ 2,

0 otherwise.
(2)

From aforementioned properties of the Shannon entropy, it follows that W 1
i ∈ [0, 1], with W 1

i = 0
if and only if d+(i) = 1, and W 1

i = 1 if and only if i splits its descendants into at least two equally
sized subtrees. Therefore the following specific balance index satisfies our robustness and universality
axioms:

J1 :=
1∑

k∈Ṽ S
∗
k

∑
i∈Ṽ

S∗i
S∗i
Si
W 1
i . (3)

The definition simplifies when we restrict the domain to the set of multifurcating cladograms in
which all leaves have equal size f0 (corresponding to equally important extant types) and internal
nodes have zero size (representing extinct ancestors). For all internal nodes i in such trees, S∗i =
Si = f0ni, where ni is the number of leaves of the subtree rooted at i. The general definition of
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Equation 1 then becomes a weighted average of node balance scores:

J =
1∑

k∈Ṽ nk

∑
i∈Ṽ

niWi, (4)

and the specific definition of Equation 3 becomes

J1 =
−1∑
k∈Ṽ nk

∑
i∈Ṽ

∑
j∈C(i)

nj logd+(i)

nj
ni
. (5)

For example, Figure 4 shows the J1 values of all cladograms on six leaves without linear parts.
Unlike IS and IC , J1 does not consider the caterpillar tree the least balanced of these cladograms.

There are of course many alternative options for W . Since the Shannon entropy belongs to a
family of generalised entropies qH (Chao et al., 2014), the above reasoning can be generalised to
define a balance score W q, and hence a robust, universal balance index Jq, for every q > 0 (see
Appendix). Other candidates for W include one minus the variance of the proportional subtree
sizes, or one minus the mean deviation from the median (Mir et al., 2018). We prefer W 1 mostly
because, as we shall show, it is the only function for which Equation 4 is a generalisation of the
normalised inverse Sackin index.

Relationship with Colless’ index

Like Colless’ index and Colless-like indices as previously defined, our new family of tree balance
indices is based on the intuitive idea of assigning a value to each internal node, summing these
values, and then normalising the sum. A Colless-like index in the sense of Mir et al. (2018) depends
on a function f : N→ R≥0, which assigns node sizes, and a dissimilarity score D : R → R≥0, where
R is the set of non-null real vectors. Before normalisation, such an index has the form

CD,f =
∑
i∈Ṽ

D(δf (Ti1), . . . , δf (Tik)),

where {i1, . . . , ik} are the children of node i. The function δf assigns a size to each subtree by
summing the node sizes: δf (T ) =

∑
j∈V (T ) f(d+(j)). Neglecting the initial normalising factor, our

general definition (Equation 1) has a similar form and can be considered Colless-like in only a slightly
broader sense. Our definition nevertheless differs in three important ways.

First, whereas the unbounded dissimilarity index D measures both the relative imbalance of
subtrees and their combined size, and is undefined for nodes with out-degree one, we split these
two roles into a normalised balance score W and an unbounded importance factor g and – crucially
– we assign a W value (specifically zero) to nodes with out-degree one. This difference enables
us to extend the balance index definition to trees with any degree distribution. It also makes it
easy to normalise our index for any tree, simply by dividing by the sum of the importance factors.
Furthermore, our normalisation is universal, rather than being based on comparison with other trees
with the same number of leaves. For example, our index judges long caterpillar trees less balanced
than short ones (Fig. 5a), whereas Sackin’s index, Colless’ index, and the total cophenetic index
consider all caterpillar trees on more than two leaves equally imbalanced.

Second, we multiply the balance score by an additional non-root dominance factor h. This
factor makes the balance index robust when internal nodes can have non-zero size, which blurs the
distinction between internal nodes and leaves. Non-root dominance plays no role if all internal nodes
have null size, as in cladograms (because then h ≡ 1).

Third, instead of assigning a size to each node as a function of its out-degree, we associate a
node’s size with the size of the biological population it represents. This ensures that our indices are
reliably robust when applied to real data.

