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Figure 5: Extension of MCML to Continuous and Discrete Metadata. a) Jaccard distance distributions of
each cell’s 50 nearest neighbors in embedding space (50D) from their neighbors in the original continuous (pseudotime
or spatial coordinate) space. Label-aware MCML compared to PCA and Recon (Reconstruction error only) MCML.
80% of cells were randomly labeled for MCML. b) Distributions of Euclidean distance of predicted spatial coordinates
from the original coordinates for cell-type or spatial coordinate only MCML, spatial and cell type labeled MCML,
and the respective baselines.c) Spatial-Type MCML confusion matrix for cell types prediction compared to confusion
matrices for the single-class MCML and baseline latent spaces. [Code]

neighbors. From here we combined discrete (cell type) and continuous (spatial location) class la-
bels into the latent space construction, retaining the predictive properties of each of the classes
individually when tested with 20% of cells unlabeled. Both the ‘Type-Spatial’ and ‘Spatial-Only’
MCML representations reduced the distance of predicted locations from the actual coordinates by
10.9% and 14.6% respectively (by 77.3 µm and 103.8 µm) compared to the baselines (Fig. 5b). The
‘Type-Spatial’ and ‘Type-Only’ representations also demonstrated comparable cell type prediction,
with overall accuracy of 0.91 and 0.92 (Fig. 5c). These results show that our framework enables
prediction of type, space, and time for single cells.

Additionally, we defined a label-aware loss to bias decoder reconstruction towards improving
metrics of interest, such as the recapitulation of intra-label variances. We denote this method as
‘bMCML’ (‘biased MCML’) (see Methods). As a proof-of-concept we optimized latent space con-
struction for high correlation of intra-sex (Supplementary Fig. 9a,b) or intra-type (Supplementary
Fig. 9c,d) distances to the ambient space, as intra-correlations were lower than inter-correlations
for most latent representations (Supplementary Fig. 9). For the SMART-seq and 10x VMH neuron
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datasets, intra-sex correlations were increased by at least 126% and 26%, while intra-type correla-
tions were increased by at least 91% and 12% as compared to the PCA and Recon MCML baselines.
Although bMCML may reduce the accuracy of other metrics not in the loss, e.g. inter-distances
(Supplementary Fig. 9), this demonstrates targeted preservation of desired patterns and an alter-
native to unsupervised reconstruction which may not capture these specific properties .

Other benefits of the MCML framework include the ability of reconstruction loss to better pre-
serve metric correlations in rare and orthogonal cells (i.e. gene expression not shared by other cell
types) as opposed to PCA (Supplementary Fig. 10) (see Methods), as PCA is designed to find
directions of maximal variance which may suppress low, orthogonal expression when only top PCs
are selected. The linear decoder layer also provides interpretability, analogous to the linear trans-
formation of data with PCA, for easy extraction of genes which contribute to each of the latent
dimensions (Supplementary Fig. 11) [33]. With the use of a nonlinear encoder, despite the linear
decoder, and mini-batch training, MCML provides a faster and more accurate implementation of
NCA itself as compared to the sklearn implementation (Supplementary Fig. 12).

Discussion

Despite claims that common dimensionality reduction techniques for single-cell genomics data
preserve local [4] and/or global [5] cell relationships, our work demonstrates that blind applications
of such heuristic transformations can result in significant distortions at multiple scales. Although
popular two-dimensional embeddings can reflect the broader strokes of the data such as cell type
inter-distances, or highlight correlations between features [37], we find that quantitative relation-
ships between cells, nearest neighbors, and cell types are highly distorted. Researchers are therefore
tasked with navigating multiple, possibly contradictory interpretations of the same data. Addition-
ally though current methods preserve some qualitative properties of datasets, these properties can
be recapitulated in an arbitrary manner, bringing into question the biological meaning of widely
utilized two-dimensional representations.

