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Abstract  

The mammalian circadian clock exerts substantial control of daily gene expression 
through cycles of DNA binding. Understanding of mechanisms driving the circadian clock 
is hampered by lack of quantitative data, without which predictive mathematical models 
cannot be developed. Here we develop a quantitative understanding of how a finite pool 
of BMAL1 protein can regulate thousands of target sites over daily time scales. We have 
used fluorescent correlation spectroscopy (FCS) to track dynamic changes in CRISPR-
modified fluorophore-tagged proteins in time and space in single cells across SCN and 
peripheral tissues. We determine the contribution of multiple rhythmic processes in 
coordinating BMAL1 DNA binding, including the roles of cycling molecular abundance, 
binding affinities and two repressive modes of action. We find that nuclear BMAL1 protein 
numbers determine corresponding nuclear CLOCK concentrations through 
heterodimerization and define a DNA residence time of 2.6 seconds for this complex. 
Repression of CLOCK:BMAL1 is in part achieved through rhythmic changes to 
BMAL1:CRY1 affinity as well as a high affinity interaction between PER2:CRY1 which 
mediates CLOCK:BMAL1 displacement from DNA. Finally, stochastic modelling of these 
data reveals a dual role for PER:CRY complexes in which increasing concentrations of 
PER2:CRY1 promotes removal of BMAL1:CLOCK from genes consequently enhancing 
ability to move to new target sites. 
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Main Text 
 
Introduction 
 

The 24-hour light-dark cycles inherent to our planet have led to the evolution of molecular 
circuits capable of conveying time of day information, commonly known as circadian 
clocks. In mammals, cell-autonomous circadian clocks operate in virtually all cells across 
tissues and enables coordination of numerous biological processes, including metabolism, 
immunity, and cell cycle progression (1, 2). 

Autonomous cellular clocks are characterized by transcription-translation feedback loops 
(TTFLs), leading to cycles in protein and mRNA tuned to the 24-hour rhythms of the day-
night cycle. Central to the mammalian circadian clock is the heterodimeric transcription 
factor comprised of CLOCK (circadian locomotor output cycles protein kaput) and BMAL1 
(brain and muscle ARNT-like 1) that searches the genome to bind consensus sequence 
E-box sites (CANNTG), inducing expression of several hundred clock-controlled output 
genes every day. Targets include key circadian negative feedback regulators, Period 
(Per1, Per2, Per3), Cryptochrome (Cry1 and Cry2) and a secondary loop regulated by 
Nr1d1 and Nr1d2 (3-6). These proteins act to repress the activity of CLOCK:BMAL1 to 
form a delayed negative feedback loop driving daily oscillations. In a current model, it is 
proposed that PER and CRY proteins dimerize to form a repressive complex with CK1 
(casein kinase 1) to promote the removal of CLOCK:BMAL1 from DNA and thereby 
repress transactivation of target genes, while CRY1 independently binds the PAS domain 
core of CLOCK:BMAL1 and the BMAL1 transactivation domain leaving DNA binding intact 
whilst repressing recruitment of additional transcriptional coactivators (7, 8). An additional 

feedback loop is conferred by the protein REV-ERB, which operates as a  transcriptional 
repressor of Bmal1, resulting in a cycle of BMAL1 protein abundance (6).  

Ultimately, a prerequisite for generation and output of cellular circadian rhythms is the 
ability of a finite pool of CLOCK:BMAL1 heterodimer protein to bind rhythmically to specific 
target sequences leading to the regulation of circadian gene expression in a specific cell 
type (9). Currently, we have very little insight into the quantitative biology of this process. 
Heterodimeric formation of transactivating and repressive complexes is a well-defined 
feature of the circadian molecular circuit, including the formation of CLOCK:BMAL1 and 
PER:CRY complexes (3, 7, 8). Recently, PER:CRY proteins have been described as part 
of very large macromolecular complexes within the cell (10). We have previously 
visualized several core circadian proteins, and from this measured the spatiotemporal 
profile and protein abundance for BMAL1 and PER2 (11, 12). PER2 was found to cycle 
with a maximum amplitude of 12,000 copies per cell in fibroblasts and without circadian 
gating of nuclear localization, contrary to observations in the Drosophila clock (11, 13). A 
recent study using a cancer cell line model has also shown that CRY1 protein remains 
nuclear at all circadian phases and at markedly higher abundance than its partner protein 
PER2 (14).   

In order to gain insight into the operation of core circadian clock proteins, we generated a 
genetically modified mouse in which CRY1 has been C-terminally fused with a fluorescent 
protein. We crossed this line to a previously described strain of mice expressing 
fluorescent-tagged BMAL1. We then used advanced imaging in both ectopically 
transformed cell lines and endogenously modified mice to characterize governing 
parameters in the regulation of BMAL1 DNA binding, including repression by PER2 and 
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CRY1. We constructed mathematical models of the complex interactions and phased 
timings from multiple molecular species and experimentally inaccessible complexes, 
demonstrating how DNA binding in the peripheral circadian clock is regulated. 