Relationship with Sackin’s index

The sum
∑
k∈Ṽ nk is just another way of expressing Sackin’s index (summing over internal nodes

instead of leaves). Therefore J in Equation 4 is essentially a weighted Sackin index (with each term
in the sum weighted by the balance score W ) divided by the unweighted Sackin index. In the special,

8

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 20, 2021. ; https://doi.org/10.1101/2021.08.25.457695doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.25.457695
http://creativecommons.org/licenses/by/4.0/


important case of full m-ary cladograms, the weighted sum in J1 (Equation 5) simplifies yet further.
Let Tn,m denote the set of all trees on n leaves such that all internal nodes have the same out-degree
m > 1, every internal node has null size, and all leaf sizes are equal. Then we obtain a remarkably
simple relationship between J1 and Sackin’s index:

Proposition 0.7. Let T be a tree on n leaves with d+(i) = m > 1 and f(i) = 0 for every internal
node i. Then

J1(T ) =
1Hm(T )S(T )∑

k∈Ṽ Sk
,

where 1Hm(T ) is the Shannon entropy (base m) of the proportional node sizes, and S(T ) is the size
of T . If additionally all leaves of T have the same size (so T ∈ Tn,m) then

J1(T ) =
minn,m IS
IS(T )

=
n logm n

IS(T )
, (6)

where minn,m IS is the minimum IS value of trees in Tn,m.

The above result is somewhat surprising as it unifies our Colless-like index, which can be viewed
as a weighted average of internal node balance scores, and Sackin’s index, which is the sum of all
leaf depths. A short proof of Proposition 0.7 is presented in the Appendix. The converse result,
which is also proved in the Appendix, justifies our choice of W 1 instead of alternative balance score
functions:

Proposition 0.8. Let J be a tree balance index such that

J(T ) =
1∑

k∈Ṽ nk

∑
i∈Ṽ

niW

(
ni1
ni
, . . . ,

nip(i)
ni

)
,

where i1, . . . , ip(i) are the children of node i, and W is a balance score satisfying the conditions stated
before Equation 1. Suppose that for all trees T ∈ Tn,m, J(T ) = n logm n/IS(T ). Then W = W 1.

The right-hand side of Equation 6 incidentally provides an alternative way of normalising Sackin’s
index on full m-ary cladograms, including the bifurcating cladograms on which the index was orig-
inally defined. This normalised inverse Sackin index, which we can define as JS := n logm n/IS ,
provides a more satisfactory way of comparing trees that differ in their node degrees or leaf counts.
JS = 1 if and only if the tree has minimal depth given m, which is equivalent to being fully sym-
metric (because in this case logm n = νl for every leaf l). Hence JS is a sound tree balance index
in the sense defined by Mir et al. (2018). For m > 1, we have JS > 0 but min JS → 0 as n → ∞,
which makes sense because trees with more leaves can be made less balanced. In particular, when
T is a caterpillar tree on n ≥ 2 leaves,

JS(T ) =
minn,2 IS
maxn,2 IS

=
2n log2 n

(n− 1)(n+ 2)
,

as illustrated in Figure 5a. The definition of JS can be naturally extended to the case m ≤ 1 by
setting JS(T ) := 0 if T is linear or has only one node. From this point of view, J1 (a Colless-like
index) is a generalisation of JS (the normalised reciprocal of Sackin’s index) to the domain of trees
with arbitrary degree distributions and arbitrary node sizes.

Distributions under the Yule and uniform models

An immediate corollary of Proposition 0.7 is that J1 can be used to test whether a set of fullm-ary
cladograms is consistent with a particular tree-generating model, with exactly the same sensitivity
as Sackin’s index. For example, Figures 5a and 5b show J1 distributions for random trees generated
from the Yule and uniform models, which generate bifurcating cladograms. These two distributions
have insignificant overlap when the trees have at least a few dozen leaves.