We therefore believe in lessened reliance on two-dimensional artwork for the purposes of iden-
tifying biological patterns. At least if visualizations are used, they should be presented alongside
the kinds of metrics we and others have proposed for quantitative assessment of ‘global’ and ‘local’
scale [6]. In particular, we urge researchers to exercise caution in assigning biological interpreta-
tions to images with no theoretical guarantees, or “canonical” properties. There is an opportunity
to develop two-dimension embedding methods that, with theoretical guarantees, could provide
meaningful visualizations of high-dimensional data. The lower bounds on distortion that we have
derived leave room for “reasonable” embeddings, and it is an interesting open problem to achieve
optimal low-distortion [38, 39]. Some promising directions include work to define more robust dis-
tortion metrics and unified embedding frameworks [40], and to preserve equidistance as possible
[41] (Supplementary Note 5). Generally, for tasks such as cluster validation and trajectory inference
where t-SNE and UMAP are commonly employed, quantitative/statistical metrics on marker gene
specificity and strength of expression (usually employed regardless of the visual embedding) [42,
43] provide more reliable bases for analyses. Furthermore, higher dimensional inference of differ-
entiation trajectories [44, 45], and incorporation of probabilistic inference methods [46, 47], offer
meaningful analysis approaches sans visualization.
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Beyond the goals of two-dimensional visualization, higher dimensional representations offer
spaces for multiple tasks to be performed, partial to researchers’ interests. To better adapt these
spaces for biological investigation, we have presented a semi-supervised framework for direct incor-
poration of biological features into latent space structure, as opposed to unsupervised approaches
unaware of the task goals. The semi-supervised MCML methodology expands the domain of latent
space structure and prediction to discrete and continuous properties of cells, offers a targeted alter-
native to unsupervised reconstruction with bMCML, and maintains linear interpretability between
the latent space and the input features [33]. Our results are based on limited parameter optimiza-
tion of our multi-objective optimization schemes, however methods such as grid-search could be
implemented to determine parameters e.g. the ‘best’ fractional weighting between label-aware and
reconstruction costs (see Methods). MCML could also be extended to filter for labels which con-
tribute to explaining variance in the data or to the accuracy of a specific task (e.g. spatial location
prediction, likely dependent on multiple covariates [48] ), or to parametric models of single-cell
count data utilizing existing variational autoencoder models [33, 49].

Finally, we note that our work on distortion in low dimension embeddings and our framework
for semi-supervised multi-class multi-label dimensionality reduction demonstrates a step towards
developing more precise answers to questions about the dimensionality of transcriptomes. Identifi-
cation of groups of equidistant cells provides weak lower bounds on the dimension, which appears to
be much higher than two. Our results demonstrating the advantages of semi-supervised reduction
suggest such methods could be utilized to refine upper bounds on the dimension of transcriptomes.
Moreover, these questions and results are relevant to multi-faceted datasets outside of single-cell
genomics, such as in phylogenetics or population genetics, where UMAP/t-SNE are used to explore
structure of genetic interactions and evolutionary relationships [50]. Our findings should also be of
interest beyond the biological sciences, e.g. in chemistry [51], geology [52], astronomy [53], and the
social sciences [54], where dimensionality reduction is used to find latent representations capturing
key structural features of data.
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Methods

Datasets and Pre-processing

All datasets used in this study are listed in Table 1, and were chosen to cover a range of se-
quencing platforms, experiment sizes, and experimental designs.

Dataset Technology Cells Label Classes Accession

Ex and In Utero Mouse Embryo E10.5 10x Genomics v3 56,528 Cell Type, Growth Condition https://ftp.ncbi.nlm.nih.gov/geo/series/GSE149nnn/GSE149372/suppl/

Ex Utero Mouse Embryo E8.5 10x Genomics v3 6,205 Cell Type, Growth Condition https://ftp.ncbi.nlm.nih.gov/geo/series/GSE149nnn/GSE149372/suppl/

SMART-seq Mouse VMH Neurons SMART-Seq v4 3,850 Cell Type, Sex https://data.mendeley.com/datasets/ypx3sw2f7c/3

10x Mouse VMH Neurons 10x Genomics v2 41,580 Cell Type, Sex https://data.mendeley.com/datasets/ypx3sw2f7c/3

10x Developing Mouse Brain 10x Genomics v1 292,495 Cell Type http://mousebrain.org/downloads.html

Developing C. elegans Embryo(Neural Lineage) 10x Genomics v2 1,075 Cell Type, Pseudotime http://staff.washington.edu/hpliner/data/

Mouse Primary Motor Cortex (MOp) MERFISH 6,963 Cell Type, Spatial Coordinates https://caltech.app.box.com/folder/134209256308

Table 1: Dataset Metadata. Datasets used for the Picasso and MCML (including bMCML) analyses.

