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Abstract  

 As the neuroimaging field moves towards detecting smaller effects at higher spatial 

resolutions, and faster sampling rates, there is increased attention given to the deleterious 

contribution of unstructured, thermal noise. Here, we critically evaluate the performance of a recently 

developed reconstruction method, termed NORDIC, for suppressing thermal noise using datasets 

acquired with various field strengths, voxel sizes, sampling rates, and task designs.  

Following minimal preprocessing, statistical activation (t-values) of NORDIC processed data 

was compared to the results obtained with alternative denoising methods. Additionally, we examined 

the consistency of the estimates of task responses at the single-voxel, single run level, using a finite 

impulse response (FIR) model. To examine the potential impact on effective image resolution, the 

overall smoothness of the data processed with different methods was estimated. Finally, to determine 

if NORDIC alters or removes important temporal information, we employed an exhaustive leave-p-out 

cross validation approach, using FIR task responses to predict held out timeseries, quantified using 

R2.  

After NORDIC, the t-values are increased, an improvement comparable to what could be 

achieved by 1.5 voxels smoothing, and task events are clearly visible and have less cross-run error. 

These advantages are achieved in the absence of large changes in estimates of spatial smoothness. 

Cross-validated R2s based on the FIR models show that NORDIC is not measurably distorting the 

temporal structure of the data and is the best predictor of non-denoised time courses. The results 

demonstrate that analyzing 1 run of data after NORDIC produces results equivalent to using 2 to 3 

original runs and that NORDIC performs equally well across a diverse array of functional imaging 

protocols. 
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Significance Statement 

 For functional neuroimaging, the increasing availability of higher field strengths and ever higher 

spatiotemporal resolutions has led to concomitant increase in concerns about the deleterious effects 

of thermal noise. Historically this noise source was suppressed using methods that reduce spatial 

precision such as image blurring or averaging over a large number of trials or sessions, which 

necessitates large data collection efforts. Here, we critically evaluate the performance of a recently 

developed reconstruction method, termed NORDIC. Across datasets varying in field strength, voxel 

sizes, sampling rates, and task designs, NORDIC produces substantial gains in data quality. Both 

conventional t-statistics derived from general linear models and coefficients of determination for 

predicting unseen data are improved, while avoiding meaningful increases in typical estimates of 

image smoothness or substantial losses of temporal information.  
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Introduction 

The growing use of high (3 to 7 Tesla) and ultrahigh field (UHF, defined as ≥7 Tesla) magnetic 

fields for functional magnetic resonance imaging (fMRI) of brain activity has led to increases in the 

available signal-to noise-ratio (SNR) and subsequently corresponding interest in smaller voxel sizes 

and/or shorter repetition times. Early fMRI experiments tended to sample units of tissue that were on 

the order of 30 µL in voxel volume, a volume that potentially contains millions of neurons. In contrast, 

contemporary UHF high resolution fMRI studies, enabled by the significantly higher SNR and 

functional contrast-to-noise ratios (fCNR) available at UHF (Uğurbil, 2018, 2014), have attained 

resolutions that have ~0.5 µL voxel volumes (e.g. ~0.8 mm isotropic voxel dimensions). These 

developments, together with the early demonstration that neurovascular coupling has specificity at 

the level of mesoscopic scale organizations of the brain (Duong et al., 2001; Ugurbil, 2016), have led 

to a series of fMRI studies on cortical columns and layers (reviews (De Martino et al., 2018; Dumoulin 

et al., 2018; Finn et al., 2021; Lawrence et al., 2019; Norris and Polimeni, 2019; Polimeni and Uludağ, 

2018; Weldon and Olman, 2021; Zaretskaya, 2021)). The use of high resolution functional imaging, 

largely initiated by the imaging of orientation domains together with ocular dominance columns for the 

first time in the human brain (Yacoub et al., 2008) and other fine scale organizations (e.g. (Huber et 

al., 2020; Stringer et al., 2011)) is growing more common.  

The small voxel volumes in such high-resolution fMRI studies, however, have pushed the SNR 

of individual images and consequently the temporal SNR (tSNR) of the fMRI time series into a low 

SNR regime where the detectability of the functional responses become a major challenge. With this 

low SNR the thermal noise of the MR measurement begins to dominate the tSNR over signal 

fluctuations induced by physiological processes (often referred to as “physiological noise”) 

(Triantafyllou et al., 2011, 2005). Similarly, the use of highly accelerated fMRI approaches, introduced 

for rapid coverage of large volumes at high spatial resolution using UHF (Moeller et al., 2010; Uğurbil 

et al., 2013), has increasingly become the method of choice for data acquisition. These methods, 
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popularized by the Human Connectome Project (Smith et al., 2013; Uğurbil et al., 2013), also push 

gradient echo (GE)-based fMRI data towards the thermal noise-dominated regime as repetition times 

and, consequently, flip angles and the signal magnitude detected in each image decreases (Smith et 

al., 2013; Uğurbil et al., 2013). While rapid sampling has led to a greater understanding of neural 

functioning and the BOLD response (Dowdle et al., 2021a; Polimeni and Lewis, 2021), it is not 

without consequences. The spatially non-uniform noise amplification introduced by parallel imaging 

reconstructions (i.e., the g-factor noise (Pruessmann et al., 1999)) further exacerbates the thermal 

noise penalty (Pruessmann et al., 1999; Todd et al., 2017). The resulting low SNR regime leads to 

difficulties in estimating the fine scale detail of the hemodynamic response, a critical goal given the 

variability of the hemodynamic response across large (Gonzalez-Castillo et al., 2012; Handwerker et 

al., 2004; Taylor et al., 2018) and small (Warren et al., 2014) regions of the brain. While there are 

potential statistical benefits for thermal noise dominance in meeting parametric assumptions in fMRI 

analyses (Wald and Polimeni, 2017), most researchers aim to remove it.  

Unfortunately, the thermal noise associated with the MR measurement is not directly targeted 

by the various denoising approaches intended to suppress the contributions of structured, i.e. non-

white, noise in an fMRI time series, emanating from physiological processes (e.g., (Bianciardi et al., 

2009; Glover et al., 2000; Hu and Kim, 1994; Kay et al., 2013; Lund et al., 2006; Shmueli et al., 

2007)), low-frequency signal drift, or motion. Spatial filtering (i.e. “smoothing”), on the other hand, 

does reduce the thermal noise contribution and hence is a commonly used approach to improve 

tSNR (Triantafyllou et al., 2006), and is a valuable approach when not fine detail is not desired (Wald 

and Polimeni, 2017). However, the addition of smoothing is often undesirable in high resolution fMRI 

as it results in substantial losses in spatial precision (Triantafyllou et al., 2006). Similarly, combining 

data from several different subjects reduces noise in general via group averaging; however, this 

option is not a desirable approach for high resolution studies because it inevitably incurs some 

degree of spatially non-uniform complex blurring nor is it valid for studies focused on single subject 

responses or inter-subject variability. Notably, in single subject statistical analysis approaches, such 
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as multivoxel pattern analyses (MVPA) (Haxby et al., 2014) or encoding models (Kay et al., 2008; 

Naselaris et al., 2011; Vu et al., 2011), separate runs are typically leveraged in order to determine 

cross validated accuracy. In SNR-starved regimes in which neither smoothing nor group averaging 

are possible, these methods become difficult to implement, thereby limiting the range of possible 

scientific questions that can be addressed. 

The growing focus on more spatially and temporally precise fMRI measurements, has recently 

led to the development of a denoising method, Noise Reduction with Distribution Corrected 

(NORDIC) PCA (Moeller et al., 2021; Vizioli et al., 2021). NORDIC suppresses Gaussian distributed 

noise associated with the MR detection process in repetitively acquired images, reducing thermal 

noise contributions throughout the image. The goal of NORDIC is to focus only on removing 

components of the timeseries which cannot be distinguished from Gaussian distributed noise, leaving 

the aforementioned non-white noise sources, such as physiological effects, signal drift or head motion 

as well as signals of interest, intact.  

 Prior work (Vizioli et al., 2021) with NORDIC primarily focused on submillimeter 7T fMRI data 

with an eye towards examining the functional point spread on the cortical surface of the primary visual 

cortex in response to a block design. The findings on such data were encouraging, suggesting no 

loss in functional precision or signal magnitude. However, it remained unclear if those findings would 

generalize to other fMRI acquisition paradigms and sequences. In this work, we further evaluate 

NORDIC's utility as a denoising method for fMRI and compare it to a number of other noise 

suppression approaches using a variety of different datasets, which vary in field of view (up to whole 

brain), voxel size (0.8 to 2mm), repetition time (0.35 to 2.1s), field strength (3 and 7 Tesla), and use 

both block and event related task designs. The results obtained on 8 data sets (obtained from 3 

subjects) provide a more detailed analysis of the NORDIC method and its generalizability. We find 

that NORDIC consistently leads to substantial gains in fMRI under a conventional generalized least-

squares (GLSQ) framework and produces better single-run, single-voxel hemodynamic response 

function (HRF) estimates. Critically these effects are achieved with negligible increases of estimates 
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of image smoothness. Collectively our findings suggest that these benefits are obtained while 

minimally affecting the intrinsic information present in the fMRI signal. 

Methods 

Stimuli and Datasets 

For this manuscript, a total of 8 datasets (DS1 – 8) obtained from 3 subjects were considered 

(1 subject scanned 6 times, 2 others scanned once each). Two datasets (DS1,2) were examined 

under a different analytical framework in prior work, while portions of 4 others (DS3,4,6,7) were used 

for visualization purposes in supplemental material (Vizioli et al., 2021), but otherwise not analyzed. 

These datasets were chosen for their variability across multiple dimensions including field strength (3 

or 7 T), sequence parameters (e.g., varying TR or voxel size), type of experimental design (block vs 

event) and field of view. For all stimuli, participants viewed the images though a mirror attached to the 

head coil. Datasets 1, 2, 5, 6, and 7 (DS1, DS2, DS5, DS6, and DS7) are block designs which used a 

flashing checkerboard (8Hz) positioned either in a center position (‘target’) or in a surround with the 

center cut out (“surround”), centered on a gray background. The center stimulus subtended 

approximately 6.5 degrees of visual angle, as did the width of the surround border. Stimuli were 

presented in a standard 12 s on 12 s off block design paradigm. At 7T, stimuli were presented on a 

Cambridge Research Systems BOLDscreen 32 LCD monitor positioned at the head of the scanner 

bed (resolution 1920 x 1080 at 120 Hz), whereas at 3T the stimuli were presented using a NEC 

NP4000 projector, using a projection screen placed at the end of the bore of the MR scanner 

(resolution 1024 x 768 at 60 Hz).  

Dataset 3 (DS3) used an event related design in which full-color, intact and phase (of the 

image content) scrambled faces were presented. Stimuli were centered on a gray background. 