Kirkpatrick and Slatkin (1993) showed that the expectation of IS for the Yule model is

EY ule(IS) = 2n
n∑
i=2

1

i
= 2n lnn+ (2γ − 2)n+ o(n),
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Figure 5: a: J1 values for caterpillar trees and random trees generated from the Yule and uniform
models (1,000 trees per data point). All internal nodes have null size and all leaves have equal size.
Solid curves are the means and dashed curves are the 5th and 95th percentiles. b: J1 distributions for
random trees on 64 leaves generated from the Yule and uniform models (1,000 trees per model). c: J1

values for 100 random trees on 16 leaves, before and after applying a 1% sensitivity threshold. These
random trees were generated from the alpha-gamma model with α ∼ Unif(0, 1) and γ ∼ Unif(0, α).
d: IS,norm values for the same set of random trees.
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Figure 6: Scatter plots of J1 versus normalised Sackin’s, Colless-like, and total cophenetic indices for
2,000 random cladograms on 100 leaves. Histograms in the margins show the marginal distributions.
Dashed reference curves in the first panel are obtained by substituting IS,norm into Equation 6 with
n = 100 and m = 2 (upper curve) or m = 100 (lower curve). We use the Colless-like index with
f(n) = ln(n+ e) and D the mean deviation from the median, as recommended by Mir et al. (2018).
Normalisation of each index other than J1 depends only on the number of leaves and so does not
affect correlations. Trees were generated from the alpha-gamma model with α ∼ Unif(0, 1) and
γ ∼ Unif(0, α).

where γ is Euler’s constant and n is the number of leaves. We find that a good approximation to the
J1 mean for the Yule model is n log2 n/EY ule(IS), which approaches 1/(2 ln 2) ≈ 0.72 as n→∞.

The expectation of IS for the uniform model approaches
√
πn3/2 as the number of leaves n→∞

(Blum et al., 2006). Via trial and improvement, we find that a very good approximation to the J1

mean for the uniform model is n log2 n/(1.7n
3/2 − n− 0.808), which approaches zero as n→∞.

Robustness when applied to random trees

To test the robustness of J1, we generated random multifurcating trees with node sizes drawn
from a continuous uniform distribution, and then compared J1 values for these trees before and after
applying a 1% sensitivity threshold. In the latter case, whenever the combined frequency of a clone
and its descendants was below 1%, we merged the corresponding subtree with the clone’s parent, to
simulate imperfect detection of rare types. As expected, the J1 values for the two sets of trees were
highly similar, with a median difference of only 0.8% (Figure 5c). In contrast, the median difference
in Sackin’s index for the same two sets of trees (after resolving any linear parts in the manner of
Figure 2) was 20% (Figure 5d), confirming that J1 is much more robust than Sackin’s index to the
omission of rare types.

Correlations with preexisting indices

To compare J1 to Sackin’s index, a Colless-like index, and the total cophenetic index (defined
in the Appendix) on a diverse set of trees, we generated 2,000 random multifurcating cladograms
on 100 leaves using the alpha-gamma model (Chen et al., 2009) via the R package CollessLike (Mir
et al., 2018). As shown in Figure 6, our new balance index correlates negatively with the previously
defined imbalance indices on this set of random trees, indicating that it captures a similar notion
of balance. The strongest correlation is between J1 and the total cophenetic index (Spearman’s
ρ = −0.84 for all trees, and ρ = −0.97 for trees with mean out-degree greater than 3).

Discontinuities

Although our indices are robust to the addition of uninformative nodes, the addition of informa-
tive nodes – however small – can create a discontinuity. Consider a node that splits its descendants
into several subtrees of similar size. The addition of a new, relatively small subtree to this node will
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create imbalance even as – in fact especially as – the size of this new subtree approaches zero. Our
Jq indices are sensitive to this case.

As a more precise example, consider a star tree with l > 1 leaves each of size f0 > 0. Suppose
we add to the root another n− l leaves each of size x with 0 ≤ x ≤ f0. The root is assumed to have
population 0, so that S1 = S∗1 = lf0 + (n − l)x and J1 = W 1

1 . If x = 0 then W 1
1 (x) = 1 since all l

leaves have the same size. If x > 0 then

W 1
1 (x) = −

[
l

f0

lf0 + (n− l)x
logn

(
f0

lf0 + (n− l)x

)
+ (n− l) x

lf0 + (n− l)x
logn

(
x

lf0 + (n− l)x

)]
.

As x → 0, so W 1
1 (x) → logn l. This implies that adding infinitesimally small leaves reduces the

balance score from 1 to logn l, to account for the abrupt loss of balance. The size of the jump is at
most 1− log3 2 ≈ 0.37, and it approaches zero as l/n→ 1.