For the SMART-seq and 10x mouse VMH datasets, cells were filtered according to the steps
outlined in [21]. Unless already provided, the top 2000 highly-variable genes (HVGs) were found
for all datasets using Scanpy’s highly variable genes [43]. The top 300 genes were used for the C.
elegans neural lineage cells as there were only 1000 cells after selecting for the ASE, ASJ, and
AUA neurons [13]. Counts were log-normalized, if not already provided, with the log-count matri-
ces representing the ‘ambient’ data for metric comparisons (see below). Unless otherwise indicated,
‘ambient’ space refers to the log-normalized count matrices filtered for HVGs. All count matrices
were zero-centered and scaled before application of the Picasso, MCML methods, or PCA. All PCA
analysis was performed using sklearn TruncatedSVD to 50 dimensions by default. 15 dimensions
was used for the PCA of the integrated mouse embryo E10.5 dataset to facilitate direct comparison
to the original study [20].

The t-SNE and UMAP algorithms were applied to the 50 (or 15 in the case of the integrated
mouse embryo E10.5 dataset) dimensional PCA embeddings with default settings. As per the
discussion in [6], though slight changes in parameters can drastically impact low-dimensional em-
beddings, the choice of parameters for tuning is often informed by empirical observations/prior
knowledge leaving open the question of which metric(s) to use for determining ‘optimal’ parame-
ters. This tuning is additionally contradictory to the common use or desire of such techniques to
produce ‘unsupervised’ representations of the data [6]. [Code]

Determining Groups of Equidistant Cells

To find equidistant cells within cell types, we selected cells from within sizeable cell types to
narrow the search space, as the algorithm we used, namely clique detection in undirected graphs, is
NP-complete. The cell types we investigated were ‘Esr1 6’ in the 10x VMH dataset and ‘Chondro-
cytes and Osetoblasts’ in the integrated embryo E10.5 dataset. We calculated all pairwise distances
between the cells in the ambient space, and using those defined a graph where two cells were adja-
cent if the cell-cell distance was within a small fraction of the standard deviation around the mean,
and the 0.1 and 0.9 quantile marks. The filtering for distances within a particular range helps to
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limit the size of the search space as well as produce a range of mutually equidistant cells. We used
the sklearn pairwise distances for the pairwise calculations. From the graph of ‘connected’ cells
we looked for cliques, namely subsets of cells in which all cells are connected (adjacent) to each
other. This same strategy was employed to determine equidistant centroids of cell types for the
10x VMH data. Equidistant cell type centroids were identified by constructing a graph where two
nodes, associated with centroids, were adjacent if their distance was close to the average pairwise
distance. To find cliques we used the find cliques function from the networkx package, which em-
ploys a variant [55] of the Bron & Kerbosch algorithm [56], to detect cliques in undirected graphs.
[Code]

Metrics for Correlation and Distortion of Ambient Space Properties

Distortion Metrics for Equidistant Cells

We used two metrics to assess distortion of equidistant cells in two dimensions. The first is the
variance of the pairwise distances between cells (or centroids) in each group, as compared to the
low variance in the distances in the ambient space. We also calculated the ratio of the maximum
to minimum distance between cells in each group (the ‘max/min ratio’), a quantity for which we
derived a lower bound (see Theorem 1 in Supplementary Note 2) :

D

d
≥

√
n− 2

2
.

All variance and min/max comparisons were done in the ambient space, the PCA-reduced
spaced, and the UMAP/t-SNE spaces, which were generated from the PCA-space. The ambient
space for the integrated embryo E10.5 data is the ‘Variance-Stabilized and Scaled’ (Fig. 1a-d) data
(as opposed to solely log-normalized counts in Fig. 1e), as this was used as input for the original
UMAP embedding in [20]. [Code]

These distortion metrics were also measured between every cell and its 10 nearest neighbors
to demonstrate distortion outside of groups of necessarily equidistant cells. The sklearn Nearest-
Neighbors function was used to find these 10 neighboring cells as well as for Fig. 1, to extract each
cells’ 30 nearest neighbors, and compare neighbor labels, in the UMAP versus ambient space (using
L1 distance). [Code]