Stimuli were on screen for 2 seconds and separated by at least a 2 s interstimulus interval (ISI). For 

all runs, blank trials (2 per run) were included to jitter the stimulus presentation.  
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For Dataset 4 (DS4), we used an event related design with grayscale images of faces (20 

male, 20 female) presenting neutral expressions. We manipulated the phase coherence of the image 

of each face from to produce 5 visual conditions, producing in 200 unique stimuli (5 visual conditions 

x 20 identities x 2 genders), as in previous work (Dowdle et al., 2021b). Stimuli approximately 

subtended 9° of visual angle. Stimulus presentation began and ended with a 12 s fixation period and 

had a duration of approximately 3 mins and 22 s. Within each run, we showed 40 images, each 

presented for 2 s, with a 2 s ISI as well as 10% blank trials (i.e., 4 s of fixation) randomly interspersed 

amongst the 40 images, effectively jittering the ISI.  

For Dataset 8 (DS8), we used a modified rotating wedge retinotopy paradigm. The frequency 

of ring sweeps was approximately 0.05Hz. The subject maintained fixation on a central point 

throughout the task. The wedge extended from the central fixation point to the edge of the screen, 

with a width of 20 degrees. 

For DS1- 7, stimulus presentation was controlled using Psychophysics Toolbox (3.0.15)-based 

scripts on a Mac Pro Computer. For DS8, the stimulus was controlled using custom, inhouse 

developed software. 

MRI Acquisition 

All functional MRI data were collected with either a 7T Siemens Magnetom System with a 

single channel transmit and 32-channel receive NOVA head coil or a 3T Siemens Magnetom 

Prismafit  system using the Siemens 32-channel head coil. All functional images were obtained using 

T2*-weighted, simultaneous multislice (SMS)/multiband(MB) gradient echo, Echo Planar (GE-EPI) 

(Moeller et al., 2010) as developed and implemented in the Human Connectome Project (Uğurbil et 

al., 2013). 

7T fMRI Data (DS1 to DS5, and DS8). For DS1 and DS2 imaging was restricted to the 

posterior occipital lobe, capturing 42 slices using a right to left phase encoding direction. DS3 images 

captured 42 slices of the occipital pole and ventral temporal lobe using an anterior to posterior phase 
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encoding direction. For DS4 and DS5, whole brain images were collected, with 85 slices using an 

anterior to posterior phase encoding direction, with parameters matched to the HCP 7T Protocol. DS8 

images captured only 32 slices of the occipital pole using a left to right phase encoding direction.  

3T fMRI Data (DS6 and DS7). DS6 was acquired with a higher resolution than typically used 

at 3T studies (1.2 mm isotropic), capturing most of the brain with 100 slices, excluding the 

cerebellum, with anterior-to-posterior phase encoding.  

DS7 was a whole brain study, 72 slices were acquired using an HCP-like 3T protocol. (See 

Table 1 for full details).  
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Field 
(Tesla) 

Voxel 
Size 
(mm) 

TR 
(s) 

TE 
(ms) 

MB 
Factor 

R 
Factor 

FA 
(degrees) Phase 

Encode  
BW 

(Hz/pixel) 

Echo 
Spacing 

(ms) 
Partial 
Fourier 

ISI 
(s) 

Task 
Design Runs 

Average 
Run Length 

(s) Stimulus 
DS1 7 0.8 1.35 26.4 2 3 58.2 R/L 1190 1.0 6/8th 12 Block 8 

 
159.3 Center and 

surround 
flickering 

checkerboard 
DS2 7 0.8 1.35 26.4 2 3 58.2 R/L 1190 1.0 6/8th 12 Block 8 159.3 Center and 

surround 
flickering 

checkerboard 
DS3 7 0.8 1.4 27.4 2 3 78 A/P 1190 1.03 6/8th 2 Event 6 265 Faces, 100% 

and 0% phase 
coherence 

("scrambled") 
with mixed 
gender and 
expression 

DS4 7 1.6 1 22.2 5 2 78 A/P 1925 0.64 7/8th 2 Event 6 205 Faces with 
varying phase 

coherence, 0 to 
40% 

DS5 7 1.6 1 22.2 5 2 78 A/P 1925 0.64 7/8th 12 Block 8 160 Center and 
surround 
flickering 

checkerboard 
DS6 3 1.2 2.1 32.6 4 2 78 A/P 1595 0.76 7/8th 12 Block 9 159.6 Center and 

surround 
flickering 

checkerboard 
DS7 3 2 0.8 37 8 n/a 52 A/P 2290 0.58 n/a 12 Block 8 158.4 Center and 

surround 
flickering 

checkerboard 
DS8 7 1.3 0.35 23 4 2 32 R/L 1865 0.586 6/8 n/a Retinotopy 8 186.55 Rotating 

wedges 

Table 1. Dataset Acquisition and Task Details. Parameters are shown for all 8 datasets considered in the present work. TR: repetition time, TE: echo time, MB 

Factor: Multiband acceleration factor, R Factor: GRAPPA acceleration factor, FA: flip angle, BW: Bandwidth, ISI: Interstimulus interval, s: seconds. 
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Anatomical Imaging: T1-weighted anatomical images were obtained for DS1-DS7 using an 

MPRAGE (Mugler and Brookeman, 1991) sequence (192 slices; TR=1900 ms; FOV: 256 x 256 mm; 

flip angle= 9°; TE= 2.52 ms; spatial resolution 0.8 mm isotropic voxels) which were collected with a 

3T Siemens Magnetom Prismafit system. The anatomical images for DS8 were acquired using a 

MP2RAGE (Marques et al., 2010) sequence (192 slices; TR=4300 ms; FOV: 240 x 225 mm; flip 

angle= 4°; TE= 2.27 ms; spatial resolution 0.8 mm isotropic voxels) collected with a 7T Siemens 

Magnetom scanner. Anatomical images were used only to visualize data and define regions of 

interest (ROIs, see Region of Interest Creation, below). 

Initial MR Image Preprocessing. Two separate reconstruction methods were used in all 

subsequent analyses described below. Following data acquisition, the k-space data files for each 

receive channel produced by the SIEMENS system were saved. These were reconstructed offline (as 

opposed to using the scanners inbuilt reconstruction algorithms) using standard techniques (noise-

decorrelation between channels, zero-filling for partial Fourier, split slice-GRAPPA for joint SMS and 

GRAPPA reconstruction (7x7 kernel), SENSE1 for multichannel combination with ESPIRIT calculated 

sensitivity profiles, and g-factor calculated from the SMS kernels and sensitivity profiles) implemented 

in-house to produce magnitude images with minimal processing, similar to the typical DICOM images 

produced by the default Siemens reconstruction. These minimally processed data are referred to as 

the “Standard” reconstruction, to emphasize the fact that this is a standard or typical reconstruction of 

the magnitude images.  

The second image reconstruction, which is the primary consideration of this manuscript, is 

derived from the same raw k-space files and reconstruction steps, however, we applied additional 

denoising steps that aim to suppress thermal noise with NORDIC (Moeller et al., 2021; Vizioli et al., 

2021). In brief, this method uses a patch based, PCA approach to identify and discard components of 

the data that are indistinguishable from zero-mean, normally distributed (i.e., thermal) noise, using the 

magnitude and complex portions of the MRI signal as input. NORDIC share similarities with existing 

low-rank methods  (Candès et al., 2013; Haldar and Liang, 2011; Meyer, et al., 2020; Thomas et al., 
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2002; Veraart et al., 2016) but differs in key aspects. For example, NORDIC determines a noise 

threshold using noise estimates from the data itself and furthermore does so after correcting for 

spatial variability in noise (“g-factor”). In addition, NORDIC performs phase normalization, and is able 

to use larger patch sizes than comparable methods (Moeller et al., 2021; Vizioli et al., 2021). We 

used the default settings of NORDIC on all datasets, which maintains a minimum 11:1 ratio between 

spatial and temporal dimensions. In the datasets considered here this resulted in patches of size 113 

voxels for DS1,2; 123 for DS3,5; 143 for DS4, 7; 103 for DS6 and 203 for DS8. We refer to these data 

as “NORDIC” throughout the remainder of the manuscript. The use of an offline reconstruction for 

these data, rather than the typical scanner reconstruction assured that, other than the denoising step, 

all other reconstruction steps were identical.  

In addition to the Standard and NORDIC reconstructions, we also considered a third approach 

referred to as dwidenoise (Cordero-Grande et al., 2019; Veraart et al., 2016) as provided with version 

3.0.0 of MRtrix3 (Tournier et al., 2019), which was applied to the Standard magnitude images. In 

brief, dwidenoise, like NORDIC, also aims to suppress normally distributed noise using a patched-

based denoising approach. Noise components for each patch are estimated on the basis of 

Marčenko-Pastur principal component analysis (MPPCA) which attempts to account for spatial 

variability in the noise. The recommended and validated default settings were used, with the size of 

the patch depending primarily on timeseries length. For DS1, DS2 and DS6, this led to a 53 voxel 

patch size, whereas Datasets DS3, DS4, DS5 and DS7 had a 73 patch size. We chose dwidenoise as 

a comparison as it is in active use and development, with a publicly available implementation. The 

“Standard” data was considered the reference point for further analyses. 

Prior to any additional processing, we examined the noise removed by NORDIC and 

dwidenoise. Specifically, the noise removed by NORDIC was calculated by taking the mean of the 

magnitude of the complex difference between the Standard and NORDIC data. The noise removed 

by dwidenoise residuals was calculated as the absolute value of the mean difference between the 

Standard and dwidenoise data. Maps of the g-factor were derived from the k-space data files. 
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Processing 

All subsequent fMRI processing was performed using AFNI (Cox, 1996) and was identical for 

preparations of the data. For all datasets and denoising methods, we used conventional processing 

steps, with settings chosen to minimize any loss of precision. First, slice timing was corrected by 

using Fourier interpolation, with the first slice as the reference timepoint. Motion correction was then 

performed using the first volume of the first run from the Standard reconstruction as the registration 

target, with the ‘Fourier’ estimation and interpolation option chosen. Using the same target for motion 

correction across all reconstruction methods allows for subsequent voxel to voxel comparisons 

between the different methods. Regardless of whether we used standard or denoised data were used 

as input, the estimated motion parameters are highly similar with an average Pearson’s correlation 

coefficient > 0.99 (See Supplemental Table 2 for all values).  

In order to compare the signal characteristics of NORDIC to more typical approaches that aim 

to reduce thermal noise, we created three additional comparator datasets from the standard data. 

These are 1) data smoothed with a FWHM gaussian kernel equivalent in size to one voxel (hereafter 

labeled “+1 voxel FWHM”), 2) data smoothed with a FWHM gaussian kernel equivalent in size to 1.5 

voxels (“+1.5 voxel FWHM”), and 3) data temporally smoothed (“+temporal smoothing”) using a 

sliding window average approach with window sized between 9 and 10.5 s. 

Data were then scaled voxel-wise to have a temporal mean intensity of 100 per run, which 

eases percent signal change calculations. In order to evaluate the fMRI statistical performance of 

each data set we considered two general linear modeling frameworks. 