Using a combination of mathematical modelling and experimental validation, our data 
reveal that high affinity interactions between circadian protein complexes serve to offset 
the low abundances of circadian proteins. In this way, the abundance of key components 
of the molecular clockwork is positioned optimally to regulate E-box binding. This is partly 
facilitated through PER2:CRY1 mediated displacement of CLOCK:BMAL1, such that 
PER2 protein serves a dual role, acting as both a component of the negative feedback 
arm but also to redistribute CLOCK:BMAL1 to new target sites. Thus, the stochiometric 
balance of PER:CRY with CLOCK:BMAL1 is critical for the elucidation of the full cellular 
circadian repertoire.  
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Results 
 

BMAL1 determines nuclear localization and mobility of CLOCK 

To quantify the properties of BMAL1 and CLOCK proteins, we first used NIH/3T3 
fibroblasts expressing fluorescent fusion proteins via a ubiquitin ligase C promoter, 
delivered by lentiviral transduction either singly (LV1) or as two sequential transductions 
(LV2) (Fig. 1A) (15). Expression of the transgene was in >10-fold excess over the native 
unfused protein, as determined by single molecule Fluorescence In Situ Hybridisation 
(Appendix SI, Fig. S1). Confocal microscopy of tagRFP::CLOCK or BMAL1::EGFP 
showed BMAL1 expression to be strongly localized to the nucleus whereas CLOCK was 
predominantly cytoplasmic when expressed alone  (Fig. 1A). Co-expression of both 
proteins in the same cells caused localization of tagRFP::CLOCK to the nucleus, in 
agreement with earlier studies which showed cytoplasmic CLOCK localization in BMAL1-
deficient cells, and that circadian regulation of nuclear localization of CLOCK correlated 
with BMAL1 availability (16, 17). We also transduced cells with a fluorescent fusion of a 
DNA binding mutant of BMAL1, in which a leucine is substituted for glutamic acid in the 
basic helix-loop-helix region of the protein; referred to as L95E. This protein re-localized 
tagRFP::CLOCK protein to the nucleus from the cytoplasm in an manner equivalent to WT 
BMAL1 (Fig. 1A) (3).  

We next performed Fluorescence Recovery After Photobleaching (FRAP) experiments to 
test the impact of CLOCK on the recovery dynamics of a bleached nuclear region of 
BMAL1::EGFP, by comparing responses with or without co-expressed tagRFP::CLOCK 
(Fig. 1B-C). BMAL1 recovery half-life was found to be insensitive to the diameter of the 
bleached region, indicating that binding contributes to the recovery profile rather than this 
being a solely diffusion-led process (Appendix SI, Fig. S2) (18). Reaction binding 
equations were fitted to determine the rate of dissociation, KOFF, for BMAL1::EGFP, the 
reciprocal of which equates to an average characteristic duration of binding or residence 
time. Residence time of BMAL1::EGFP was increased in the presence of 
tagRFP::CLOCK, consistent with a requirement for CLOCK to bind DNA (Fig. 1D). The 
mean residence time for the fluorescent CLOCK:BMAL1 complex was 4.13 seconds (95% 
CI, 0.57), a value consistent with DNA residence times for similar transcription factors (16, 
19). Using the L95E DNA-binding mutant protein, we saw significantly reduced residence 
time of 2.83 seconds (95% CI, 0.54). Notably, the initial publication of the BMAL1 L95E 
mutant showed a 2-fold reduction in PER2::LUC expression and so suggests a strong 
relationship between DNA binding and transcriptional output (3).  

To investigate this further we used Fluorescence (Cross) Correlation Spectroscopy 
(F(C)CS) (20), which enabled determination of live cell concentration and diffusion 
properties of individually fluorescent-labelled BMAL1 and CLOCK proteins, and their 
interactions when co-expressed (Fig. 1E). A normal diffusion model fitted the majority of 
data collected from cells expressing free EGFP or NLS::EGFP proteins, as previously 
reported (21), whereas anomalous diffusion models – sub-diffusion caused by a range of 
factors such as DNA interactions and molecular crowding – accounted for a >20% fraction, 
which in this instance may be explained by molecular crowding (22). In comparison, for 
the fusion proteins, anomalous diffusion models accounted for >80% of all BMAL1 data 
sets (Appendix SI, Fig. S3). We used an anomalous diffusion model for all further 
analyses of circadian proteins to calculate diffusion coefficients and protein 
concentrations.   
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Singly expressed fluorescent BMAL1 and CLOCK were found to diffuse rapidly with a 
median coefficient of 9.2 µm2/s (SD, 3.3) and 12.6 µm2/s (SD, 6.1), respectively. In 
contrast, co-expression significantly reduced the rate of diffusion to 1.9 µm2/s (SD, 1.3) 
and 4.7µm2/s (SD, 3.2) for BMAL1 and CLOCK respectively (Fig. 1F). The L95E mutant 
diffused more rapidly than WT BMAL1, consistent with fewer interactions in the nucleus 
(Fig. 1G). When co-expressed, WT BMAL1 and CLOCK exhibited a 2:1 concentration 
ratio in the nucleus (Fig. 1H, Appendix SI, Fig. S3). F(C)CS was then used to observe 
this interaction and determine a live-cell dissociation constant (KD; reciprocal measure of 
affinity) (23). A positive cross correlation curve was observed between BMAL1::EGFP and 
tagRFP::CLOCK that was not apparent in cells expressing NLS::EGFP with 
tagRFP::CLOCK (Fig. 1I). To calculate KD, we fitted a one-site saturating binding curve to 
the relationship between heterodimer and monomer (see supplementary material) which 
yielded a value of 148 nM (SD, 9.8) for WT BMAL1::EGFP and tagRFP::CLOCK (Fig. 1J). 
The KD was measured for cells with the reverse fluorescent protein labelling, namely 
EGFP::CLOCK and BMAL1::tagRFP, finding similar a value of 145 nM (SD, 4.8), although 
a stronger interaction was found in vitro by surface plasmon resonance (Appendix SI, 
Fig. S4). Previous work found that the V435R mutation of BMAL1 in the PAS-B domain, 
leads to reduced dimerization with CLOCK (3). We used the V435R mutation to confirm 
our F(C)CS measurements by co-expressing V435R-BMAL1 and WT-CLOCK. This 
elicited a ~1.5-fold reduction in interaction affinity, resulting in a KD of 201 nM (SD, 14) 
(Fig. 1K) and a reduction from 2:1 to a 4:1 ratio of BMAL1 and CLOCK in the nucleus 
(Appendix SI, Fig. S4E). In contrast, the BMAL1 L95E DNA binding mutant showed no 
difference in interaction affinity compared to WT BMAL1 protein. These data demonstrate 
that BMAL1 is a critical determinant of the localization, mobility and concentration of 
CLOCK in the nucleus. 