Inter- and Intra-Label Distances

To assess the relative differences and similarities within and across biological properties of
interest we defined inter- and intra-label distance metrics. Inter-label distances (Supplementary
Fig. 5) are calculated as pairwise L1 (defined below) distances between the centroids of each
label within a class (e.g. between centroids of each ‘cell type’ label). These represent the relative
distances, or closeness, between labels. For two vectors x,y the L1 distance is defined as the absolute
value of their differences:

d(x,y) =
∑
i

|xi − yi|.
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For this we used sklearn pairwise distances. For more ‘internal’ labels such as sex, inter-label dis-
tances were calculated as the mean pairwise distance between the cells of each label (i.e. ‘male’ and
‘female’) within each cell type. Intra-label distances are the means of all pairwise distances within
each label (Supplementary Fig. 5). These represent the relative, internal variances among the cells
within each label. For sex labels i.e. ‘male’ and ‘female’, these means were calculated within each
cell type.

We used L1 distance as it is suitable for measuring distance between points in high dimen-
sions, particularly in comparison to other L-norms [57, 58], and is comparable to the probabilistic
Jensen-Shannon divergence in single-cell (transcriptomic) distance calculations [57]. The correla-
tion of these metrics, in the latent space, to their values in the ambient space were then calculated
by Pearson correlation. The latent spaces represent PCA, t-SNE, UMAP, Picasso, or MCML em-
beddings.

To test recapitulation of the relative distances of ‘rare’ and orthogonal cells to other cell types,
using PCA and the MCML framework below, we added the expression of five new ‘cells’ in the
MERFISH MOp data with expression (single gene counts) in three gene dimensions not expressed
in other cells (Supplementary Fig. 10). We then ran Recon MCML (MCML with only reconstruc-
tion error) and PCA on this new matrix, and calculated the inter-distances for this group of cells
to all other cell types (Supplementary Fig. 10).

General Autoencoder Architecture

The autoencoder network used in the Picasso and MCML algorithms is outlined below. The
structure of the neural network remains the same between algorithms though each has a unique set
of cost functions for network optimization.

The input is a centered/scaled count matrix X ∈ Rn×g, n cells by g genes. For MCML embed-
dings C is the set containing label vectors for each class k, C : {c1, ..., ck}. Classes can be discrete
or continuous, and multi-dimensional in the case of continuous classes (e.g. cell type, sex, location).

The input is passed through two fully-connected layers of 128 nodes and d nodes respectively
with d = 50 by default. Batch normalization, the ReLU activation function, and dropout regu-
larization are applied between the layers. The second layer represents the latent representation in
Rn×d denoted as Z. The final linear, decoder layer produces X̂ ∈ Rn×g. No activation function or
bias terms are used between the latent and decoder layer as the decoder output solely represents a
linear transform of the latent space.

Mini-batch training was employed for all algorithms, with a default batch size of 128, though
larger batch sizes were used for Picasso embeddings. Adam optimization [59] was used for network
training with a default learning rate of 10−3 and weight-decay term of 10−5.

15

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 26, 2021. ; https://doi.org/10.1101/2021.08.25.457696doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.25.457696
http://creativecommons.org/licenses/by-nc/4.0/


Picasso Cost Function for Shape Imitation

We defined two loss functions: LShapeAware and LReconstruction, which balance the fit of the
input points to the desired shape and reconstruction error in the decoder output as compared to
the input. S ∈ Rp×d represents the coordinates comprising the desired shape, where d = 2 and
p ≥ n. The latent space Z is also limited to d = 2 dimensions. The pairwise distance matrix
D ∈ Rn×p represents Euclidean distances between the cell coordinates in Z and shape coordinates
S such that

dij = ‖zi − sj‖2.

Using D, we define a Boolean, n× p adjacency matrix A, where
∑
Ai = 1. This matrix uniquely

specifies an adjacent coordinate point for every cell, in a bipartite graph mapping the n cells to the
p coordinates. A is determined by the linear sum assignment scipy package, which assigns a shape
coordinate to each cell by solving the minimization

min
∑
i

∑
j

dijaij

where aij = 1 iff row i is assigned to column j. Thus,

LShapeAware =
∑

A�D,

which we attempt to minimize i.e. map cells to their closest, unique shape coordinates. The
reconstruction loss is the L2 norm of the difference between the reconstructed and input data:

LReconstruction = ‖X̂−X‖2.

