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Abstract 

We report a surprising phenomenon about identifying differentially expressed genes (DEGs) 

from population-level RNA-seq data: two popular bioinformatics methods, DESeq2 and edgeR, 

have unexpectedly high false discovery rates (FDRs). Via permutation analysis on an 

immunotherapy RNA-seq dataset, we observed that DESeq2 and edgeR identified even more 

DEGs after samples’ condition labels were randomly permuted. Motivated by this, we evaluated 

six DEG identification methods (DESeq2, edgeR, limma-voom, NOISeq, dearseq, and the 

Wilcoxon rank-sum test) on population-level RNA-seq datasets. We found that the FDR control 

was often failed by the three popular parametric methods—DESeq2, edgeR, and limma-voom—

and the new non-parametric method dearseq. In particular, the actual FDRs of DESeq2 and 

edgeR sometimes exceeded 20% when the target FDR threshold was only 5%. Although 

NOISeq, a non-parametric method used by GTEx, controlled the FDR better than the other four 

methods did, its power was much lower than that of the Wilcoxon rank-sum test, a classic non-

parametric test that consistently controlled the FDR and achieved good power in our evaluation. 

Based on these results, for population-level RNA-seq studies, we recommend the Wilcoxon 

rank-sum test. 

 

Main text 

RNA-seq is an approach to transcriptome profiling using deep-sequencing technologies1-3. Since 

RNA-seq was developed more than one decade ago, it has become an indispensable tool for 

genome-wide transcriptomic studies. One primary research task in these studies is the 

identification of DEGs between two conditions (e.g., tumor and normal samples)2. A long-

standing, core challenge in this task is the small sample size, which is typically two or three 
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replicates per condition. Many statistical methods have been developed to address this issue by 

making parametric, restrictive distributional assumptions on RNA-seq data, and the two most 

popular methods of this type are DESeq24 and edgeR5. However, as sample sizes have become 

large in population-level RNA-seq studies, where dozens to thousands of samples were collected 

from individuals6,7, a natural question to ask is whether DESeq2 and edgeR remain appropriate. 

 

To evaluate the performance of DESeq2 and edgeR, we applied both methods to 13 population-

level RNA-seq datasets with total sample sizes ranging from 100 to 1376 (Supplementary 

Table 1). We found that DESeq2 and edgeR had large discrepancies in the DEGs they identified 

on these datasets (Supplementary Fig. 1). In particular, 23.71%–75% of the DEGs identified by 

DESeq2 were missed by edgeR. The most surprising result is from an immunotherapy dataset 

(including 51 pre-nivolumab and 58 on-nivolumab anti-PD-1 therapy patients)8: DESeq2 and 

edgeR had only an 8% overlap in the DEGs they identified (DESeq2 and edgeR identified 144 

and 319 DEGs, respectively, with a union of 427 DEGs but only 36 DEGs in common). This 

phenomenon raises a critical question: did DESeq2 and edgeR reliably control their false 

discovery rates (FDRs) to the target 5% on this dataset? 

 

To answer this question, we generated 668 negative-control datasets by randomly permuting the 

two-condition labels (pre-nivolumab and on-nivolumab) of the 109 RNA-seq samples in this 

immunotherapy dataset (Methods). Since any DEGs identified from these permuted datasets are 

known as false positives, we used these permuted datasets to evaluate the FDRs of DESeq2 and 

edgeR. Surprisingly, DESeq2 and edgeR identified more DEGs from 84.88% and 78.89% of 

these permuted datasets than from the original dataset (Fig. 1A). In particular, DESeq2 and 
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edgeR mistakenly identified 16,791 and 13,448 genes as DEGs, respectively, from at least one 

permuted dataset (Fig. 1B). Even more, as many as 56.25% and 89.34% of the DEGs, which 

DEseq2 and edgeR identified from the original dataset, were also identified as DEGs from at 

least one permuted dataset, suggesting that these DEGs were spurious (Fig. 1C). These results 

raise the caution about exaggerated false positives by DESeq2 and edgeR on the original dataset.  