From this, we can infer the abundance of nuclear CLOCK from measurements of BMAL1, 
and make use of available endogenously labelled Venus::BMAL1 mice to measure 
remaining DNA binding parameters. First, we confirmed our existing cell line 
measurements of binding rates and diffusion using the Venus::BMAL1 mice (12), and 
showed that they remain within a similar range across a number of primary cell types, 
including macrophages and pulmonary fibroblasts (Appendix SI, Fig. S5). We also 
measured protein number of the endogenous BMAL1, finding that total copies per nucleus 
vary from 1000-10000 between individual cells, likely due to desynchrony and differing 
nuclear volumes. Moreover, a large overlap in nuclear copy numbers was observed across 
all cell types despite substantial changes in the mean. These data are critical in our 
understanding of the ratio of BMAL1 to target sites, effectively determining the capacity to 
regulate the full repertoire of target genes within a specific cell type.  

Quantification of strong rhythmic interaction of BMAL1 with CRY1 

The ability to measure BMAL1 amounts to infer copy number of CLOCK, allows us to 
measure other critical interactions with BMAL1. This includes the repressive action of 
CRY1 binding to CLOCK:BMAL1, resulting in reduced transactivation. To explore the 
interaction between BMAL1 and CRY1, we generated a genetically modified mouse in 
which CRY1 has been C-terminally fused with the red fluorescent protein mRuby3 using 
CRISPR-mediated genomic editing to insert the coding sequence, replacing the 
endogenous CRY1 stop codon (Fig. 2A) (24, 25). First, to test any potential impact on 
circadian pace-making, we measured CRY1::mRuby3 fluorescence in whole-field 
organotypic SCN slices (Fig. 2B) which exhibited regular cycles in red fluorescence with 
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a period of 23.9 hours (SD, 0.6) (Fig. 2C) (11). Additionally, wheel running measurements 
of these mice confirmed normal behavioral rhythmicity (SI appendix Fig. S6). We next 
crossed these mice to the Venus::BMAL1 mouse line (12), previously inter-crossed with a 
PER2::LUCIFERASE background (26) (SI appendix Fig. S5) to provide an independent 
circadian phase-reference marker (referred to as BMAL1xCRY1 labelled mouse). Using 
isolated lung fibroblasts from BMAL1 x CRY1 mice we assessed bioluminescence in 
response to dexamethasone (DEX) synchronization, and observed 23.3 hour cycles (SD, 
0.6) which were sustained for >4 days (Fig. 2D-E). From this, we are confident that the 
fluorescent fusion proteins do not disrupt the normal operation of the circadian pacemaker.  

Using the same synchronization approach, we then measured BMAL1xCRY1 
fluorescence in single cells every 4 hours from 24 to 48 hours post-DEX synchronization, 
using F(C)CS (Fig. 2F). Both fluorescent signals were localized to the nucleus. 
Venus::BMAL1 showed a consistent diffusion pattern over a circadian cycle, with a mean 
diffusion coefficient of 0.58 μm2/sec (SD, 0.03), whereas CRY1 mobility exhibited 
circadian variance, with slow diffusion 28 hours post-DEX and elevated diffusion rates 12 
hours later (Fig. 2G). Interestingly, this change in mobility is consistent with a binding to a 
mass equivalent to the molecular weight of PERIOD2 (see supplementary material). 
Peak protein concentrations of BMAL1 and CRY1 had an approximate and appropriate 
phase-separation of 8 hours (27). Auto-correlation analyses revealed the concentration of 
BMAL1 is on average 1.92 fold (SD, 0.32) higher than CRY1, with a mean concentration 
of 29.3 nM and 13.4 nM respectively (equating to approximately 16,000 and 7,000 
molecules per nucleus), consistent with the range we reported earlier for PER2 (11). The 
amplitude of CRY1 was found to be shallow, cycling from 7.9 molecules per confocal 
volume (cv, FCS measurement volume) at T28 to 10.0 molecules per cv at T32, 
comparable to the approx. 25% amplitude observed for CRY1 in the SCN (Fig. 2C). 
BMAL1 demonstrated a larger amplitude, cycling from 9.8 molecules per cv at T28 to a 
peak of 20.2 molecules per cv (Fig. 2H).  