Implementation and algorithmic complexity

Assuming the identity of the root is known, our new indices can be computed from an adja-
cency matrix in O(N) time, where N is the number of nodes. Subtree sizes are computed via
depth-first search, which takes linear time, and the computation of the balance index takes at most∑N
i=1 |Adj(i)| = N − 1 steps, where Adj(i) is the adjacency list of node i. Efficient R code for

calculating Jq is shared in an online repository (Noble and Lemant, 2021).

Discussion

Here we have defined a new class of tree balance index that unifies, generalises, and in various
ways improves upon existing definitions. These indices are applicable to a wider set of trees and
enable important new applications.

A challenge in comparing simulated phylogenies and trees inferred from data is that the former
are exact, whereas the latter are often incomplete (Scott et al., 2020). In oncology, for example, it
has been shown that whether or not a rare tumour clone is detected depends on both methodology
and chance (Turajlic et al., 2018). Our balance indices largely solve this problem as they are robust
to the omission of rare types, as demonstrated briefly here and more comprehensively in a companion
paper (Noble et al., accepted for publication). Besides tumour evolution, our indices are especially
well suited to the study of microbial evolution and any other system in which population sizes matter
or linear evolution can occur.

In generalising conventional indices we also obviate their shortcomings. Even when restricted to
the tree types on which previous indices are defined, our indices enable more meaningful comparison
of trees with different degree distributions or different numbers of leaves. This advantage might
make our indices preferable to other options more generally.

Because of its unique relationship with Sackin’s index, we especially recommend J1 – a weighted
average of the normalised entropies of the internal nodes – as defined in general by Equation 3 and
more simply for cladograms by Equation 5. Given that Sackin’s index has been well studied, it is
convenient that J1 inherits some of the properties of that index when applied to full m-ary clado-
grams, including its relatively high sensitivity in distinguishing between alternative tree-generating
models (Kirkpatrick and Slatkin, 1993; Agapow and Purvis, 2002). Within our framework, Sackin’s
index is seen not as a general balance index but rather as a normalising factor, which works as a
balance index only in the special case of full m-ary cladograms (for which the numerator of J1 is
independent of tree topology).

Proposition 0.7 implies that determining the precise moments of J1 for a model that generates
full m-ary cladograms is equivalent to determining the moments of the reciprocal of Sackin’s index.
Figure 6 suggests that J1 has interesting relationships with other indices such as the total cophenetic
index. These are promising areas for further investigation.
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Appendix

Definition of the total cophenetic index

The cophenetic value φ(k, l) of a pair of leaves (k, l) is the depth of their lowest common ancestor.
The total cophenetic index (Mir et al., 2013) is then the sum of the cophenetic values over all pairs
of leaves:

IΦ(T ) =
∑

N−n+1≤k<l≤n

φ(k, l),

where N is the number of nodes and n the number of leaves. As in Sackin’s index, the principle is that
an unbalanced tree stretches more than a balanced tree. Being explicitly defined for all multifurcating
trees, the total cophenetic index permits meaningful comparison of any two multifurcating trees on
the same number of leaves.
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For trees on n > 2 leaves, the minimum of the total cophenetic index is reached on the star tree,
with minn(IΦ) = 0. The maximum is attained on the caterpillar tree:

max
n

(IΦ) =
n−1∑
k=2

k−1∑
l=1

m =
n−1∑
k=2

1

2
k(k − 1) =

1

2

(
(n− 1)n(2n− 1)

6
− n(n− 1)

2

)
=
n(n− 1)(n− 2)

6
=

(
n

3

)
.

Hence a normalised version of the total cophenetic index is IΦ,norm(T ) = IΦ(T )/
(
n
3

)
. This normalised

imbalance index is not minimal for all fully symmetric trees. For example, the cophenetic value of
the two leftmost leaves of fully symmetric tree b in Figure 1 is two, and so both the unnormalised
and normalised cophenetic indices of tree b will be nonzero.