 

What’s more counter-intuitive, the genes with larger fold changes estimated by DESeq2 and 

edgeR (between the two conditions in the original dataset) were more likely identified as DEGs 

by the two methods from the permuted datasets (Fig. 1D and Supplementary Fig. 2). As 

biologists tend to believe that these genes are more likely true DEGs (which is not necessarily 

true because a dataset may contain no true DEGs at all), the fact that these genes are false 

positives would waste experimental validation efforts.  

 

Out of curiosity and as a means of verification, we investigated the biological functions of the 

spurious DEGs identified by DESeq2 or edgeR from the permuted datasets. Unexpectedly, these 

spurious DEGs were enriched in immune-related gene ontology (GO) terms (Fig. 1E). Hence, if 

these spurious DEGs were not removed by FDR control, they would mislead researchers to 

believe that there was an immune response difference between pre-nivolumab and on-nivolumab 

patients, a surely undesirable consequence that DEG analysis must avoid.  

 

Then a question follows: why did DESeq2 and edgeR make so many false positive discoveries 

from this immunotherapy dataset? Our immediate hypothetical reason was the violation of the 

negative binomial model assumed by both DESeq2 and edgeR9. To check this hypothesis, we 
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separated all genes into two groups: (1) the genes identified as DEGs from any permuted datasets 

and (2) all the other genes; then we evaluated how well the negative binomial model fit to the 

genes in each group. In line with our hypothesis, the model fitting was worse for the genes in the 

first group, consistent with the fact these genes were spurious DEGs (Fig. 1F and 

Supplementary Fig. 3).  

 

Motivated by these findings, we further benchmarked DESeq2 and edgeR along with four other 

representative DEG identification methods on this immunotherapy dataset and the other 12 

population-level RNA-seq datasets from the Genotype-Tissue Expression (GTEx) project7 and 

the Cancer Genome Atlas (TCGA)6 (Supplementary Table 1). The four representative methods 

include two popular methods limma-voom10,11 and NOISeq12, a new method dearseq13 (which 

claimed to overcome the FDR control issue of DESeq2 and edgeR on large-sample-size data), 

and the classic Wilcoxon rank-sum test14. Note that DESeq2, edgeR, and limma-voom are 

parametric methods that assume parametric models for data distribution, while NOISeq, dearseq, 

and the Wilcoxon rank-sum test are non-parametric methods that are less restrictive but require 

large sample sizes to have good power. (The GTEx project used DESeq2 and NOISeq for DEG 

identification.) Using permutation analysis on these datasets, we found that DESeq2 and edgeR 

consistently showed exaggerated false positives (reflected by their underestimated FDRs) 

compared to the other four methods (Supplementary Fig. 4-15).  

 

While the permutation analysis created true negatives (non-DEGs) to allow FDR evaluation, it 

did not allow the evaluation of DEG identification power, which requires true positives (DEGs) 

to be known. Hence, we generated 50 (identically and independently distributed) semi-synthetic 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 10, 2021. ; https://doi.org/10.1101/2021.08.25.457733doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.25.457733
http://creativecommons.org/licenses/by-nc/4.0/


datasets with known true DEGs and non-DEGs from each of the 12 GTEx and TCGA datasets. 

Then we used these semi-synthetic datasets to evaluate the FDRs and power of the six DEG 

identification methods (Methods). In the comparison between 386 heart left ventricle samples 

and 372 atrial appendage samples in a GTEx dataset, only the Wilcoxon rank-sum test 

consistently controlled the FDR under a range of thresholds from 0.001% to 5% (Fig. 2A). In 

contrast, the other five methods, especially DESeq2 and edgeR, failed to control the FDR 

consistently. Moreover, we compared the power of the six methods conditional on their actual 

FDRs (Methods). (Due to the tradeoff between FDR and power, power comparison is only valid 

when FDR is equal.) As shown in Fig. 2A, the Wilcoxon rank-sum test outperformed the other 

five methods in terms of power.  