We then analyzed the interaction affinity between BMAL1 and CRY1 over time (Fig. 2I). 
This interaction exhibited significant changes over a 24-hour cycle, with the strongest 
interaction at T28, KD = 38.8 nM (SD, 2.1), and weakest at T40, KD = 65.1 nM (SD, 3.4) 
(Fig. 2J). These profiles were found to correlate with the diffusion profile of CRY1 (Fig. 
2G). Interestingly, the mean interaction strength between BMAL1 and CRY1 is >2-fold 
stronger than that between BMAL1 and CLOCK (Fig. 1K). A similar relationship was found 
in vitro when measuring interactions using biolayer interferometry (28). This is therefore 
consistent with a model in which the low abundance of the CRY1 repressor is offset by a 
high affinity for the CLOCK:BMAL1 heterodimer.  

The changes in the diffusion profile of CRY1 are consistent with its association with an 
additional binding partner, such as PER2, thereby altering the affinity of CRY1 for 
CLOCK:BMAL1 (28, 29). To measure the interaction between CRY1 and PER2 directly, 
we transduced NIH/3T3 cells with lentivirus so that cells constitutively express 
EGFP::PER2 or CRY1::tagRFP fusion proteins. In both cases, the expressed protein was 
found to localize predominately to the nucleus, although some cytoplasmic fluorescence 
was observed. When co-expressed, subcellular localization was unchanged, although 
large punctate aggregates of signal were observed (Fig. 3A). PER2 was found to have 
the slowest diffusion coefficient recorded within all our F(C)CS measurements, when in 
the non-aggregate space. PER2 mobility was not altered following co-expression with 
CRY1, whereas CRY1 exhibited reduced mobility in the presence of ectopic EGFP::PER2 
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(Fig. 3B). The diffusion coefficient for CRY1 co-expressed with PER2 was similar to 
measurements of the endogenous protein (Fig. 2G), suggesting PER2 and CRY1 exhibit 
similar stoichiometry within these cells. The anomalous diffusion model fit the majority of 
data sets, including LV1CRY1, LV1PER2 and LV2PER2. However, normal diffusion models 
accounted for >50% of LV2CRY1 correlation analyses suggesting a distinct change in 
CRY1 following interaction with PER2, potentially from a loss of significant DNA binding 
of the CLOCK:BMAL1 complex (Appendix SI, Fig. S7). Best fit models for each data set 
demonstrated a strong affinity between PER2 and CRY1 with a KD of 81.8 nM (SD, 4.9) 
(Fig. 3C) and consistent with previous in vitro measurements (30).  

Quantitative data are an enabling and often essential component of stringent 
mathematical modelling of cell signaling (31). Having quantified the necessary 
parameters, we then sought to use them in developing a mathematical model of 
CLOCK:BMAL1 DNA binding, with the aim of understanding how the multiple regulatory 
motifs of changing molecular concentrations, interactions and binding kinetics coalesce to 
regulate DNA binding and transcriptional activation of BMAL1. We modelled the system 
using a set of ordinary differential equations (ODEs) to depict a current understanding of 
the system; BMAL1 dimerizes with CLOCK, which may subsequently bind and unbind to 
DNA target sites. To model repression, CRY1 may either inactivate CLOCK:BMAL1 via 
direct binding or, via dimerization to PER2, form PER2:CRY1 (mimicking complexes with 
CK1) to displace CLOCK:BMAL1 from DNA (Fig. 3D) (3, 7-9). The latter would 
presumably lead to rhythmic changes in the residence time of BMAL1 and provide a 
sensible option to fit and complete the model.  

To assess dynamic changes in inferred DNA binding rates of BMAL1, we isolated lung 
fibroblasts from BMAL1xCRY1 mice and determined the kOFF values by FRAP following 
DEX synchronization. Measurements of BMAL1 protein recovery were taken every 4 
hours from 24 h to 48 h post-DEX, showing kOFF to be rhythmically regulated (Fig. 3E). 
The BMAL1 kOFF profile was in antiphase to recordings of nuclear PER2 concentrations 
from Smyllie et al. 2016 (Fig. 3E) (11). To fit all parameters to the model (supplementary 
material and Table S1), the measured concentrations of PER2 (11), CRY1 and BMAL1 
were used as inputs, using data described in Figures 2H and 3F. On/Off rates were 
constrained to measured dissociation constants from F(C)CS  (Appendix SI, Table S1), 
with the KD value between BMAL1 and E-box sites set at 10 nM, as measured by Huang 
et al (3). Using a mean value from multiple published ChIP-Seq data, the potential number 
of DNA target sites was set as 3436 (Appendix SI, Table S1) (9, 32).  

The ODE model was then fitted by simulating FRAP so that a model-derived kOFF
 could be 

used against our experimental data (Fig. 3E) via Chi2 minimization (Chi2, 7.53) (Fig. 3F, 
SI Table S2). Next, we used this model to infer experimentally inaccessible complexes, 
specifically PER2:CRY1, CLOCK:BMAL1 and CLOCK:BMAL1:CRY1 (Fig. 3G). We find 
that free CLOCK:BMAL1 (unbound to DNA) cycles in remarkably low abundance from 0.9 
nM to 2.4 nM, which equates to a change of ca. 809 molecules, similar to that of the 
PER2:CRY1 complex. Furthermore, predicted DNA binding of CLOCK:BMAL1 has an 
average baseline of 190 sites bound at any one time, rising to 518 sites at the peak, in 
agreement with the expected ~2-fold peak enrichment from ChIP reports (9, 32) (Fig. 3H). 
The model also suggests ~50% of the available transcription factor complex is engaged 
with site-specific interactions with availability predominantly limited by the KD with CLOCK. 
Finally, DNA bound CLOCK:BMAL1:CRY1 complex was persistent, with low abundance 
cycling from 32 to 40 target sites (accounting for 14% of total site bound BMAL1).  
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Circadian proteins are within an optimal expression range to modulate E-Box 
binding 