Task Event Modeling 

GLM One (Conventional Approach). The scaled data were passed through a generalized 

least squares (GLSQ) regression model using a conventional hemodynamic response. Here we 

specifically used the double gamma hemodynamic response estimate provided with AFNI, “SPMG1”, 
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with approximate peaks at 6 seconds (positive peak) and 17 seconds (negative undershoot). This 

was convolved with the stimulus time courses associated with each event type to produce the 

predictive model. GLSQ regression produced betas (i.e., parameter estimates/activation amplitudes) 

and t-statistics from the model fit for each event on a per run basis for each of the 9 (DS6), 8 (DS1, 

DS2, DS5, DS7), or 6 (DS3, DS4) runs. This was performed using AFNI’s 3dREMLfit, which 

calculates an autoregressive moving average (ARMA(1,1)) model to estimate the temporal 

autocorrelation on a voxel by voxel basis, thereby improving the accuracy of t-statistic estimates 

(Olszowy et al., 2019).  

GLM Two: Finite Impulse Response (FIR) Model. To investigate the temporal information 

present in each functional acquisition, we also used a finite impulse response (FIR) model using 

AFNI’s 3dDeconvolve function with TENT estimators. These are ‘tent’ or ‘hat’ functions which are 

identical to delta functions when the stimuli rounded to each TR. The window for which these 

estimates were created varied between datasets, ranging from 15 to 29.4 seconds out from stimulus 

onset, but was identical between processing methods. This approach uses the repetition of identical 

stimuli within a run to estimate the voxel-by-voxel response to each stimulus class in a flexible 

manner, with no a priori assumptions regarding its specific shape. 

The events for DS3 were separated by 1-second steps. Thus, the data for the FIR model was 

simultaneously slice time corrected and up-sampled to a 1-second sampling rate using in-house code 

prior to processing in AFNI. This step was performed in an identical manner for the Standard, 

NORDIC, and dwidenoise data, and was performed only for the FIR model. Though we show time 

courses for the HRF estimates for only the “Target” condition, the full model was used for cross 

validated prediction accuracy introduced below (see Temporal Precision).  

Region of Interest (ROI) Creation 

Anatomical ROIs: Anatomical images for each dataset were segmented into different tissues 

and skull-stripped using the Segment tool from SPM12 (Ashburner and Friston, 2005). These skull-
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stripped anatomical images were aligned (rigid-body) to the mean of the first run of the standard data, 

after it had undergone motion correction, using a local Pearson correlation estimator (Saad et al., 

2009) (3dAllineate). We then applied the rigid-body transformations to the first three tissue class 

images, corresponding to gray matter, white matter and a mixture of CSF and vasculature (hereafter 

just CSF) such that they overlapped with the functional imaging data. The aligned tissue probability 

maps were then converted to binary masks, with a threshold of 0.95 probability for each class and 

then resampled to match each dataset’s EPI grid. These ROIs were then further restricted to voxels 

that contained sufficient functional image signal using a binary mask. This binary mask, automatically 

generated during processing, is a contiguous volume produced by an interactively clipping process 

which excludes the background and very low intensity values (3dAutomask) in the functional image. 

This mask will be subsequently described as the “EPI mask”. This masking was performed to 

minimize the amount of each anatomical ROI that includes voxels outside of the acquired field of view 

or overlapped with areas of near-complete signal dropout. These steps produced grey matter, white 

matter, and CSF regions of interest (ROIs) which are aligned to each unique functional dataset. Note 

that no distortion correction was applied to the functional data to minimize any additional blurring. 

Functional ROIs: Multiple ROIs were created using all runs of the Standard data. We used 

the t-statistics derived from the GLSQ model’s fit corresponding to the contrasts of interest from each 

dataset. For all datasets (except DS4, DS8) we created a “Target ROI”, which was created by 

combining the multiple clusters with more than 10 contiguous activated (defined as contact via faces, 

edges, or corners) voxels using a voxel threshold of p<0.001 for contrast of the target stimulus (center 

or faces) vs the alternative stimulus (surround or scrambled faces).  

To arrive at the minimum cluster size threshold of 10 voxels, we estimated the cluster size 

(number of voxels) required to obtain a cluster family wise error rate of p<0.05 using a Monte Carlo 

method as implemented in 3dClustSim. This AFNI tool uses the smoothness estimates of the 

residuals to simulate 10,000 smoothness matched, noise-only datasets. This creates a create a null 

distribution of cluster sizes, from which a cluster size threshold can be obtained. This was done only 
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for the Standard data and these cluster thresholds were only used to control false positives in the 

ROIs and not considered further. For all datasets and contrasts, 10 contiguous voxels at this 

threshold produced clusters that exceed the typical pFWE<0.05 threshold.  

For DS4, which used face stimuli with variable phase coherence, the ROIs were generated 

from a separate localizer analysis of Standard data, using Faces greater than Scrambled Faces 

contrast. No functional ROIs were created for DS8, as it was only used for the frequency spectrum 

analysis (see Temporal Precision Evaluation).  

In a similar way, a “Non-Target” ROI was also created by selecting all clusters greater than 10 

contiguous voxels at a voxel-wise threshold of p<0.001 and positive signal associated with the 

alternative condition, that is, surround or scrambled faces, only. The use of these two different 

contrasts produced a complementary selection of voxels. 

Collectively we produced 2 functional ROIs and 3 anatomically derived ROIs, per dataset. 

These were then used to summarize the distribution of the values from other voxel wise measures 

(e.g., t-statistics).  

Spatial Precision Evaluation.  

Global Smoothness: Spatial precision was estimated using smoothness estimates produced 

from each dataset within the previously described EPI mask. These smoothness estimates, produced 

by 3dFWHMx, were conducted for three stages in processing and analysis. This measure is based on 

estimating the spatial autocorrelation function in each of the 3 voxel dimensions within a mask and 

reporting the average for the image volume. Any spatial smoothing introduced by post-acquisition 

data manipulations shows up as an increase in the estimate (in units: mm FWHM) relative to the 

Standard data. As this captures the average smoothness of the entire image volume, we refer to this 

as ‘global smoothness’. Specifically, we calculated global smoothness on each dataset prior to any 

processing, after processing and on the residuals from the conventional GLM. For the first two 

stages, the data were detrended (including removal of the mean) to remove temporal drifts and 
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variation in voxel intensities related to anatomy. Significance was evaluated using paired t-tests 

between the 3 primary types of processing (Standard, NORDIC, dwidenoise).  

Local Smoothness: In addition, we performed an analysis using the AFNI function 

3dLocalACF, which estimates a voxel-wise spatial autocorrelation function, using a spherical local 

neighborhood with a radius of 10 voxels. This tool examines each voxel within a brain mask and 

correlates its timeseries with that of its neighbors. The gaussian + mono-exponential autocorrelation 

function is then fit to the resulting map of Pearson’s correlations, to provide a voxel-by-voxel estimate 

of smoothness. We refer to this as local smoothness since the parameter is estimated on a voxel 

wise basis and is expected to highlight regional variations in image smoothness. As this method is 

highly sensitive to trends within the data, this local smoothness was estimated only on the residuals 

of the conventional GLM. This was done independently per run, and then averaged. Values, in mm 

FWHM, were then summarized in each of our three tissue masks: gray matter, white matter and CSF 

(See Region of Interest Creation).  

Naturally, the GLM residuals used in both the global and local smoothness calculations will 

retain some structure not attributable to thermal noise and not captured by the task and nuisance 

regressors of the GLM, but in working with real-world data, this is the best available approximation to 

structure-free data. 

Temporal Precision Evaluation.  

Fourier Spectrum Analysis: Using DS7 and DS8, which were sampled at 800 and 350ms 

respectively, we performed a fast Fourier transform across time on each independent run of the data, 

doing this for the Standard and NORDIC data. The FFT was performed on the scaled data, which is 

the final output of the magnitude data preprocessing pipelines. To show the frequency spectrums and 

their variability within each tissue class we took the mean of the absolute value across voxels within 

each tissue class (GM, WM, CSF), and then the mean and standard deviation across each 

independent run. We then examined the normalized frequency spectrum within each ROI up the 
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Nyquist frequencies (DS7: 0.625Hz, DS8: 1.429Hz) to determine how NORDIC processing altered 

the frequency spectrum and if physiological frequency peaks remained in the data. For DS7, the CSF, 

gray matter and white matter ROIs contained 13314, 66664 and 42356 voxels respectively. For DS8, 

the CSF, gray matter and white matter ROIs contained 2367, 51797 and 19281 voxels respectively.  

 Cross validation: We used an exhaustive Leave-p-Out permutation approach to evaluate the 

accuracy of the estimated HRF time courses derived from the full FIR model (“GLM Two”, see above) 

and to determine if the NORDIC denoising method altered their temporal structure. Specifically, we 

varied the number of runs, P which ranged between the total number of runs-1 (N-1) and 1 to be used 

as a test set and trained with the remaining runs. Prior to being entered into the model, we projected 

out polynomials (up to order = run duration in minutes - 1) to remove low frequency drift and masked 

the data using the EPI data mask derived from the Standard data.  

In order to limit our analysis to voxels that were plausibly task responsive, we determined the 

overall leave-one-out cross validated coefficient of determination R2 using all runs of each Standard 

dataset in a model with a conventional HRF. This generated one map of R2 across the whole brain for 

each Dataset. This map was used only to summarize the subsequent exhaustive FIR based cross-

validation scheme.  

In each fold, we used N-P runs to estimate the FIR model, constructing a series of betas for 

each stimulus, corresponding to the estimated BOLD response over time to each stimulus on a voxel-

by voxel basis. These estimates were then multiplied by a design matrix for the held-out runs (P) to 

generate predicted timeseries for each voxel. We then determined how well the predicted timeseries 

matched the true timeseries using the coefficient of determination, R2. We first considered the P=N-1 

case, in which one run was used to predict the timeseries of all remaining runs. The R2 (and standard 

error over permutations) of the FIR cross-validation scheme was calculated for voxels ranging from 

5% of variance explained in the conventional model to the max R2 for that dataset.  

For 1≤P≤N-2, we summarized error across permutations using a R2≥15% mask from the 

conventional model. This process was repeated to generate the following three comparisons: 
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Standard predicting Standard, NORDIC predicting NORDIC, and, most importantly, NORDIC 

predicting Standard. This final comparison is significant, as it represents the NORDIC data predicting 

the non-denoised data, which has undergone minimal processing, and retains all of the signals of 

interest, albeit mixed with noise. 

 

Results 

 Three representative datasets (of 8) were selected to present in figures. Unless indicated 

otherwise, the summary metrics provided in the results refer to the mean across 7 datasets (DS1- 7; 

DS8 was only considered for FFT analyses), normalized if necessary (i.e., due to different voxel 

sizes).  