 

Finally, to investigate how sample sizes influence the performance of the six methods, we down-

sampled each semi-synthetic dataset to obtain per-condition sample sizes ranging from 2 to 100. 

Again, only the Wilcoxon rank-sum test consistently controlled the FDR at all sample sizes (Fig. 

2B). Granted, at the FDR threshold 1%, the Wilcoxon rank-sum test had almost no power when 

the per-condition sample size was smaller than 8—an expected phenomenon for its 

nonparametric nature. However, when the per-condition sample size exceeded 8, the Wilcoxon 

rank-sum test achieved comparable or better power compared with the three parametric methods 

(DESeq2, edgeR, and limma-voom) and the new method dearseq, and it clearly outpowered 

NOIseq (Fig. 2B). These observations were consistent across all 600 semi-synthetic datasets 

(Supplementary Figs. 16-26). In summary, when the per-condition sample size is less than 8, 

parametric methods may be used because their power advantage may outweigh their possibly 
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exaggerated false positives; however, for large-sample-size data, the Wilcoxon rank-sum test is 

the best choice for its solid FDR control and good power. 

 

The three parametric methods—DESeq2, edgeR, and limma—have long been dominant in 

transcriptomic studies. For example, the GTEx project, a consortium effort studying gene 

expression and regulation in normal human tissues, used DESeq2 coupled with NOISeq to find 

DEGs between tissues15; several studies applied edgeR or limma to TCGA RNA-seq data to find 

DEGs between tumor and normal samples16-18; with increasing attention on the immunotherapy, 

researchers used DESeq2 to detect DEGs between responders and non-responders of the 

immunotherapy8,19. However, while the three parametric methods were initially designed to 

address the small-sample-size issue, these population-level studies had much larger sample sizes 

(at least dozens) and thus no longer needed restrictive parametric assumptions. Moreover, 

violation of parametric assumptions may lead to ill-behaved P-values and thus failed FDR 

control20, an issue independent of the sample size.  

 

In this study, we showed the superiority of the Wilcoxon rank-sum test, a powerful and robust 

non-parametric test also known as the Mann-Whitney test developed in the 1940s14,21-24, for 

analyzing large-sample-size RNA-seq datasets. The Wilcoxon rank-sum test is known to be 

especially powerful for skewed distributions25, as is the case with gene expression counts 

measured by RNA-seq. Our results also echo the importance of verifying FDR control by 

permutation analysis. Beyond RNA-seq data analysis, our study suggests that, for population-

level studies with large sample sizes, classic non-parametric statistical methods should be 

considered as the baseline methods for data analysis and new method benchmarking.  
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Finally, we note that, unlike DESeq2, edgeR, limma-voom, and dearseq, the Wilcoxon rank-sum 

test is a non-regression-based method, making it unable to adjust for confounders. Hence, to use 

the Wilcoxon rank-sum test for DEG identification, researchers must first normalize RNA-seq 

samples to remove possible confounder effects. Another limitation of the Wilcoxon rank-sum 

test is that it only applies to two-condition comparisons. To compare more than two conditions 

on population-level data, we recommend the Kruskal–Wallis test, also known as the one-way 

ANOVA on ranks26. 
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Fig. 1. Exaggerated false DEGs identified by DESeq2 and edgeR from anti-PD-1 therapy 

RNA-seq datasets.  

A. Barplot showing the average numbers of DEGs identified from 668 permuted datasets. The 

error bars represent the standard deviations of 668 permutations. The red dots indicate the 

numbers of DEGs identified from the original dataset. 

B. The distributions of the number of permuted datasets where a gene was mistakenly identified 

as a DEG. The percentages corresponding to the numbers are listed in parentheses below the 

numbers. 