The topology of the circadian molecular circuit is preserved across all cell types, yet it is 
also known that different cell types have widely differing repertoires of target genes and 
accessible genomic target sites for CLOCK:BMAL1 to bind (32). We therefore pursued the 
extent to which varying the number of target sites may have an impact on the available 
pool of CLOCK:BMAL1 to bind target sequences, as calculated by site occupancy (the % 
sites occupied at any given moment). We simulated the model over a biological range of 
binding sites (1,000 – 10,000), informed by multiple BMAL1 and CLOCK ChIP data sets 
(Fig. 4A) (9, 32). We found target site occupancy decreased marginally from 16.2% to 
13.6%, showing that any variance between different numbers of available target sites has 
minimal impact. We then explored how varying binding parameters affected site 
occupancy, relating them to the variability observed in our data sets but considering values 
beyond these limits. The CLOCK:BMAL1 unbinding rate accounted for a 21.5% change 
when residence times across the observed physiological range  are considered (Fig. 4B); 
outside of this range occupancy begins to saturate so that a further 30 second increase in 
residence time only accounts for an additional 12.5% binding. Therefore, the unbinding 
rate, as measured experimentally, is optimally positioned to regulate target site occupancy 
in a manner consistent with the displacement mechanism governed by PER:CRY.  

Additionally, protein concentrations vary across circadian time as well as individual cells 
and cell types (Appendix SI, Fig. S5). We therefore simulated target-site occupancy 
across varied biologically plausible concentrations for CRY1, PER2 and CLOCK:BMAL1 
and calculated the fraction of occupied sites (Fig. 4B). Increasing CRY1 and PER2 led to 
a reduction in target-site occupancy, whereas a rise in CLOCK:BMAL1 led to a substantial 
increase and in both cases. Moreover, the biologically observed range occupied the most 
sensitive part of the curve, such that oscillations in protein copy number can evoke 
significant changes of occupancy. Hence, the system is positioned to make efficient use 
of the biological concentrations of the constituent proteins.  

Mathematical modelling demonstrates dual function of PER2:CRY1 mediated 
repression 

Site occupancy is a function of the average residence time of transcription factors bound 
to DNA; consequently, highly frequent and short events would appear the same as 
infrequent and long binding events. To infer these masked kinetics, which are obscured in 
our mean based ODE model, we use a stochastic binding model to simulate individual 
molecules of CLOCK:BMAL1 binding to target DNA sites in a well-mixed system (33). For 
our simulations, we have used the average number of molecules and effective dissociation 
rates determined for T28, T32 and T40 hours post-DEX for lung fibroblasts (Fig. 4C) 
arising from our previously described ODE model. T28 and T40 represent trough and peak 
of BMAL1 (Fig. 2H) respectively, whereas T32 and T40 represent the trough and peak of 
PER:CRY protein amounts (Fig. 3G).  

Alongside binding of active CLOCK:BMAL1, we also considered target sites bound by 
CLOCK:BMAL1:CRY1, which are thought to be transcriptionally inactive whilst also 
blocking target site access to active molecules. At T40, when there is the maximum 
amount of CLOCK:BMAL1, 95% of the 3436 target sites would be bound at least once 
within a minute, changing to 3 minutes at T28 (Fig. 4D), contributing towards a small 
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degree of heterogeneity. From the perspective of a single promoter at T40 there are ~3.1 
visits per minute by CLOCK:BMAL1, which is reduced down to ~1.3 visits per minute at 
T28 (Fig. 4E), with further reductions in individual cells with lower concentrations of 
CLOCK:BMAL1 protein (Appendix SI, Fig. S8). We then separated the total visits per 
minute into those occurring as CLOCK:BMAL1 compared to those occurring as the 
CLOCK:BMAL1:CRY1 complex, finding the latter to remain relatively persistent across 
time points and making up ~15% of total visits, mirroring results for our ODE model. Our 
stochastic model therefore predicts that oscillating amounts of BMAL1 and CRY1 protein 
amounts, as well as the changing interaction affinity, may actually help preserve the 
concentration of CLOCK:BMAL1:CRY1 target binding events across circadian time (Fig. 
4F).  

Repression of CLOCK:BMAL1 activity by CRY1 requires continuous interaction and hence 
is limited by concentration. We hypothesized that this would be different for the 
PER2:CRY1-mediated displacement of CLOCK:BMAL1 from target DNA sites. To test 
this, we first investigated how the number of visits per minute would be affected by 
clamping the input values of KOFF and protein to different time points across different 
observed nuclear volumes. From this, we found that both concentration of protein and 
KOFF make a substantial contribution to the number of target site binding events (Appendix 
SI, Fig. S8). We then separated the contribution of changing amounts of CLOCK:BMAL1 
protein and PER2:CRY1 mediated displacement to visits per minute by calculating the 
impact of removal of PER2.  