 

Conventional General Linear Model (GLM) results 

Figure 1 shows the distribution of t-values from the conventional GLM analysis on all runs 

combined, using a canonical HRF. Processing with NORDIC leads to an increase in the t-values, 

visible as a large rightward shift in their distribution relative to the data reconstructed with the 

Standard data. The t-values were extracted from an identical ROI, created based on the Standard 

data (See Methods). This increase in t-values is found within both the Target ROI (DS1,DS6: center > 

surround checkerboard; DS3: faces > scrambled) as well as the non-Target ROI (DS1, DS6: 

response to surround checkerboard; DS3: scrambled stimuli only). This effect is consistent across all 

7 Datasets (Supplemental Figure S1); the mean of the one-sided t-statistic across datasets within the 

non-target ROI was 8.7±5.0 for NORDIC and 5.67±3.6 for the Standard Reconstruction. In the Target 

ROI these values were 9.9±4.5 for NORDIC and 6.16±3.6 for Standard.  
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Caption Figure 1. The distributions of t-Statistics from the model using all runs of data are shown. Distributions show the 

t-statistics of voxels from Non-Target (left) and Target (right) ROIs, defined as those that displayed significant positive 

stimulus-evoked changes relative to baseline (Non-Target) or in the contrast between Target and Non-Target conditions 

(Target) in the Standard data. Functional maps of the corresponding contrast are shown for visual reference at a t-value 

threshold of 3.3, corresponding to voxel-wise p<0.001 (uncorrected). NORDIC and Standard reconstructed functional 

maps are identified by the color of the border of the two images shown for each dataset (blue=Standard, 

orange=NORDIC). Across all datasets and both ROIs, the distribution of t-statistics for NORDIC was higher, with a 

longer tail.  
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Comparison with Other Noise Reduction Methods.  

To evaluate the relative performance of NORDIC compared to other methods that seek to 

reduce normally distributed noise, we ran identical general linear models (GLMs) on data that were 

additionally processed with dwidenoise (Cordero-Grande et al., 2019; Veraart et al., 2016), spatially 

(1 and 1.5 voxels FWHM) or temporally (sliding window ~10s) smoothed following preprocessing 

(See Methods). Here we only consider the Target ROI. T-Statistic distributions for DS1, 3, and 6 are 

shown in Figure 2. Results for all datasets are given in Supplementary Figure S2.  

Distributions for NORDIC and Standard are identical to that given in Figure 1, with the mean 

across all datasets at 9.9±4.5 and 6.16±3.6, respectively. The mean for t-statistics for these other 

methods are as follows: 9.2±4.5 for dwidenoise, 8.5±4.2 for 1 voxel of additional smoothing, 10.1±4.9 

for 1.5 voxels of additional spatial smoothing, and 6.6±4.4 for temporal smoothing (Supplemental Fig. 

S2).  

  Temporal smoothing appears to confer minimal benefits with respect to (autocorrelation 

corrected) t-statistic distributions for the block designs used in DS1 and DS6 (Fig. 1); as can be 

expected, it begins to fail as a processing method when used on the fast event related design in DS3, 

yielding t-statistics that decrease and approach zero due to blending the events that are closely 

spaced in time. No such effect is seen in the NORDIC reconstruction, which is in fact right-shifted with 

no negative values. The performance of dwidenoise approaches NORDIC, in terms of t-statistics but, 

as discussed later, has a complex spatial smoothing effect on the data. 
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Caption Figure 2. Distributions of t-statistics from alternative noise reduction methods within the Target ROI. Left 

column shows data from Standard, NORDIC and spatial smoothing with 1 and 1.5 voxel FWHM spatial smoothing. Right 

column compares the same Standard and NORDIC data against temporal smoothing and dwidenoise denoising. T-values 

were extracted from the Target ROI defined using the Standard data. The t-values obtained with NORDIC (Orange, 

dashed) processed data is comparable to the effects of an additional 1 or 1.5 voxels FWHM gaussian smoothing. While 

temporal smoothing (brown) did increase t-statistics for Dataset 1, note that for the fast event-related design (Dataset 3) 
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this led to a temporal blending of neighboring events, leading to positive and negative t-values, an effect not found in 

NORDIC data.  

Effects of Denoising on Global Image Smoothness 

Image smoothness was estimated from the data both prior to and subsequent to processing 

steps that corrected for slice timing and motion (labeled as Pre- and Post-Processing in Figure 3) and 

on the residuals from the conventional GLM (Figure 3) (see Methods). Any spatial smoothing 

introduced by post-acquisition data manipulations shows up as an increase in FWHM relative to the 

Standard data. 

The nominal resolution specified for image acquisition for these datasets was 0.8, 0.8, and 

1.2mm isotropic, respectively. The FWHM measured in the Standard data before any processing 

were 0.887±0.002mm, 0.900±0.003mm, and 1.244±0.002mm, respectively, which is marginally 

higher than the nominal resolution specified for image acquisition. In examining the NORDIC datasets 

for the smoothness prior to any processing, we found a small increase in estimated smoothness 

associated with the NORDIC reconstruction (Table 2, Figure 3). The NORDIC data smoothness, 

relative to the Standard reconstruction values, corresponds to an average increase in estimated 

image smoothness of 5.13% across the 3 datasets shown in Figure 3. For dwidenoise, a much larger 

increase in smoothness was evident, with an estimated FWHM before processing corresponding to a 

22% increase on average. Across all 7 Datasets (Supplemental Figure S4), NORDIC led to a 5.6% 

average increase in estimated image smoothness, whereas dwidenoise led to a 16% increase in 

image smoothness, prior to motion correction and slice timing. 

  

Before Processing (‘Pre’) 

  

  

Post Processing 

  

  

Residuals 

  

DS1 DS3 DS6 DS1 DS3 DS6 DS1 DS3 DS6 

Standard 0.89±0.002 0.9±0.003 1.24±0.002 0.89±0.006 0.91±0.012 1.25±0.006 0.85±0.004 0.87±0.004 1.22±0.002 

NORDIC 0.92±0.009 0.92±-0.01 1.35±0.006 0.91±0.009 0.94±0.024 1.31±0.012 0.86±0.009 0.89±0.01 1.3±0.014 

dwidenoise 1.02±0.003 0.99±0.009 1.78±0.039 0.98±0.004 0.98±0.008 1.49±0.048 0.92±0.005 0.94±0.009 1.36±0.015 

+1 Voxel 

FWHM 
 

- - - 1.33±0.005 1.34±0.012 1.85±0.006 1.33±0.005 1.3±0.015 1.83±0.004 

+1.5 Voxel 

FWHM 
 

- - - 2.1±0.007 2.05±0.014 2.9±0.01 2.1±0.007 2.01±-0.012 2.9±0.006 
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Table 2. Estimated Smoothness in millimeters (FWHM). The first set of columns shows the estimated smoothness 

before any additional processing, within a brain mask made from the first run. The next set shows the estimated 

smoothness after motion correction and slice timing, with the bottom two rows reporting the effects of explicit, intentional 

smoothing. The final set of columns shows the estimated smoothness of the residuals from the conventional GLM. Across 

all processing timepoints the NORDIC data is minimally smoother than the Standard data. Values are mean across runs, 

plus/minus standard deviation. 

 

Following the pre-processing steps, which were identical for all subsequent applications of 

“denoising”, smoothness estimates remained similar for the 3 datasets reported here (Column 2 

Table 2, Figure 3). The mean increase in estimated smoothness for all 7 datasets, relative to the 

Standard post-processed data, was estimated to be larger by 3.3% for NORDIC, 9.3% for 

dwidenoise, 51% for 1 additional voxel of smoothing, and 140% for 1.5 voxels of smoothing.  

Following a conventional GLM, the mean increase in estimated smoothness of the residuals 

for all 7 datasets, relative to the Standard post-processed data, was 3.7% for NORDIC, 8.0% for 

dwidenoise, 52.7% for 1 additional voxel of smoothing, and 142.8% for 1.5 additional voxels of 

smoothing.  

For all processing stages, the increase in estimated smoothness of NORDIC was significant 

(all p<<0.001), as was the increase in estimated smoothness due to dwidenoise (all p<<0.001). In 

addition, NORDIC was significantly less smooth at all stages compared to dwidenoise processed data 

(all p<0.001).  
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Caption Figure 3. Estimated spatial smoothness in mm (FWHM) at various processing stages for each method. Prior to 

processing (left), NORDIC results in an average increase in 5.1% in smoothness and dwidenoise results in an increase of 

22.4% on average. After processing, but prior to the GLM (middle) this trend remains. Note that the image smoothness of 

the Standard, NORDIC, and dwidenoise data are substantially below the level of the additional 1 or 1.5 voxels of 
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additional smoothing. These trends remain the same for the residuals (right) after the conventional GLM. Error bars 

indicate standard deviation over runs. 

 

Effects of Denoising on Local Image Smoothness  

Local smoothness estimates, in mm FWHM, are presented in Figure 4. We focus on the 

0.8mm high resolution Datasets (DS1 – DS3) for which spatial precision is most important. The first 

column in Figure 4 shows the slice presented in the subsequent columns. Visual inspection of the 

next 3 panels shows that the local smoothness varies across the brain and tissue classes in the 

residuals of the task GLM; such a variation can be expected due to processes such as spatially 

correlated spontaneous neuronal activity (e.g. (Smith et al., 2009)) or the propagation of the high 

temporal fluctuations associated by veins (Chen et al., 1999; Kim et al., 1994; Zhao et al., 2006) to 

neighboring voxels due to the BOLD effect. These effects were minimal in the Standard data (Fig. 4A, 

2nd row from left), though punctate regions of high local smoothness, reminiscent of blood vessel 

cross sections, were visible likely as a result of the aforementioned, temporally correlated fluctuations 

associated with veins.  

Following NORDIC processing, voxels within regions corresponding to white matter have 

similar or reduced spatial correlation of temporal signatures (Fig. 4A and 4B), whereas gray matter is 

more variable across these presented datasets; the punctate regions present in the Standard are now 

more clearly visible (Fig.5A, 3rd row from left). Following dwidenoise, there is a general increase in the 

local FWHM estimates across the entire brain (Fig.5A, 4th row from left, and Fig. 4B). The 

distributions of the local smoothness estimates for all voxels within each tissue class from 

segmentation are shown in Figure 4B. Across the three high resolution (0.8mm isotropic) datasets 

shown, the mean FWHM with the gray matter mask was 0.87±0.02mm for Standard, 0.87±0.05mm 

for NORDIC, and 0.96±0.0mm for dwidenoise. The mean FWHM in white matter was 0.90±0.02mm 

for Standard, 0.89±0.04mm for NORDIC and 0.93±0.06mm for dwidenoise. The mean FWHM in CSF 
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was 0.88±0.04mm for Standard, 0.91±0.04mm for NORDIC and 0.98±0.03mm for dwidenoise (see 

Supplemental Table S1 for individual dataset values).  

Across all 7 datasets, relative to the Standard data, the mean local smoothness estimates for 

NORDIC were 2.9% smaller in gray matter, 9.5% smaller in white matter and 11.7% larger in CSF (all 

p<0.001). For dwidenoise, smoothness estimates were 2.8% greater in gray matter, 7.9% smaller in 

white matter and 14.3% larger in CSF (all p<0.001). For all tissue classes, NORDIC had significantly 

lower estimates of local smoothness relative to dwidenoise (all p<0.001). 

