
Figure 3. The design of simulation workflow based on the real dataset. The workflow consists of 

three major steps. Step 1: select HV genes. Step 2: select SV genes whose adjusted p-values are 

below 0.05. Step 3: simulate new spatial expression patterns for the selected SV genes. 

 

 

Figure 4.  Clustering performance comparisons of different data integration methods on 

simulated spatial transcriptomics datasets, by varying probability ��
  of spatial clustering 

certainty (0.6, 0.7, 0.8, 0.9), for different spatially variable gene selection methods including 

Giotto, spatialDE and SPARK. Shown are metrics using (a) AMI and (b) VN. Five repetitions 

are run in each condition, and the average scores are displayed, with standard deviations. 
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Figure 5. Effect of integration methods on downstream differential expression results measured 

by F-1 scores, for different spatially variable gene selection methods including Giotto, spatialDE 

and SPARK. (a-b) Results on real datasets, in three representative platforms, including merFISH, 

SeqFISH+, and Visium, shown as (a) F-1 score boxplot over all 19 real datasets, including two-

sided paired Wilcox test results on the null hypothesis that the performance of the integration 

method is the same as the performance of solely SV genes. *: p-value < 0.05, ** : p-value < 0.01, 

***: p-value < 0.001, ****: p-value < 0.0001; (b) F-1 score ranking for all real datasets; (c) 

Results on the same simulation datasets as in Figure 4.  
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Figure 6. Comparison of running time and memory usage of integration methods using the 

Visium Human Cerebellum dataset.  (a-b) The practical performance relative to the number of 

cells, measured by (a) running time, and  (b) memory usage.  (c-d) The practical performance 

relative to the number of features , measured by (c) running time, and (d) memory usage. 
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Figure 7. Heatmap summary of metrics ranking of integration methods over real and simulated 

datasets, by Tier 1 metrics: AMI, VN, F-1 statistics of downstream differential expression 

analysis, and Tier 2 metrics: runtime and memory usage.   
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