The total loss then incorporates both loss functions, balancing their contributions with f , a user-
defined fraction weighting the effect of each term on the resulting embedding:

L = f ∗ LShapeAware + (1− f) ∗ LReconstruction. (1)

Correlation metrics, as defined above, are measured for the output Z, PCA to two dimensions
(PCA 2D), and 2D t-SNE/UMAP (PCA t-SNE and PCA UMAP) which are run on the output of
PCA to 50D by default. Picasso was tested on the SMART-seq VMH neurons [Code], the ex-utero
mouse embryo E8.5 data [Code], and the MERFISH MOp dataset [Code].

MCML Framework with Cost Function for Discrete and Continuous Properties

We use the acronym ‘MCML’ (multi-class multi-label) to denote the semi-supervised, label-
aware methodology which directly incorporates the label-aware cost into the latent space struc-
ture (Fig. 4a). For MCML we use two loss functions: LLabelAware and LReconstruction, where
LReconstruction is as defined in (1). For LLabelAware, we utilize the Neighborhood Component Anal-
ysis (NCA) algorithm from [34]. For all cells a probability matrix P ∈ Rn×n is created where

pij =
exp(−‖zi − zj‖2)∑
j exp(−‖zi − zj‖2)

,
∑

pi = 1.

For discrete labeled data (e.g. cell type names) we define LDiscrete for all pairs of cells i, j where
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LDiscrete =
∑
k

∑
ij pij1ij∑
ij 1ij

where 1ij(ck) :=

{
1 if ck,i = ck,j ,

0 otherwise .

Only the probabilities of cell pairs which are of the same label, for each class k, are summed
and normalized to the total number of these cell pairs (which represents the maximum value of the
numerator). For continuous classes of labels, such as spatial coordinates or pseudotime values, we
use a separate loss function, LContinuous. A probability weight matrix W ∈ Rn×n is generated for
every pair of cells such that

wij =
exp(−‖ck,i − ck,j‖2)∑
j exp(−‖ck,i − ck,j‖2)

,
∑

wi = 1.

In place of the indicator function, the weights bias the masking of the original probability matrix P
towards higher-weighted (‘closer’) pairs of cells. Probabilities are also normalized to the maximum
of the numerator (treating the weights W as constants):

LCont =
∑
k

∑
ij wijpij∑

imax(wij)
.

The final loss function is

LLabelAware = LDiscrete + LContinuous

L = −f ∗ LLabelAware + (1− f) ∗ LReconstruction. (2)

LLabelAware is negated for minimization, as opposed to maximization of the positive probabilities,
and is additionally weighted by a constant factor of 10 in comparison to LReconstruction. For all
datasets, excluding the integrated mouse embryo E10.5 dataset, the latent space Z is in d = 50
dimensions, and d = 15 for the Integrated data.

Measuring Distance between Cells of Differing Conditions

We applied MCML to the integrated mouse embryo E10.5 dataset, including both cell type and
condition (ex- or in-utero) labels, for dimensionality reduction. We then measured the pairwise L1

distances between the centroids of the ex- and in-utero cells within each cell type, as a measure
of ‘internal’ distance. Within the cell types with the largest distances, we extracted differentially
expressed (DE) genes between the conditions, following the metrics in the original study (genes
with log2 fold-change greater than 1 and adjusted p-values greater than 0.05) [20]. Here we utilized
the log-normalized data only, as it represents the counts prior to scaling and filtering for highly
variable genes. We used the non-parametric Wilcoxon test to identify DE genes, with p-values
adjusted with Benjamini-Hochberg correction. [Code]

Prediction Accuracy for Unlabeled Cells

To assess the ability of semi-labeled, MCML-reduced latent spaces for class-specific label pre-
diction, we measured their accuracy in continuous and discrete label prediction for unlabeled cells.
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For the comparative cell type label analysis in Fig. 4c, 70% of each dataset was used as training
and the remaining for testing/prediction for SCANVI, netAE, and MCML which are label-aware
methods. netAE was unable to run on the 10x VMH and 10x developing brain datasets as it at-
tempted to allocate over 2TB of RAM. [Code] All of the data was used to train LDVAE and Recon
MCML (reconstruction error only, f = 0) as baseline prediction comparisons. For the continuous
and mixed label annotation in Fig. 5, 80% of each dataset was used as training and the remaining
for testing/prediction. The full count matrices were input into the MCML framework, but only the
denoted percentages of cells were labeled.