 

 

Caption Figure 4. Local smoothness estimated from GLM residuals, across all runs. A) Selected slices and local 

smoothness estimates, in FWHM mm. The leftmost panel shows the selected EPI slice. The next three panels show the 

estimated, voxel-wise (local) spatial smoothness for the three different processing methods, Standard (blue border), 

NORDIC (orange) and dwidenoise (green), with the scales identical between the different processing types. Note that the 

local spatial smoothness is often highest in dark areas of the EPI image, likely associated with veins. B) Full 

distributions of voxel-wise local smoothness estimates within different tissue classes. These kernel density estimates 

show the distributions of the local spatial smoothness estimates in tissue classes derived from a T1-weighted anatomical 

image for Standard (blue), NORDIC (orange) and dwidenoise (green). Local smoothness is somewhat decreased 

following NORDIC, except within the CSF mask. All datasets had a prescribed resolution of 0.8mm isotropic.  
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Spatial Characteristics of Extracted Noise  

 Following image reconstruction and denoising, we first examined the spatial characteristics of 

the noise amplification due to accelerated image acquisition ('g-factor') as well as the noise removed 

from the data timeseries by NORDIC and dwidenoise. Figure 5 shows the images for 3 data sets 

comparing the temporal mean of the extracted noise from the first run with the maps of the g-factor 

produced from the raw k-space data. The g-factor maps essentially reflect the spatial distribution of 

the thermal noise component in the data with the spatially non-uniform amplification that comes from 

the use of parallel imaging. NORDIC processed data demonstrate that the image of what is removed 

looks similar to the g-factor map, without any hint of brain related structures or edges. In contrast, 

anatomical boundaries are visible in the dwidenoise data.  
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Caption Figure 5. Comparing Residuals from Denoising Methods. The first column shows the selected views using the 

reconstructed EPI images. The next column shows the g-factor maps calculated from the raw k-space data. The last two 

columns show the temporal mean (absolute values) of the extracted noise from the first run for NORDIC (column 3) and 

dwidenoise (column 4).  
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Evaluating temporal precision 

Fourier Analysis: The normalized power spectra for DS7 and DS8 show that denoising by 

NORDIC results in a wide reduction in power across frequency bands, with the effects most apparent 

at higher frequencies where thermal noise is the dominant noise source (Fig. 6). This effect is most 

visible in DS8, which was collected at a TR of 350ms. At this sampling rate, the frequency associated 

with cardiac noise (~1Hz) is clearly visible in the data and clearer after NORDIC processing. The task 

related frequency (0.05Hz) is also more pronounced after NORDIC for DS8. Though this effect is 

most visible in the gray matter partition, it is also visible in the white matter. This is likely a 

consequence of both partial volume effects and imperfect ROI overlap between the anatomically 

derived tissue segmentation and the distorted EPI images.  
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Caption Figure 6. Frequency Plots from FFT analysis. Panel A) Normalized power spectra from DS7, a 3T, HCP-like 

acquisition with 800ms TR. NORDIC processing reduces power throughout most frequency bands, with effects such as a 

task harmonic (~0.2 Hz) and the respiratory band (~0.3 Hz) becoming more visible. Insets show power from 0.01 through 

0.2. Panel B) Normalized power spectra from DS8, a rapidly sampled acquisition with 350ms TR. The effect of NORDIC 

in broadly reducing power remains pronounced throughout higher frequencies. Here the respiratory and cardiac signals 

are clear at ~0.3 and ~1 Hz respectively. In the gray matter, a clear peak at 0.05Hz, corresponding the task frequency is 

also clearer after NORDIC processing (see inset). Shading shows standard deviation across independent runs for both A 

and B.  
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Cross Validation: Following NORDIC processing, estimates of single-run and single voxel 

HRFs from the FIR model were markedly improved. We find that following processing with NORDIC, 

the FIR time courses are more consistent with typical hemodynamic-like responses (i.e., approximate 

a double gamma) and display, on average, 33% less variability across runs (Supplemental Table 3 

shows average variability for each dataset within the Target ROI). To see the origin of these 

improvements, we consider 81 voxels selected from DS1 focusing on an area that features both 

target and non-target sensitive voxels. Figure 7A (top row) shows the underlying data and activation 

maps from the conventional GLM across all runs of the Standard processed data, highlighting in the 

inset containing the 81 voxels considered for Figures 7B and 7C. Visual inspection of individual voxel 

time courses (with activation map overlaid) from a single run (the first run) of DS1 in Figure 7B shows 

that the reduction in noise from the NORDIC method (right panel) does not lead to a spread of the 

activation (consistent with the negligible change in spatial smoothness) but instead reduces the noise 

level such that stimulus-coupled signal changes becomes more visible. The selected 81 voxels 

contain responses to the target (indicated by #1, #2), responses to target and surround (within grey 

boundary), and responses only to the surround (indicated by #3). Despite identical voxels being 

selected for the Standard data (left panel), stimulus-evoked responses are difficult to see. Though the 

spatial maps presented in Figure 7A (upper row) was derived from the full 8-runs, the task events are 

visible in the individual voxels of the single run after NORDIC processing (Fig. 7B, right panel) but 

generally not in the Standard. Section C shows response estimates from an finite impulse response 

(FIR) model for the selected voxels, showcasing improvements in single-run, single voxel FIR 

estimates. 
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Caption Figure 7. Example of activation, improved time courses and FIR estimates in run 1 of DS1, Panel A, upper row 

Different views of the area under consideration from Standard reconstruction: Left column shows the mean GE-EPI 

values for the area under consideration. Right shows the activation amplitude (-12 to 12 % signal change) in the selected 

slice for all runs, Center > Surround from the Standard data (map threshold from t-stat ≥ 3.3). Inset boxes in panel A show 

the 81 voxels considered in Panel B. B) Time courses from first run for 81 voxels. To visualize task responsive voxels, 

we shade them based on the contrast from all runs of Standard data, as seen in Panel A, right. The stimulus-evoked signal 

amplitude changes associated with the three surround and the three target stimulus epochs are clearly visible in the 

NORDIC processed (Right) timeseries of the corresponding voxels but are largely invisible in the Standard (Left) data due 

to high noise levels. C) Single Run FIR Estimates for the Target Condition. Responses to the target (center) are 

illustrated in selected voxels 1 and 2 for individual runs are shown. The final columns show the across-run average and 

standard deviation respectively. Shading in the across-run average plot shows standard deviation from the mean, which is 
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also plotted separately for clarity (note that the deviation associated with the Standard data far exceeds that of NORDIC). 

Voxel 3, which is sensitive to the surround condition, remains closer to the expected zero amplitude (i.e., non-responsive). 

This is particularly true for NORDIC processed data, which is associated with lower standard deviation. 

 

 

To further investigate whether NORDIC processing does indeed preserve the inherent signal 

present in the fMRI data (i.e., only suppressing thermal noise), we considered an exhaustive Leave-p-

Out cross validation scheme to determine how effectively FIR model results could predict held-out 

timeseries quantified with the coefficient of determination, R2 (See Methods). 

Panel A in Figure 8 shows the performance of a single run of Standard and NORDIC data in 

predicting the full timeseries of held out data. In general, the R2 metric increases as voxels with better 

predicative accuracy in the full model are included, with all lines tending to increase from left to right. 

Notably, however, a single run of NORDIC is better able to predict the held out runs of Standard data 

compared to the Standard data itself. Further, this benefit is maintained even for voxels that had a 

high signal to noise ratio (i.e., far right of the graph). Exemplar estimates from the finite impulse 

response (FIR) model which produces an estimate of the HRF are shown for a single voxel from a 

single run in the lower right of each graph in Figure 8A. As expected for such high-resolution data, the 

estimates from the Standard data (blue) are noisy. However, following NORDIC processing, these 

single run estimates show clear HRF-like properties.  

To quantify this improvement across all voxels and runs we varied the number of testing runs, 

P, from 2 to the number of runs-1 (Figure 8B). Using a threshold of voxels that were able to explain 

15% of the variance in the full model (vertical lines in panel A), we can see that training with one run 

of NORDIC is able to predict a held out timeseries as well as 2 to 3 runs of Standard data (horizontal 

dashed line, Panel B), and two runs of NORDIC are nearly able to predict as well as any number of 

Standard runs combined. Across all thresholds and folds, NORDIC processed data is also always 

able to better predict the timeseries of data that has undergone NORDIC processing - which would be 

the typical use case. These findings apply to all datasets considered (Supplemental Figure S5). 
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Caption Figure 8. NORDIC processing leads to higher cross-validation performance, predicting from a finite impulse 

response model. Panel A) Exhaustive cross validation performance when training on using only one run. Cross validated 

R2 is shown for training on Standard data and predicting held-out Standard data (blue), training on NORDIC data and 

predicting held-out NORDIC data (yellow), and training on NORDIC data and predicting held-out Standard data 

(Orange). X-Axis indicates voxel inclusion threshold derived from leave-one-out cross-validated R2 using a canonical 

HRF on Standard data. Insets show example single voxel single run FIR model estimates for Standard (blue) and 

NORDIC (Orange). NORDIC processing can produce estimates that better predict Standard data compared to Standard 

data itself. Error bars are standard error over permutations. Dashed lines show an R2 threshold of 15% used in panel B. 

Panel B) Leave-p-Out training was repeated for all Ps less than the number of runs, N-1. Colors are as above; the number 

of runs included in the training vary across the X-axis, with bar height reflecting the R2 obtained. Dashed line indicates the 

performance of training on one run of NORDIC data, which is equivalent in cross validation performance to using 2 or 3 

runs of Standard data. Including more data allows Standard models to approach, but not reach 2 to 3 runs of NORDIC 

data. Error bars again show standard error across permutations. Error bars in A indicate standard error and those in B 

indicate standard deviation.  
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Discussion  

Most applications of the MRI method are highly SNR limited. As such, it is common to perform 

some sort of noise mitigation procedure in post-acquisition data processing in order to increase the 

SNR of the data. Although the ultimate goal is to do so without compromising any information, 

conventional methods produce a trade-off, such as reducing effective spatial and/or temporal 

precision. For example, spatial smoothing, an extremely common strategy, achieves SNR gains by 

averaging the data over spatial coordinates of the image, thus inducing blurring. More contemporary 

denoising methods (e.g. (Pruim et al., 2015; Thomas et al., 2002; Veraart et al., 2016), and 

references therein) try to characterize the components of the data and selectively remove some of 

them. As it is always possible that the effects of denoising can be deleterious, is imperative that a 

careful and critical evaluation is performed when deploying such an approach, especially when 

substantial and potentially transformative gains are promised for the field of interest, as is the case 

with the application of NORDIC to fMRI (Vizioli et al., 2021). 

In this paper, we extend an evaluation of the recently described NORDIC denoising method as 

applied to fMRI to a wider variety of field strengths, voxel sizes, TRs, and stimulus designs. We find 

that NORDIC-processed fMRI data removes noise that matches g-factor maps (Fig. 5), producing 

much higher t-values under a conventional fMRI modeling framework (Figs.1, 2), consistent with the 

prior report (Vizioli et al., 2021). The fMRI t-statistics achieved after NORDIC denoising are 

approximately equivalent to those produced by smoothing the data using a kernel of 1.5 voxels; 

however, analysis of the NORDIC-processed data does not show any comparable increase in 

smoothness (Figs. 3,4). The frequency spectrum of data following NORDIC shows a widespread 

reduction, consistent with white-noise suppression (Fig. 6). These SNR gains are also reflected in 

markedly improved single run, single voxel FIR estimates, which in turn produce better predictions of 

held-out, non-denoised Standard data (Fig. 7,8), compared to the Standard data itself. Collectively 
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these findings support the use of NORDIC for a wide variety of fMRI applications, ranging from HCP-

like data obtained at 3T to cutting edge high-resolution fMRI data acquired at ultrahigh magnetic 

fields. 