Proof that the index of Equation 1 satisfies our five axioms

Proof. Axiom 0.1 (Maximum value): We have J ≤ 1 since h and W lie between zero and one by
definition. Also if any internal node j of tree T doesn’t split its descendants into at least two equally
sized subtrees then Wj < 1 by definition and so∑

i∈Ṽ

g(S∗i )h(S∗i , Si)Wi <
∑
k∈Ṽ

g(S∗k) =⇒ J(T ) < 1.

Finally, let T be a tree such that every internal node splits its descendants into at least two equally
sized subtrees. Then Wi = 1 for all i ∈ Ṽ by definition. And if every internal node has null
population then S∗i = Si, which implies h(S∗i , Si) = 1 for all i ∈ Ṽ by definition. Hence

J(T ) =
1∑

k∈Ṽ g(S∗k)

∑
i∈Ṽ

g(S∗i ) = 1.

Axiom 0.2 (Minimum value): We have J ≥ 0 since g, h and W are always non-negative by

definition. Also if T is a linear tree then Wi = 0 for all i ∈ Ṽ by definition, and hence J(T ) = 0.
Conversely, if some internal node j has d+(i) > 1 then Wj > 0 by definition and, because g and h
are always positive by definition, we must have J(T ) > 0.

Axiom 0.3 (Leaf limit): Adding a subtree to a leaf l changes the tree balance value via the
contributions of three sets of nodes: the newly added nodes, the former leaf l, and all other internal
nodes. First, for each internal node i ∈ Ṽ (Tl) with i 6= l, as S∗l → 0 so also S∗i → 0 (because
S∗i ≤ S∗l ), which implies g(S∗i ) → 0 by definition, and hence the first contribution approaches
zero. Next, as S∗l → 0, so h(S∗l , Sl) → 0 by definition, which implies that the second contribution
approaches zero. Lastly, the third contribution approaches zero because g, h and W are continuous
by definition.

Axiom 0.4 (Linear limit): Adding a subtree to a node j, with previously d+(j) = 1, changes
the tree balance value via the contributions of the newly added nodes and of node j. The first
contribution approaches zero for the same reason as in the leaf limit proof. Now without loss of
generality let j1 denote the original child of j, and j2, . . . , jk denote the newly added children of j. As
Sj2+. . .+Sjk → 0 there are two possibilities. If we also have Sj1 → 0 then S∗j = Sj1+Sj2+. . .+Sjk →
0, which implies h(S∗j , Sj) → 0 by definition. Otherwise, max(Sj2 , . . . , Sjk)/Sj1 → 0, which implies
W (Sj1 , Sj2 , . . . , Sjk)→ 0 by definition. In either case the second contribution approaches zero.

Axiom 0.5 (Continuity): The continuity of J follows immediately from the continuity of g, h and
W .

Other balance indices based on generalised entropies

As defined by Chao et al. (2014), generalised entropies for q ≥ 0, q 6= 1 are

qH :=
1

q − 1

(
1−

P∑
i=1

pqi

)
.
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Parameter q determines the sensitivity to the type frequencies. 0H is simply the richness (minus 1)
of the population, which corresponds to ignoring the frequencies and just counting the types. For
0 < q < 1, rare types are given more weight than implied by their proportion, whereas for q > 1
abundant types matter more. 2H is the Gini-Simpson coefficient. In the limit q → 1 we recover the
Shannon entropy 1He.

For q > 0, qH attains its maximum value if and only if all types have equal frequency pi = 1/m:

max(qH) =
1

q − 1

(
1− 1

mq−1

)
=

mq−1 − 1

mq−1(q − 1)
.

We can therefore define a normalised balance score W q
i for q > 0, q 6= 1 and i ∈ Ṽ :

W q
i :=


d+(i)q−1

d+(i)q−1 − 1

(
1−

∑
j∈C(i)

pqij

)
if d+(i) ≥ 2

0 otherwise.

A balance index Jq satisfying our axioms is then

Jq :=
1∑

k∈Ṽ S
∗
k

∑
i∈Ṽ

S∗i
S∗i
Si
W q
i ,

for any q > 0. In the limit q → 1, Jq → J1.