We applied sklearn’s KNNClassifier with 50 nearest neighbors, weighted by their distance, for
discrete label prediction in each latent space, and used the accuracy score function from sklearn to
determine the fraction of correct labels predicted (Fig. 4c). [Code 10x VMH] [Code SMART-seq
VMH] [Code Developing Brain]

The KNNRegressor from sklearn was used to predict continuous values in the same manner.

We used Jaccard distance/dissimilarity [6], defined as 1− |A ∩B|
|A ∪B|

where A,B represent the sets of

50 nearest neighbors in the ambient and latent spaces respectively, and Euclidean distance between
each cell’s predicted and true value, to assess the efficacy of the continuous predictions (Fig. 5a,b).
Continuous labels were either one-dimensional pseudotime values, or two dimensional coordinates
for each cell’s spatial location. Pseudotime values were generated using the diffusion map-based
‘dpt’ methods from Scanpy [43], on the PCA-reduced C. elegans dataset. The ‘ambient’ space
for determining continuous-label nearest neighbors was the n × 1 or n × 2 matrix containing the
original values for all n cells. Confusion matrices, produced by sklearn plot confusion matrix, were
also generated to compare true and false positive cell type label predictions for MCML-generated
embeddings with and without dual incorporation of discrete (cell type) and continuous (spatial
coordinate) label classes. [Code]

Runtime and sklearn Comparisons

For runtime comparisons between the various cell type prediction/annotation methods in Fig.
4c (see Supplementary Fig. 8), we timed all methods on a range of datasets, processed with 1 GPU
over 5 cores each with 40G of memory. [Code]

To compare the capabilities of the NCA algorithm by MCML to the standard sklearn NCA
implementation, MCML was run with f = 1 (no reconstruction error) and sklearn’s NCA with
default settings, to produce 50 dimensional latent space representations incorporating cell type
labels only (see Supplementary Fig. 11). The NCA loss, represented by LDiscrete, was measured
for the generated latent spaces. The GPU was not utilized for these comparisons to accommodate
the sklearn implementation. [Code]

Biased MCML (bMCML) with Targeted Reconstruction Cost Function

Here we denote ‘bMCML’ as the label-aware, biased reconstruction methodology which adapts
the original MCML cost functions in (2). This targeted reconstruction loss utilizes only one term in
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its loss. Here L is defined by the correlation of the inter- or intra-distances (as described above) of a
particular class to the ambient data X, b represents the vector of the specified inter-/intra-distances
in the ambient space and b̂ represents those same distances calculated for the reconstruction X̂.
L is then defined in (3) as the negation of the Pearson correlation of these two vectors. Negation,
again, facilitates minimization.

L = −
∑

i(b̂i −
¯̂
b)(bi − b̄)√∑

i(b̂i −
¯̂
b)2(bi − b̄)2

. (3)

In Supplementary Fig. 9, we demonstrate the implementation of either intra-sex (Supplemen-
tary Fig. 9a,b) or intra-type (cell type) (Supplementary Fig. 9c,d) distance correlation in the loss
and the effect of these targeted losses on the resulting correlation metrics. This was tested on the
SMART-seq [Code] and 10x mouse VMH neurons [Code].

Data Availability

Accession links for the original data used to generate the figures and results in the paper
are listed in Table 1. Processed and normalized versions of the count matrices are available on
CaltechData, with links provided in Supplementary Table 1.

Code Availability

All analysis code used to generate the figures and results in the paper is available at https:

//github.com/pachterlab/CBP_2021 with Picasso and MCML analyses provided in notebooks
which can be run on Google Colab. Picasso is also available at https://github.com/pachterlab/
picasso. The MCML method as well as tools for quantitative analysis are available via a Python
pip installable package from https://github.com/pachterlab/MCML.
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