Conventional GLMs 

The t-statistic is widely used in the fMRI literature to report the statistical veracity of signal 

increases and decreases as spatial maps. Consistent with our prior report (Vizioli et al., 2021), we 

find that NORDIC-processed data had substantially larger t-values compared to the Standard data 

alone (Figure 1). These gains are similar to or greater in magnitude than those reported by others 

using denoising methods to remove structured noise such as multi-echo denoising (Gonzalez-Castillo 

et al., 2016; Kundu et al., 2017), ICA-based denoising strategies such as ICA-AROMA (Pruim et al., 

2015) or using SNR efficient accelerated imaging sequences like SMS/MB (Moeller et al., 2010) to 

collect more data in a given period of time (Smith et al., 2013). However, NORDIC is a complement 

rather than a replacement to these methods as it focuses on suppressing thermal noise. We observe 

that this gain is not due to a large shift in the estimated activation amplitude, as the betas remain 

highly similar following NORDIC processing (Supplemental Figure S6). 

Of the other processing methods examined here, the performance of NORDIC with respect to 

t-statistics exceeds all but the 1.5 voxel spatial smoothing (Figure 2), even in the data with relatively 

large voxels (i.e., 2mm isotropic resolution 3T HCP protocol). Of course, as previously mentioned, 

NORDIC accomplishes this without meaningful increases in estimates of blurring. NORDIC also 

outperformed the benefits one would get with temporal smoothing, even in cases where long duration 

(i.e., 12s) events were separated by long inter-stimulus intervals. While NORDIC does produce a 

timeseries that is less corrupted by thermal noise, we did not detect effects that would be consistent 

with averaging over a temporal window. This is most clear in DS3, which used a fast event related 

design. Following temporal smoothing, the t-values for the face condition in this design decreased. 

This reflects the mixing of neighboring events due to the short ISI of 2 seconds. The opposite effect is 
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found following NORDIC processing, in other words, t-values increased, and negative t-values were 

absent. Under this approach, we did not observe that temporal precision was lost after NORDIC 

processing. Both spatial and temporal smoothing also, as expected, additionally alter activation 

amplitudes an effect which is not observed on the NORDIC processed data (Supplemental Figure 

S6). 

These findings present the possibility of new avenues of research, ultrahigh spatial and/or 

temporal resolution studies, the use of smaller ROIs for ROI-based analysis, or examining single-trial 

response estimates (Chen et al., 2021), all of which represent important but often SNR-starved 

analysis strategies. 

Image Smoothness.  

Despite the similarity of the distributions of the t-values between NORDIC and spatially 

smoothed data, the NORDIC data is not associated with a comparable increase in the estimated 

spatial smoothness (e.g., +1.5 voxel FWHM smoothness estimated to be 132% larger; Figure 3). In 

fact, at its maximum, NORDIC only increased the estimated smoothness by 6.1%. This is smaller 

than the effect often observed with conventional preprocessing methods, which are known to produce 

images with greater spatial smoothness characteristics due to the need to interpolate values on a 

new image grid (Polimeni et al., 2018). While these effects were significant, they were very small 

(more than 1 or 2 orders of magnitude less than 1 or 1.5 voxels of spatial smoothing respectively) and 

did not compromise cross-validation accuracy (Figure 8, S5), nor do they match the effects of spatial 

smoothing when comparing betas (Figure S6). 

Here we considered estimates of global smoothness at all stages of data processing in the 

fMRI data analysis (Figure 3). While typical smoothing estimates use the residuals of the data as an 

estimate of the overall smoothness of the noise, it is possible for these estimates to be overestimated. 

For example, coherent areas of signal change could remain due to a mismatch between the 

canonical HRF and the subject’s response. The patterns of smoothness reported here are consistent 
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among processing stages, supporting the argument for minimal image smoothing due to the NORDIC 

method. This global measure of image smoothness is often used in the context of cluster correction, 

as it is thought to reflect the underlying smoothness of the acquired image (Cox et al., 2017), but has 

also been used to evaluate processing and acquisition approaches (Esteban et al., 2019; Friedman et 

al., 2008, 2006; Marcus et al., 2013).  

This finding is further corroborated when we examine the spatial autocorrelation of each 

voxel’s correlations with its neighbors, which we have termed ‘local smoothness’. NORDIC 

processing produced local smoothness estimates that were nearly equivalent to the standard data 

(Figure 4). We did observe a small decrease in the estimated local smoothness following NORDIC 

processing for gray and white matter. As this metric is computed on the residuals of the GLM, it is 

plausible that the model obtained a better fit for task responses or structured noise, such as motion, 

after NORDIC processing. As such, this is not reflecting an increase in the spatial resolution of data 

following NORDIC processing, but instead likely highlights that the model captured more of the 

structured variance in the signal. 

We observed a larger positive deviation within the CSF mask, which includes features such the 

superior sagittal sinus as well as punctate regions likely associated with cross sections of blood 

vessels, which, in case of veins, appear as also dark punctate structures in the anatomical images 

(Figure 4a, left most column). Macroscopic blood vessels large enough to be seen in these images 

are expected to have relatively large signal fluctuations, as was shown for veins in previous fMRI 

studies (Chen et al., 1999; Kim et al., 1994; Zhao et al., 2006). These fluctuations exist independent 

of the stimulus or task in an fMRI experiment. Especially in case of the veins, these fluctuations will 

extend beyond the boundaries of the blood vessel into neighboring voxels due to the BOLD effect. 

Such correlations are expected to be “unmasked” and easier to detect after the suppression of 

thermal noise, leading to an increase in the size of the region of locally smooth, correlated voxels. 

Similarly, when the thermal noise is suppressed by NORDIC, it unmasks higher local correlation due 
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to the BOLD effect associated with pial veins as well as to other physiological processes such as 

pulsations due to heartbeat and respiration in the CSF space.  

These local smoothness findings are different from the global smoothness estimates, in that, 

on average, NORDIC processed data had marginally less estimated smoothness in both gray and 

white matter. One possible source of this difference is likely due to the difference in analytical 

methods. For example, global smoothness estimates consider each volume independently, in effect 

examining the variance across space. In contrast, local smoothness considers autocorrelation of each 

voxel’s timeseries correlation within a local neighborhood. It is plausible that neighboring voxels could 

have highly correlated timeseries, despite large differences in signal magnitude (i.e., high spatial 

variance), such as at gray/white matter boundaries due to partial volume effects. It is also possible 

that the global smoothness after NORDIC seemed slightly increased in the GM due to effects similar 

to those described above for the CSF mask. Nevertheless, both global and local smoothness 

estimates provide evidence that NORDIC processing is not leading to meaningful increases in 

smoothness. The spatial autocorrelation methods (both global and local) to estimate smoothness in 

this work are different from approaches that estimate a functional point spread function (Shmuel et 

al., 2007), which instead attempts to quantify the functional precision available in the maps of 

functional responses. For the latter, prior work found that NORDIC had no impact on the functional 

point spread of the BOLD signal (Vizioli et al., 2021). To further validate these results we performed 

an initial evaluation using the local perturbation response (LPR) method (Chan and Haldar, 2021) and 

were able to recover the injected synthetic sparse signal, though sufficiently low intensity 

perturbations (i.e. below or near thermal noise level) were not perfectly recovered (See Supplement, 

Figures S8, S13). Further work is required to determine interpreting these results, as with all synthetic 

manipulations, it is difficult to match all of the properties of the natural fMRI signal.  

 Together, these reports show that NORDIC is able to suppress thermal noise at a level similar 

to that of 1 or 1.5 voxels of smoothing but avoids the increases in spatial autocorrelation associated 

with such levels of blurring, and instead only marginally affects the spatial properties of the signal. 
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Temporal Precision.  

 The use of NORDIC produced fMRI voxel time courses in which responses to task events 

were more visible and not subject to any apparent smoothing (Figure 7). We first examined the 

normalized power spectrum of DS7 (800ms TR) and DS8 (350ms TR). For both datasets, task and 

physiologically related frequencies are clearer after NORDIC processing, relative to the Standard 

data (Fig. 6). In general, there is a large reduction of power at nearly all frequencies, consistent with 

the reduction of normally distributed noise. This corresponds to an increased ability to identify and 

resolve frequencies associated with physiological noise in each individual voxel timeseries, however 

the potential utility of this for physiological denoising was not explored.  

We then used the estimates of the hemodynamic response function (HRF), produced by finite 

impulse response (FIR) models, to simultaneously examine the denoising performance of NORDIC 

and whether this resulted in a substantial (i.e. affecting cross-run accuracy) loss of temporal 

information. NORDIC produced FIR estimates that were associated with less cross-run variability 

(Figure 7, Supplemental Table 3). In many cases, particularly in high-resolution studies, these types 

of response estimates are produced by simultaneously modeling multiple runs or averaging the signal 

within an ROI. Here, however, we show that single-run estimates are reliable, even at the single-voxel 

level.  

The primary concern is that these estimates are the result of suppressing both signal and 

noise. That is, the process of removing thermal noise has also removed signal sufficient to alter the 

measurable temporal information in the fMRI time course. We do not observe this effect in the 

NORDIC data as shown by the fact that these FIR estimates accurately reconstruct data that were 

held-out from the model. This was performed in an exhaustive Leave-p-Out fashion, considering all 

combinations of 1≤P<Number of runs. Based on the coefficient of determination (R2), not only was 

NORDIC data better able to predict held out NORDIC data, but that it was also better able to predict 

held-out Standard data (Figure 8). This is a critical feature in considering the performance of a 
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denoising method and, of course, is not always achieved. For example, large amounts of spatial 

smoothing will lead to increased t-values, but the voxel-wise HRFs derived from smoothed data will 

no longer correspond to the precise spatial location of voxels in unsmoothed data. Additionally, these 

activation amplitudes will have altered magnitudes (Supplemental Figure S6). 

Across all datasets, the NORDIC data were better able to predict the Standard data as 

measured by the coefficient of determination, including datasets using acquisition methods for which 

the thermal noise contribution is lower (i.e., datasets with larger voxels) relative to physiological 

fluctuations. In order to further examine the possibility of a loss of temporal precision we also probed 

the neighboring timepoints in the previously mentioned LPR analysis (Chan and Haldar, 2021) and 

while this sparse (i.e. does not repeat over the timeseries) and synthetic signal is measurable at 

subsequent timepoints following denoising with NORDIC (Figure S8), the artifact was nearly 2 orders 

of magnitude smaller than intrinsic timeseries fluctuations (Figure S11) and as such, is effectively 

invisible in voxel time courses (S10).  

The NORDIC processed data were also able to better predict NORDIC timeseries (Figure 8). 