We find that changing BMAL1 protein abundance accounts for the most variation in 
number of target site visitations, changing from 1.3 visits at the nadir to 2.9 visits at peak 
BMAL1 protein (Fig. 4G). CLOCK:BMAL1 mobility is supported by the action of 
PER2:CRY1 across all time points, accounting for a maximum of 26% visits at T32 and 
contributing to 10% of visits at the trough PER2 protein levels. To explore this relationship 
further, we tested the impact of altering the levels of PER2 in the stochastic model, 
choosing four PER2 concentrations, ranging from absent to greater than observed 
physiological levels (0, 10, 20 and 50 nM) (Fig. 4H). In the complete absence of PER2, 
BMAL1 mobility is hampered so that it visits less than 3 sites per minute. When PER2 
spans the physiological range and beyond, a strong relationship in the visits per minute is 
forecast, rising by ~33%. Our modelling demonstrates dual modes of action of 
PER2:CRY1, repression via displacement of CLOCK:BMAL1 from target sites and 
facilitation of CLOCK:BMAL1 mobility to promote new target site binding (Fig. 4I). In this 
sense, PER2 acts both as part of a transcriptional repressor complex and as a facilitator 
of CLOCK:BMAL1 mobility to bind new target sites (34). 

 
 
Discussion  

 

The circadian molecular circuit responds to and modulates an extraordinary number of 
biological processes, broadly imparted through DNA binding of CLOCK:BMAL1 to E-box 
sites (9). Through live cell microscopy of fluorescent ectopically and endogenously 
expressed circadian proteins we have sought to understand how the autonomous 
molecular clock regulates CLOCK:BMAL1 binding to DNA.  

Protein abundance and stoichiometry of the circadian circuit 
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Mathematical modelling demonstrates that low molecular abundances, as observed for 
core circadian components, lead to rapid internal and cell-to-cell desynchrony, which may 
be compensated for by strict control of stoichiometries and interactions (35). In the first 
instance, protein concentrations of both activators and repressors exert significant 
influence on amplitude as well as robustness of daily DNA binding cycles. We found 
approximately 16,000 BMAL1 and 8,000 CRY1 proteins per nucleus, consistent with our 
earlier reports for PER2 which found 12,000 proteins per nucleus in skin fibroblasts (11). 
In contrast with our doubling of endogenous CRY1 expression over PER2, a recent study 
by Gabriel et al. found approximately an eight-fold difference using the U20S, 
osteocarinoma cancer cell line, highlighting how different cell types and cell lines may 
diverge and influence the circadian network (14). Similarly, we observed significant 
disparities of endogenous BMAL1 across a range of cell types, with fibroblasts exhibiting 
a >2 fold increase in BMAL1 concentration when compared with chondrocytes (SI 
appendix, Fig. S5). The impact of cell type variation in protein concentrations and 
stoichiometries is difficult to discern but may confer tissue specific sensitives to clock 
control of output genes without the need for additional regulatory components, or could 
compensate the system, as evidenced by similar single site visitations despite a 4-fold 
decrease in nuclear volume (Figure S8I).  

Balance in affinity between BMAL1 and CLOCK may facilitate crosstalk  

CLOCK was found to be cytoplasmic when ectopically expressed without BMAL1, with 
nuclear localization restored upon addition of BMAL1. This  suggests BMAL1 oscillations 
could affect availability of nuclear CLOCK, consistent with several studies (17, 36). Here 
we found a 2:1 quantitative relationship suggesting a mechanism for maintenance for 
stoichiometry within the nucleus. It is worth noting that, despite a concentration of free 
BMAL1 of ~15 nM, only 10 percent of this was measured as part of the CLOCK:BMAL1 
heterodimer. Low availability of heterodimeric transcription factor for DNA interactions, 
when compared with free protein, severely limits the potential to bind DNA, yet this is 
consistent with allowing other interactions to occur, including those reported with Hypoxia-
inducible factor (HIF) and Aryl hydrocarbon receptor (AhR) (37, 38). Balancing availability 
of monomeric BMAL1 and CLOCK may therefore enable crosstalk with other pathways, 
or modulate interactions that have different affinities for monomeric versus heterodimeric 
CLOCK:BMAL1, as has been reported for CRY1 (8, 39).   

Impact of cycling CRY1 concentration, binding affinities and mode of repression on 
the clock  

Substantive evidence for direct repression of BMAL1 transactivation by CRY1 now exists 
(8, 40). Here we have shown in live cells that this interaction is not only rhythmic but 
remarkably strong, with a higher affinity than any other protein pairings we have 
measured. This strong repression of CLOCK:BMAL1 by CRY1 balances against its low 
abundance. When acting without PER2, CRY1 exhibits persistent repression over 24 
hours, likely owing to its regulated interaction with CLOCK and BMAL1, as evidenced by 
modelling the effect of removal of either cycling BMAL1, CRY1 or binding affinity between 
the two (Fig. S4, SI appendix, Fig. S8). This cycle in affinity provides evidence that the 
mammalian circadian clock also relies on oscillations in the ability of key proteins to 
heterodimerize one another. The exact mechanisms underlying this regulation of affinity 
are yet to be determined but could be hypothesized to be an outcome of dimerization with 
another partner that hinders or aids binding to CLOCK:BMAL1, such as PER2, or post-
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translational modifications leading to changes in affinity with BMAL1 (28, 30, 41). A ~25% 
shift in the diffusion of CRY1 equating to a change in mass close to that of, and in phase 
with the peak of, PER2 hints at the former proposition but further study is required (Fig 
2G and Fig 3E).  