C. Barplot showing the average numbers of DEGs identified from both the original dataset and 

the permuted datasets. The error bars represent the standard deviations of 668 permutations. The 

red dots indicate the numbers of DEGs identified from the original dataset. 

D. Percentage of permuted datasets where a DEG identified from the original dataset was also 

identified as a DEG. The genes are sorted by absolute log2(fold-change) in the original dataset in 

decreasing order. The absolute log2(fold-change) values corresponding to the ranks are listed in 

parentheses below the ranks. The line is fitted using the loess method, and the shaded areas 

represent 95% confidential intervals. 

E. GO term enrichment for the DEGs identified from at least 10% permuted datasets. The top 5 

enriched biological processes GO terms are shown. The analyses were performed using R 

package clusterProfiler. P.adjust represents the adjusted p-value using the Benjamini & 

Hochberg method. 

F. Boxplots showing the poorness of fitting the negative binomial model to the genes identified 

by DESeq2 or edgeR as DEGs from any permuted datasets vs. all the other genes. The poorness 

of fit for each gene is defined as its negative log10(P-value) from the goodness-of-fit test for the 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 10, 2021. ; https://doi.org/10.1101/2021.08.25.457733doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.25.457733
http://creativecommons.org/licenses/by-nc/4.0/


negative binomial distributions estimated by DESeq2 or edgeR. The p-value in each panel was 

calculated by the Wilcoxon rank-sum test to compare the two groups of genes' poorness-of-fit 

values. 

 

 

Fig. 2. Wilcoxon test has the best FDR control and power on heart left ventricle vs. atrial 

appendage GTEx datasets with synthetic ground truths. 

A. The FDR control (left panel), power (middle panel) given the claimed FDRs, and power given 

the actual FDRs (right panel) under a range of FDR thresholds from 0.001% to 5%.  

A

0

.001

.01

.1

1
5

20

25

50

75

100

25

50

75

100

0

1000

2000

0

1000

2000

0 .001 .01 0.1 1 5 20
Claimed FDR (%) Actual FDR (%)

Ac
tu

al
 F

D
R

 (%
)

Po
we

r (
%

)

Po
we

r (
%

)

# of identified true D
EG

s

B

25

50

75

100

25

50

75

100

0

1000

2000

0

1000

2000

2 4 8 20 40 100 2 4 8 20 40 100 2 4 8 20 40 100
Sample Size Sample Size Sample Size

Ac
tu

al
 F

D
R

 (%
)

Po
we

r (
%

)

Po
we

r (
%

)
Claimed FDR = 10% Claimed FDR = 10% Actual FDR = 10%

25

50

75

100

25

50

75

100

0

1000

2000

0

1000

2000

2 4 8 20 40 100 2 4 8 20 40 100 2 4 8 20 40 100
Sample Size Sample Size Sample Size

Ac
tu

al
 F

D
R

 (%
)

Po
we

r (
%

)

Po
we

r (
%

)

Claimed FDR = 1% Claimed FDR = 1% Actual FDR = 1%

dearseq

DESeq2

edgeR

limma-voom

NOISeq

Wilcoxon

Claimed FDR (%)
0 .001 .01 0.1 1 5 20 0 .001 .01 0.1 1 5 20

# of identified true D
EG

s

# of identified true D
EG

s
# of identified true D

EG
s

0

.001

.01

.1

1
5

20

0

.001

.01

.1

1
5

20

# of identified true D
EG

s
# of identified true D

EG
s

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 10, 2021. ; https://doi.org/10.1101/2021.08.25.457733doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.25.457733
http://creativecommons.org/licenses/by-nc/4.0/


B. The FDR control (left), power given the claimed FDRs (middle), and power given the actual 

FDRs (right) for a range of per-condition sample sizes from 2 to 100, under FDR thresholds 10% 

(top panels) and 1% (bottom panels). The claimed FDRs, actual FDRs, and power were all 

calculated as the averages of 50 randomly down-sampled datasets. 
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