While less critical than the above demonstration of signal preservation, this indicates that the effects 

of NORDIC are consistent from run to run. In this context, one (DS1, DS6) or two (DS3) runs of 

NORDIC have better cross validated performance using voxels that survive the 15% R2 threshold 

(Figure 8) than any number runs of Standard data. As the typical fMRI experiment would employ 

similarly denoised data throughout all analyses, rather than testing against the standard data (as was 

done here for validation), these large SNR gains represent the expected benefit of using NORDIC. 

Since NORDIC denoising is done for each run separately, the data from separate runs remains 

statistically independent. This, in conjunction with the large gains in cross validated performance may 

allow analyses approaches which previously required large regions of interest to be performed on the 

level of individual voxels. Furthermore, these improvements could translate to shorter scanning times, 

with many added advantages, for example, decreasing the possibility of motion and time burden for 

participants or patients.  
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NORDIC is expected to complement denoising strategies that remove structure noise, such as 

ICA-AROMA (Pruim et al., 2015), multi-echo ICA denoising with tedana (DuPre et al., 2021; Kundu et 

al., 2017) or those that leverage multiple runs, such as GLMDenoise (Kay et al., 2013); however 

experimental demonstration of this remains to be performed.  

Comparison with Alternative Methods 

Widely used methods to remove thermal noise have only recently developed and evaluated for 

diffusion MRI. In functional imaging, the growing interest in higher and higher resolutions and the 

capability of collecting such data with reasonable sampling rates has led to increased attention to the 

thermal noise contribution. While thermal noise is not typically the dominant noise source in most 

fMRI studies (Triantafyllou et al., 2011), thermal noise begins to dominate with voxel volumes below 

approximately 3mm isotropic at 7T and therefore substantially impede accurate detection of signals of 

interest.  

Choices for the reduction of thermal noise are limited, and functional neuroimaging has 

primarily depended on temporal averaging or spatial smoothing. Averaging requires large time 

commitments and can be complicated by difficulty in aligning across multiple runs, sessions or 

participants, while spatial smoothing with gaussian kernels unavoidably leads to a loss in spatial 

precision which is often the expressed purpose of high-resolution fMRI. While more advanced 

smoothing methods have been developed, which constrain smoothing on the basis of anatomy 

(Blazejewska et al., 2019; Huber et al., 2021), these methods are associated with a tradeoff – for 

example averaging across cortical depth may allow for high resolution analyses across the cortical 

surface, but necessitates the loss of depth dependent activity profiles, which are not uniform.  

An alternate PCA based denoising method considered in this manuscript, dwidenoise, was 

developed primarily to suppress thermal noise in diffusion imaging (Cordero-Grande et al., 2019; 

Veraart et al., 2016); it has recently been used for resting state fMRI (Adhikari et al., 2019) and fMRI 

for evaluate for presurgical mapping (Ades-Aron et al., 2021, p.). However, these studies lacked a 
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detailed analysis of the impact and the generalizability of denoising on the fMRI data, and critically, 

did not examine higher (sub-millimeter) resolution fMRI where thermal noise dominates. Here we find 

that dwidenoise does offer large improvements in typical task-based activation measures such as t-

statistics; however, this appears to be at the cost of increases in estimated image smoothness. This 

is most apparent for the high-resolution 7T (0.8mm; DS 1, 2, 3) and 3T (1.2mm; DS6) datasets, for 

which precision is most desired (Figure 3). Most importantly, an image of the components removed 

by dwidenoise demonstrate the presence of structures that correspond to the anatomy of the imaged 

object, indicating that components removed are not just thermal noise. This is consistent with the 

suggestion that it is difficult to precisely identify the components that are removed in the 

MPPCA/dwidenoise approach, although its application leads to apparently better results (Moeller et 

al., 2021).  

While these conclusions hold for our usage of dwidenoise in the present work, it is entirely 

plausible that further improvements could be achieved by manipulating various elements of the 

dwidenoise implementation. For example, it is plausible that the default settings of dwidenoise which 

were validated on diffusion imaging data should be altered when applying to fMRI images. In addition, 

it is possible to apply dwidenoise (at least for diffusion data) in complex space (Cordero-Grande et al 

2019). While this or other manipulations of dwidenoise for fMRI were not tested in the current work, it 

is possible that this would lead to improvements in the performance of dwidenoise. 

Limitations  

Although a large variety of datasets were considered in this work, including different TRs, voxel 

sizes, event designs, stimulus categories, and field strengths, the present work only evaluated 

gradient echo BOLD functional imaging, by far the most commonly employed strategy for functional 

imaging. The principles of NORDIC are expected to work equally well with other approaches of 

functional mapping, such as spin echo (SE) based BOLD fMRI (e.g. (Yacoub et al., 2003)), or 

functional mapping based on non-BOLD contrast mechanisms such as blood flow changes (e.g. ASL 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 12, 2022. ; https://doi.org/10.1101/2021.08.26.457833doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.26.457833
http://creativecommons.org/licenses/by-nc/4.0/


 45

(Roberts et al., 1994) and VASO (Huber et al., 2018)). NORDIC will likely be more useful for these 

other functional imaging approaches since they inherently have poor sensitivity and, at any given 

spatial resolution, will be more limited by thermal noise associated with the MR measurement 

compared to GE BOLD fMRI.  

Our current work suggests that NORDIC can be viewed as another processing step in fMRI 

which is associated with measurable, but small changes in data parameters. As such, researchers 

should inspect their data following NORDIC to ensure that the data is not adversely affected, 

particular in low SNR areas or task designs. In the datasets considered for this manuscript, the gains 

of NORDIC were achieved with minimal impacts on estimated image smoothness. Here we used 

estimates of image smoothness over global and local scales. While such FWHM measures are widely 

used, are sensitive to the application of image smoothing and agree with our findings in prior work 

which examined the functional point spread (Vizioli et al 2021), it is possible that they do not capture 

all of the effects of NORDIC processing. Likewise, it is possible that some temporal information is 

lost, however, we did not detect any negative effects in the cross-validation approach used here, and 

additionally observed that the fMRI signals of interest following NORDIC processing were more 

similar from run to run.  

While NORDIC was highly effective in the data shown here, further work evaluating the effects 

of NORDIC, particularly for other fMRI sequences and a larger array of brain areas, is needed.    

Conclusion 

The NORDIC method is suitable for use across a diverse array of functional imaging acquisition 

strategies in order to decrease the contribution of thermal noise. Processing data with NORDIC 

consistently results in substantial gains in t-values, such as those seen following smoothing, without a 

comparable or even moderate increase in estimates of image smoothness. In addition, NORDIC 

preserves the voxel-wise temporal information and is better able to predict held out data. These 

findings support the use of NORDIC to increase the functional contrast-to-noise ratio of fMRI, thereby 
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improving HRF estimates and/or permitting reduced fMRI acquisition times – potentially enabling 

entirely new study designs and statistical approaches to data analysis. These attributes are of 

particular importance for ultra-high spatial resolution functional neuroimaging data targeting 

mesoscopic scale organizations, which are SNR-starved even at ultrahigh magnetic fields and even 

after extremely long data acquisitions. Similarly, acquisitions that use high temporal sampling rate of 

the fMRI time course, as desired for example in resting state fMRI, are also SNR starved in the 

individual images acquired should benefit from NORDIC substantially.  
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Supplemental Material 

Figure S1. T-statistic histograms comparing Standard and NORDIC data within the Non-Target and 

Target ROIs. The distributions of t-Statistics from the model using all runs of data are shown. 

Distributions show the t-statistics of voxels from Non-Target (left) and Target (right) ROIs, defined as 

those that displayed significant positive stimulus-evoked changes relative to baseline (Non-Target) or 

in the contrast between Target and Non-Target conditions (Target) in the Standard data.  
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Figure S2. T-statistic values from Datasets 1 through 7 in the Target ROI, under different processing 

schemes within the Target ROI. Left column shows data from Standard, NORDIC and spatial 

smoothing with 1 and 1.5 voxel FWHM spatial smoothing. Right column compares the same Standard 

and NORDIC data against temporal smoothing and dwidenoise denoising. T-values were extracted 

from the Target ROI defined using the Standard data. The t-values obtained with NORDIC (Orange, 

dashed) processed data is comparable to the effects of an additional 1 or 1.5 voxels FWHM gaussian 

smoothing. 
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Figure S3. Global Smoothness Estimates for Datasets 1 – 7. Estimated spatial smoothness in mm 

(FWHM) at various processing stages for each method. Note that the image smoothness of the 

Standard, NORDIC, and dwidenoise data are substantially below the level of the additional 1 or 1.5 

voxels of additional smoothing. These trends remain the same for the residuals (last columns) after 

the conventional GLM. Error bars indicate standard deviation over runs. 
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Supplemental Figure S4. Local Smoothness from Datasets 1 – 7. These kernel density estimates show the distributions of 

the local spatial smoothness estimates in tissue classes derived from a T1-weighted anatomical image for Standard (blue), 

NORDIC (orange) and dwidenoise (green).  
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Supplemental Figure S5. Cross Validated R2 for Datasets 1 through 7 Leave-p-Out training was repeated for all vales 

of p greater than 1 and less than the number of runs. The number of runs included in the training vary across the X-axis, 

with bar height reflecting the R2 obtained. Including more data allows Standard models to approach, but not reach 2 to 3 

runs of NORDIC data. Error bars indicate standard deviation.  
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Standard & NORDIC Standard & Spatial Smoothing Standard & Temporal Smoothing 
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Supplemental Figure S6. Scatter plots showing the relationship between the activation amplitude (i.e. 
beta, in percent signal change) within the large Non-Target ROI for the Standard data and NORDIC 
(1st column), +1 Voxel spatial smoothing (2nd column) or temporal smoothing (3rd column). The black 
line is unity. The red line shows a regression line fit to the points. Distributions for each datatype are 
shown above and to the right to highlight that the vast majority of activation amplitudes are 
concentrated in the lower left-hand corner of the plot. The coefficient of determination, R2, is provided 
in each plot’s title. 
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Local Perturbation Response analysis 
 
Following the reviewers suggestion we implement the local perturbation response (LPR) method for 
evaluating non-linear reconstructions from Chan, C.C. and Haldar, J.P., 2021. 
We tested the LPR technique on in-vivo data, and also used it on a numerical simulation with random 
matrices. In LPR, a checker-board pattern of small amplitude is added to a single time-point, and for a 
measurement model, Y, the difference NORDIC (Y) - NORDIC (Y+LPR), in reconstruction is 
evaluated for the ability to recover the injected LPR signal and the effect of spreading of the injected 
LPR signal at other time-points. 
 
In NORDIC the effect of the LPR can be tested on the hard threshold part for each patch by 
considering a model Y=X+N. If the model X, has a low-rank representation, then the LPR, which is 
simultaneously a low-rank and a sparse signal, is not necessarily aligned with the subspace 
containing X. Thus, intuitively only its projection onto this subspace can be recovered. It should be 
noted that if the additional LPR signal is expected to represent what is observed in fMRI data, its 
recovery may be tackled with robust PCA, designed for a low-rank + sparse model (Candès et al., 
2011), but which has additional parameters as compared with hard thresholding. However, in our 
experience, we do not expect such vastly different patterns to be present for a single time-frame and 
vanish subsequently. 
 