Individual genes exhibit a range of residence times 

We found an average short residence time of 3 seconds for CLOCK:BMAL1, similar to 
other DNA binding transcription factors including GR, p53, p65 and STAT1 (19), potentially 
optimized to reduce gene expression noise (42). Here we modelled CLOCK:BMAL1 
binding to a number of sites using an average off rate resulting in all sites behaving the 
same and demonstrating how DNA binding is globally regulated, in contrast with evidence 
from ChiP-seq, whereby different sites are differentially bound  (9). Presumably, robustly 
detected peaks found by ChIP-seq represent genes with a slow unbinding rate, such as 
the E-box sites found in the DBP gene, which is supported by previous live cell imaging 
characterizing a longer 8 second residence time for BMAL1 on a DBP E-box concatemer 
(16). Altering the unbinding rates leads to a non-linear scaling in the occupation frequency 
(SI appendix, Fig. S8), highlighting the importance of regulating this parameter through 
post-translational modifications such as via phosphorylation of the CLOCK:BMAL1 
complex as reported by Qin et al (43). Residence time may be tuned individually for 
different genes to ensure optimal transactivation, especially when considering recruitment 
of critical co-factors which do not interact with CLOCK:BMAL1 outside of DNA, as the 
probability of co-occupation increases with binding time. Ultimately, a considerable 
temporal gulf exists between the elaboration of a circadian rhythm (days) with the time-
scale of DNA binding (seconds), altered by the accumulation of protein (hours).  

Daily changes in BMAL1 protein are moderate, remaining as high as 10,000 molecules 
per nucleus even at the nadir of expression, resulting in many non-transcriptionally 
productive interactions of CLOCK:BMAL1 with DNA throughout the circadian cycle; these 
interactions however may be important, contributing to pioneer factor activity and allowing 
others genes to activate at a different phase to BMAL1 protein levels (44, 45). 

Compromise between E-box visitations and occupancy via PER:CRY mediated 
displacement 

Whereas CRY1 inhibits BMAL1 transactivation via binding and blocking productive 
interactions with transcriptional coactivators, PER:CRY complexes permit an alternative 
mode of repression (8, 34). We demonstrate that increasing PER:CRY leads to an overall 
reduction in the ability for CLOCK:BMAL1 to remain bound through direct dimerization and 
manipulation of DNA unbinding. Work by Cao and Wang et al revealed PER2 removes 
CLOCK:BMAL1 in a CRY-dependent manner from E-Boxes via recruitment of CK1 and 
subsequent phosphorylation of CLOCK, effectively reducing affinity for DNA (34). 
Displacive repression of this kind reduces residency time on DNA sites and thus the 
number of sites bound at any one time. However, reducing residency time necessarily 
increases the rate at which a limited pool of transcription factors can move onto new sites, 
hence increasing the likelihood any one gene to be bound and reducing possible cell-to-
cell variation. Site-specific residence times, most likely due to cofactor recruitment or 
chromatin modifications, coupled with this phenomenon would permit some gene targets 
to exhibit maximal CLOCK:BMAL1 binding beyond the time of the global peak. This 
supports findings by Menet and colleagues, who highlight groups of genes that have 
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maximal binding events, as determined via ChIP-seq, outside of the zenith of total genome 
CLOCK:BMAL1 binding (44). We find that at the nadir of DNA binding, in the absence of 
PER:CRY, the visitations per minute would reduce by a quarter, whereas at the height of 
displacive repression CLOCK:BMAL1 is most mobile and thus more able to utilize site-
specific binding factors. Furthermore, evidence of CLOCK:BMAL1 behaving as a so-called 
‘kamikaze’ transcription factor, a factor most transcriptionally potent when phosphorylated 
and marked for degradation, implies that in addition to an increase in visitations per 
minute, transcriptional potency is also upregulated (16). Therefore, despite the relatively 
high efficiency of CLOCK:BMAL1 binding to DNA, it may spend much of its life performing 
transcriptionally non-productive tasks until modified via complexes such as PER:CRY. 
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Materials and Methods 
 
See supplementary material 
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Figures and Tables 

 
Figure 1. BMAL1 and CLOCK mobility is regulated by dimerization and DNA binding.  
(A) NIH/3T3 cells are either singularly or sequentially transduced to express fluorescent fusions 
with CLOCK or BMAL1 (wildtype and mutant variants). Confocal microscopy images of cells solo-
expressing (LV1) either tagRFP::CLOCK or BMAL1::EGFP or co-expressing (LV2) them together 
(including BMAL1L95E DNA binding mutant). (B) Confocal microscopy images for photobleaching 
of LV2BMAL1::EGFP-RFP::CLOCK labelled cells, either with wild-type or BMAL1L95E DNA binding 
mutant. Images show nuclei and highlight region of bleaching. (C) Representative fluorescence 
recovery curves of bleach region for B. following normalisation. (D) Residence time calculated as 
the inverse of kOFF

 (s-1), determined from fitting the recovery data in C. with a single component 
binding model (n = 69, 58 and 51 cells). Bar represents median values. (E) Representative auto- 
and cross- correlation data showing raw data and fit lines for monomeric and complexed fluorescent 
proteins. (F) FCS data showing diffusion for BMAL1 and CLOCK in solo- and co-expressed 
conditions (n = 173, 152, 198 and 185 cells). (G) FCS results for BMAL1::EGFP diffusion for 
NIH/3T3 cells that co-express tagRFP::CLOCK. Data shown is for comparison of BMAL1 as either 
wild-type of L95E DNA-binding mutant. Bars show median and interquartile range. (H) Correlation 
of nuclear protein quantification showing relationship of BMAL1::EGFP with tagRFP::CLOCK for 
both wildtype and DNA binding mutant (n=221 cells from 3 biological replicates). (I) Average cross-
correlation curves for BMAL1::EGFP (WT) with tagRFP::CLOCK (n = 140) compared to a non-