Proof of Proposition 0.7

Proof. By definition of J1, if T is a tree on n leaves with d+(i) = m > 1 and f(i) = 0 for every
internal node i then

J1(T ) =
−1∑
k∈Ṽ Sk

∑
i∈Ṽ

∑
j∈C(i)

Sj logm
Sj
Si
.

The number of distinct subtrees that contain a given leaf l is equal to its number of ancestors, which
is the same as νl, the depth of l. So the sum of subtree sizes over the set of all internal nodes is
equal to the sum of νl multiplied by leaf size over the set of all leaves:∑

k∈Ṽ

Sk =
∑
k∈L

νkf(k).

Summing first over the internal nodes and then over their children gives the same result:∑
i∈Ṽ

∑
j∈C(i)

Sj =
∑
i∈Ṽ

Si =
∑
i∈L

νif(i) =
∑
i∈L

f(i)

νi∑
j=1

1.

Let a(i, j) denote the ancestor of node i at distance j, with a(i, 0) = i and a(i, νi) = r (the root) for
all i. Then by extension,∑

i∈Ṽ

∑
j∈C(i)

Sjθ(Si, Sj) =
∑
i∈L

f(i)

νi∑
j=1

θ(Sa(i,j), Sa(i,j−1)),

for any function θ. In particular, we have∑
i∈Ṽ

∑
j∈C(i)

Sj logm
Sj
Si

=
∑
i∈L

f(i)

νi∑
j=1

logm
Sa(i,j−1)

Sa(i,j)
.

Substituting this result into the expression for J1 we find

J1(T ) =
−1∑
k∈Ṽ Sk

∑
i∈L

νi∑
j=1

f(i) logm
Sa(i,j−1)

Sa(i,j)

=
−1∑
k∈Ṽ Sk

∑
i∈L

f(i)

νi∑
j=1

(logm Sa(i,j−1) − logm Sa(i,j)).

16

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 20, 2021. ; https://doi.org/10.1101/2021.08.25.457695doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.25.457695
http://creativecommons.org/licenses/by/4.0/


The right-hand sum is a telescoping series that collapses to give

J1(T ) =
−1∑
k∈Ṽ Sk

∑
i∈L

f(i)(logm Sa(i,0) − logm Sa(i,νi)).

Now since i is a leaf, logm Sa(i,0) = logm Si = logm f(i). Also logm Sa(i,νi) = logm Sr = logm S(T ).
Hence

J1(T ) =
−1∑
k∈Ṽ Sk

∑
i∈L

f(i)(logm f(i)− logm S(T ))

=
−1∑
k∈Ṽ Sk

∑
i∈L

f(i) logm
f(i)

S(T )
=

1Hm(T )S(T )∑
k∈Ṽ Sk

.

If additionally all leaves i of T have the same size f(i) = f0 then S(T ) = nf0, 1Hm(T ) = logm n,
and

∑
k∈Ṽ Sk = f0IS(T ), which implies J1(T ) = n logm n/IS(T ).

Proof of Proposition 0.8

Proof. Since
∑
k∈Ṽ nk = IS(T ), the conditions are equivalent to

IS(T )J(T ) =
∑
i∈Ṽ

niWi = n logm n, with Wi = W

(
ni1
ni
, . . . ,

nip(i)
ni

)
,

where ni1 , . . . np(i) are the children of i. Let T be a tree in Tn,m and i be an internal node of T .
Then Ti ∈ Tni,m and Tj ∈ Tnj ,m for every child j of i. Therefore

IS(Ti)J(Ti) = niWi +
∑
j∈C(i)

J(Tj) = niWi +
∑
j∈C(i)

nj logm nj .

Also, IS(Ti)J(Ti) = ni logm ni, so we have

niWi +
∑
j∈C(i)

nj logm nj = ni logm ni

=⇒ Wi = logm ni −
∑
j∈C(i)

nj
ni

logm nj .

Since
∑
j∈C(i) nj = ni, this implies

Wi =
∑

k∈C(i)

nk
ni

logm ni −
∑
j∈C(i)

nj
ni

logm nj = −
∑
j∈C(i)

nj
ni

logm
nj
ni

= W 1
i .

17

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 20, 2021. ; https://doi.org/10.1101/2021.08.25.457695doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.25.457695
http://creativecommons.org/licenses/by/4.0/