For the numerical simulation for Y=X+LPR +N, LPR was selected as a 36x36 checkerboard with 6x6 
squares, both X and N had dimensions 1296 x 100, to maintain a ratio of 11:1. The entries of both X 
and N were i.i.d. and real valued distributed with variance 1.3, and 1 respectively, and �� � �������

� 
was the R-dimensional low-rank representation of � � ������

�, such that for n≤R the nth singular-
value ���

� � ��
� and for n>R, ���

� � 0. For the simulation, both the case of low-rank and full-rank model 
were evaluated with both separated and overlapping spectrum of singular values for the model and 
the added noise. As a quantitative metric for assessing the combination of noise and signal in time-
points not probed by the LPR, the ratio � � || 
 ||�,���� || 
 ||�,�	��⁄ was used. The four cases of LPR 
recovery and spreading are shown in figure S7, along with their � value. For these cases, when X is 
low-rank the residual from LPR is more noticeable than when X is full-rank.  
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Figure S7. Numerical simulation. Four difference cases for utilizing an LPR (max(LPR)=σ)) 
are illustrated, for two models (low rank and full rank) and for two different noise-levels 
(overlapping and separated spectra of singular values). 

We next added the LPR, at varying magnitudes relative to the measured thermal noise level, onto in 
vivo data, and performed NORDIC denoising. We then subtracted the original NORDIC data from the 
LPR+NORDIC data to examine to what extent the injected signal could be recovered following 
NORDIC.  

When we consider all LPR intensities, we observe that the checkerboard LPR can be recovered, to 
some extent, even when it was of very low intensity relative to the thermal noise level of the data 
(Figure S8). At higher signal levels, recovery performance is increased and the checkerboard is clear.  
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Figure S8. In vivo, recovery of injected LPR for different SNR levels. We observe that the 
LPR (a checkerboard) can be recovered even when the original LPR was very low in 
magnitude.  

For a neighboring timepoint (Figure S9), we find that there is very limited artifactual signal from the 
injected LPR, with the highest relative energy at the lower LPR magnitudes. While there is some 
artifact just visible, the level of this artifact is order of magnitude lower than the original thermal noise 
or the fMRI signal fluctuations of interest.  
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Figure S9. In vivo, comparison of neighboring timepoint after NORDIC in data with and 
without the LPR. The artifactual signal is at a very low intensity relative to the original 
injected LPR and primarily present at lower original LPR intensities (color map limits set to 
25% of original LPR magnitude). 

To examine the effect of this artifact, we can examine voxel time courses. Figure S10 shows the time 
course of 3 voxels for the original data (NO NORDIC), NORDIC and then NORDIC with 3 different 
LPR magnitudes. The largest effect is the suppression of thermal noise visible as the differences 
between the dashed black lines and the others. The effect of the spreading artifact would show up as 
differences between the blue lines and the 3 LPR levels – and is effectively invisible. 

 

Figure S10. The minimal impact of the LPR artifact on voxel time courses. The black line shows 
the original data prior to NORDIC. Additional lines show the NORDIC data without the LPR 
(blue), and the NORDIC data with the injected LPR at various levels. While the artifact is 
measurable (Figures S11-S14) here we see that its effect is not meaningful. The time courses 
following NORDIC with and without the LPR are nearly indistinguishable.  

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.
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To quantify this effect over all voxels and LPR magnitudes, we can consider the relationship between 
the magnitude of artifactual signal fluctuations and the magnitude of the signal fluctuations (Figure 
S11) following NORDIC (i.e. the temporal standard deviation). On average, this reaches a maximum 
of 0. Note that this means not that the artifact is causing 2% signal change, but rather that that the 
artifact is only 2% of the intrinsic fluctuations and thus causes negligible signal changes (as visible in 
the voxel time courses, Figure S10).  

 

Figure S11. The magnitude of the artifactual fluctuations relative to intrinsic timeseries 
fluctuations. While Figures S12 and S13 showed the magnitude relative to the original LPR 
injection, here we are showing the magnitude of this artifact relative to the fluctuations in the 
denoised timeseries. While the artifact is visible (when data with and without the LPR are 
directly contrasted) its impact is minimal.  

 

We can also summarize this as to the relationship of the recovered LPR and artifact signal to the 
original LPR signal. With an LPR for different thermal noise levels, the amount of energy recovered is 
close to the probed signal, and the residual is less than 1/10 of the probed signal, the plots of the 
simulation are shown in figure S12, with the in vivo signal shown in Figure S13.  
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Figure S12. Plot of residual signal to LPR for different noise-regimes used in the simulation, 
showing recovery of LPR (blue) and LPR “artifact” at adjacent timepoints (orange). 

 

 

Figure S13 In vivo version of S8 showing recovery of LPR (blue) and LPR “artifact” at adjacent 
timepoints (orange). 
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From the numerical simulation the effect on the SVD of (X+LPR) vs the SVD of X for an LPR with a 
lower amplitude than the components in X is that the r first eigenvectors of both are almost the same, 
such that LPR is expressed into these basis functions, and then an r+1’th basis function is mostly 
identified with the remaining parts since it will be a “component”. This last basis function may or may 
not be recoverable, depending on the amplitude of the probed LPR. When recoverable, the 
representation of the LPR is the combination of the projection of the LPR onto the subspace spanned 
by X and any added basis function. The temporal sparse signal is likewise not described in a single 
explicit eigenvector but in the combination of eigenvectors. When the LPR is large, it is a large “peak” 
with noisy ripples for the primary eigenvector. When the LPR is low, the peak for representing a 
sparse signal is only achievable through the combination of eigenvectors.  
 
A component not obtainable as being representable by �



��

� and which consistently is estimated 

as being (fully or partially) in �
��

�, will persist in the final estimation of �����
� . Such a residual 

component will be of less magnitude than �
��

� since for some patches it otherwise would be 
estimated as being in �

��
�. What is being discarded in NORDIC are those singular vector which 

are embedded in the distribution of the singular vectors of Gaussian noise. The associated 
eigenvectors are a low-rank representation of the observed full rank noise, and those eigenvectors 
are indiscriminately removed. 
 
In combination the simulation and the in-vivo data shows that for probing date with a sparse signal at 
the noise level, using hard thresholding on the singular values for noise removal, a residual 
perturbation in the denoised signal at less than 1/10 the amplitude is observable, which reflects both 
that not all noise is removed, and that the model in NORDIC was chosen to recover low-rank signals. 
 
 
What do we mean by removing components of the timeseries which cannot be distinguished 
from Gaussian distributed noise? 
 
For the SVD in NORDIC, the decomposition of the acquired signal may be written as 
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Where � and � are matrices with eigenvectors and where 
 and � are diagonal matrices with the 

singular values for the signal and noise respectively, and � may be of full rank. The 
decomposition  � 

� � 
� is such that min �

�� � max �� ) and max �
�� � max �� �. The 

estimated noise with hard thresholding in NORDIC is �
��

�, which is an approximation of the 
noise �����

� , such that all the singular values in 
� is less than the largest one in �. It may 

be worth noting that the hard thresholding in NORDIC is lower than the optimal hard 
thresholding (Gavish and Donoho, 2014) or a low-rank signal. Likewise it may be informative to 
note that SVD is an orthonormal basis decomposition, where the observed signal (a row in Y) 
is typically represented 

 by the combination of all eigenvectors in the decomposition of Y, unless the decomposition happens 
to create an eigenvector that exactly matches such an observed signal. By extension the estimated 
eigenvectors for X will be impacted by the noise observed in Y and affecting the eigenvectors in the 
decomposition to most compactly model X. In NORDIC, the basis functions which have an 
importance (i.e. corresponding singular value) less than what is observable from Gaussian noise is 
discarded. 
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Gray Matter White Matter CSF 
DS1 NORDIC 0.82±0.148 0.85±0.056 0.89±0.214 

Standard 0.87±0.084 0.88±0.039 0.88±0.119 
dwidenoise 0.91±0.153 0.87±0.094 0.98±0.207 

     
DS2 NORDIC 0.88±0.133 0.90±0.082 0.88±0.204 

Standard 0.89±0.074 0.90±0.041 0.84±0.151 
dwidenoise 0.97±0.133 0.96±0.102 0.96±0.195 

     
DS3 NORDIC 0.91±0.147 0.92±0.089 0.95±0.192 

Standard 0.91±0.10 0.92±0.062 0.92±0.138 
dwidenoise 0.98±0.15 0.97±0.102 1.02±0.19 

     
DS4 NORDIC 1.53±0.657 1.22±0.32 1.96±0.749 

Standard 1.57±0.301 1.59±0.159 1.74±0.487 
dwidenoise 1.62±0.592 1.34±0.357 1.95±0.667 

     
DS5 NORDIC 1.6±0.476 1.47±0.268 1.98±0.622 

Standard 1.58±0.287 1.58±0.157 1.76±0.449 
dwidenoise 1.53±0.569 1.21±0.336 1.97±0.649 

     
DS6 NORDIC 0.93±0.238 0.81±0.191 1.24±0.36 

Standard 1.04±0.154 1.03±0.102 1.13±0.202 
dwidenoise 1.00±0.289 0.94±0.247 1.25±0.33 

     
DS7 NORDIC 1.54±0.57 1.26±0.273 2.5±1.15 

Standard 1.57±0.344 1.46±0.236 1.82±0.473 
dwidenoise 1.58±0.6 1.18±0.311 2.36±0.929 

 

Supplemental Table S1. Mean and Standard Deviation of Local Smoothness Estimates in mm FWHM 

for Datasets 1 through 7.  
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 NORDIC, dwidenoise Standard, dwidenoise NORDIC, Standard 

DS1 0.999±0.0008 0.999±0.0014 0.999±0.0012 

DS2 0.997±0.003 0.992±0.0058 0.993±0.0054 

DS3 0.998±0.0031 0.998±0.0024 0.997±0.0044 

DS4 1±0.0001 1±0.0003 1±0.0003 

DS5 1±0.0001 1±0.0002 1±0.0002 

DS6 0.999±0.0018 0.993±0.0098 0.989±0.0173 

DS7 1±0.0002 0.999±0.001 0.999±0.001 

 

Supplemental Table 2. The average Pearson correlations between the motion correction parameter 

estimates, with standard deviation over independent runs.  
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 Standard Variability  NORDIC Variability % Reduction 

DS1 122.36 71.96 41.2 

DS2 123.56 63.60 48.5 

DS3 48.39 30.15 37.7 

DS4 43.58 30.21 30.7 

DS5 65.60 54.68 16.6 

DS6 102.41 59.67 41.7 

DS7 103.55 83.07 19.8 

 

Supplemental Table 3. A comparison of the variability of FIR estimates within the target ROI for each 

dataset. This was calculated as the average (over voxels within the ROI mask) sum (over the time 

axis of the FIR) of the voxel-wise standard deviation over runs of the FIR response curves for the 

main task in each dataset (e.g. The center condition for DS1).   
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