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.27.456017doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.27.456017
http://creativecommons.org/licenses/by-nc/4.0/


 

 

19 

 

interacting control of NLS::EGFP co-expressed with tagRFP::CLOCK (n = 408). (J) Dissociation 
plot from FCCS data for BMAL1::WT and tagRFP::CLOCK. (K) Summary of calculated dissociation 
constants across all conditions, including BMAL1 dimerization mutant, V435R (n= 156 , 274 and 
244). Mann-Whitney non-parametric test to determine significance (values are denoted as p>0.05 
ns, p<0.05 *, p<0.01 **, p<0.001 *** and p<0.0001 ****) 
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Figure 2. A rhythmic and strong interaction observed between BMAL1 and CRY1 facilitates 
repression. (A) Schematic representation of newly made transgenic mouse engineered to express 
CRY1::mRuby3, Venus::BMAL1 and PER2::LUC. (B) Confocal microscopy image of SCN 
organotypic slice expressing CRY1::mRuby3. (C) Quantification of mRuby3 fluorescence over time 
for the whole SCN, with mean and standard deviation of period. (D) Experimental set up to measure 
isolated primary lung fibroblasts from Venus::BMAL1 x CRY1::mRuby3 x PER2::LUC labelled mice 
synchronised with dexamethasone. Parallel cell cultures were analysed for luminescence and also 
by FCS over a time-course, measured every 4 hours. (E) Luminescence recordings of isolated 
primary lung fibroblasts from BMAL1 x CRY1 x PER2 labelled mice synchronised with 
dexamethasone. Data shown is for three independent replicates, with mean and standard deviation 
of period shown. (F) Confocal images of two cells shown for Venus::BMAL1 and CRY1::mRuby3 
over time. FCS determined measurement for diffusion coefficient (G) and protein concentration (H) 
of Venus::BMAL1 and CRY1::mRuby3 (n = 136, 143, 173, 131, 158, 121 and 132; line shows the 
mean and error envelopes show the SEM) . (I-J) Interaction strength between BMAL1 and CRY1 
was also measured over time as illustrated by the schematic of affinity as well as plotted values of 
dissociation constant (error envelope shows the standard deviation).  
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Figure 3. PER2 acts via CRY1 to mediate rhythmic displacement of CLOCK:BMAL1 from 
DNA. (A) Confocal images of transduced NIH/3T3 cells that either solo- or co- express PER2 and 
CRY1. (B) FCS data showing diffusion for PER2 and CRY1 in solo- and co-expressed conditions 
(n = 165, 174, 274 and 274 cells). (C) Dissociation plot from nuclear FCS measurements for 
EGFP::PER2 and CRY1::tagRFP (n=274). (D) Schematic representation of model topology used 
for the deterministic model of CLOCK:BMAL1 DNA binding. (E) Primary lung fibroblasts from 
BMAL1 x CRY1 x PER2 mice were synchronised with dexamethasone. Plot shows PER2 
concentration as measured via FCS by Smyllie et al 2016 (11) as well as mean BMAL1 binding 
time (showing SEM error envelope). Binding time was measured by confocal FRAP measurements 
performed on the Venus::BMAL1 fluorescence. Orange line shows the inverse of kOFF

 (s-1), 
determined from fitting the recovery data with a single component model (n = 48, 70, 82, 63, 82, 
64 and 65 cells). (F) ODE model was fit to FRAP binding data from E. and using a measured input 
for PER2 nuclear concentration previously determined in Smyllie. et al 2016. Model output showing 
(G) inferred nuclear concentrations for molecular complexes (H) and CLOCK:BMAL1 without and 
with CRY1 bound to target sites (see supplementary materials for parameters).  
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Figure 4. Mathematical modelling demonstrates dual function of PER:CRY mediated 
repression. (A-B) Sensitivity analysis of the deterministic binding model showing relationship of 
measured parameters (bottom) against model for occupancy of active BMAL1:CLOCK on target 
sites (top). (A) Changing number of target sites with data matched to BMAL1 ChIP data sets.  (B) 
From left to right, the effect of changing residence time of CLOCK:BMAL1, or protein 
concentrations. Histograms show measured concentrations for corresponding proteins across all 
conditions/cells. The 10th to 90th percentile is highlighted. (C-G) Stochastic binding model outputs 
using parameters corresponding to T28, T32 or T40 post dexamethasone BMAL1 x CRY1 data 
sets. (C) Shows a promoter corresponding to the average binding rate of CLOCK:BMAL1, (D) the 
time to visit 95% of target sites once and (E) number of visits to a single promoter over time. (F) 
Average number of visits per minute to a target site showing active and CRY1 repressed 
CLOCK:BMAL1 visits. (G). Comparison of the contribution of BMAL1 concentration (blue) and 
PER2 facilitated displacement (green) on the visits per minute to a target site. Percentage 
contribution indicated. (H) Relationship of PER2 protein concentration to site visitations per minute 
by CLOCK:BMAL1 using parameters for T40 explored over different concentrations of PER2 . (I) 
The action of CRY:PER leads to short-lived transient binding of CLOCK:BMAL1 to DNA, working 
as both a repressive action whilst also facilitating binding to new target sites.   
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