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Abstract 

The increasing popularity of spatial transcriptomics has allowed researchers to analyze 

transcriptome data in its tissue sample's spatial context. Various methods have been developed 

for detecting SV (spatially variable) genes, with distinct spatial expression patterns. However, 

the accuracy of using these SV genes in clustering has not been thoroughly studied. On the other 

hand, in single cell resolution sequencing data without spatial context, clustering analysis is 

usually done on highly variable (HV) genes. Here we investigate if integrating SV genes and HV 

genes from spatial transcriptomics data can improve clustering performance beyond using SV 

genes alone. We examined three methods that detect SV genes, including Giotto, spatialDE, and 

SPARK, and evaluated six methods that integrate different features measured from the same 

samples including MOFA+, scVI, Seurat v4 , CIMLR, SNF, and the straightforward 

concatenation approach. We applied these methods on 19 real datasets from three different 

spatial transcriptomics technologies (merFISH, SeqFISH+, and Visium) as well as 20 simulated 

datasets of varying spatial expression conditions. Our evaluations show that MOFA+ and simple 

concatenation have good performances in general, despite the variations among datasets and 

spatial transcriptomics platforms. This work shows that integrating highly variable and spatially 

variable genes in the spatial transcriptomics data can improve clustering beyond using spatially 

variable genes only. It also provides practical guides on the choices of computational methods to 

accomplish this goal. 

Keywords: spatial transcriptomics, feature, clustering, dimension, spatial variation, single cell 

sequencing 
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Background 

Spatial omics technologies are one of the breakthroughs in science in the last several years [1], 

[2–4]. Such technologies are able to measure transcriptome information systematically in the 

tissue space, thus preserving the spatial context of the tissue samples. The addition of spatial 

information allows researchers to further explore biological architecture and function and reveal 

more insights with respect to various disease mechanisms [5–7] [8] [9]. Various techniques for 

sequencing spatially resolved transcriptome data have been developed, including merFISH [10] 

[11] [12], SeqFISH [13], SeqFISH+ [14], Visium [15] [16,17], etc. Such technologies can be 

categorized into two general classes: fluorescence in situ hybridization (FISH)-based methods 

[14] [10], which directly extract transcriptome information at a molecular level and obtain the 

spatial locations of the cells by processing the FISH images; and array-based methods [16] [15], 

which attach probes with fixed physical locations to cryosections of tissues to obtain 

transcriptome information. 

Since the function of cells is often related to their location in the tissue and their genetic 

information, spatial transcriptomics methods have great potential in helping us gain insights into 

biological mechanisms. Genes with spatially distinct expression patterns, or spatially variable 

(SV) genes, are a novel type of markers for identifying cell types. Recently several 

computational methods, such as trendsceek [18], spatialDE [19], SPARK [20], Giotto [21], and 

MERINGUE [22], have been developed with the function to identify spatially variable (SV) 

genes. However, conventionally clustering and cell-type identification are based on highly 

variable (HV) genes, as those done in single cell RNA-Seq datasets which provide no spatial 
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information directly. In spatial transcriptomics data, the SV genes with similar spatial expression 

patterns are often used to segment cells / spots into spatial domains or clusters [16,19]. Notably, 

the SV genes and HV genes are often quite distinct sets, despite the possibility of overlapping on 

some genes. We therefore asked if the integration of conventional HV genes and the novel SV 

genes (both from spatial transcriptomics data), can help to improve clustering performance of 

this new type of data, an area unexplored currently. 

Towards this goal, we conducted a comprehensive benchmarking study to integrate HV genes 

and SV genes in spatial transcriptomics data. We adapted six different computational methods 

for this task, namely scVI, CIMLR, SNF, Seurat v4, MOFA+, and the straightforward 

concatenation approach. scVI is a neural-network based method originally designed for 

integrating single-cell transcriptomic data [23]. Seurat v4 is a Weighted Nearest Network method 

[24] and MOFA+ is a matrix factorization method [25], both of which were used to integrate 

multi-omics single cell data[26]. We also adopted two additional methods originally developed 

to integrate bulk multi-omics data: CIMLR (Cancer Integration via Multikernel Learning) model 

is an integration method using Gaussian kernels [27] and SNF is a network fusion method based 

on patient-patient similarities [28]. While other methods align multiple types of genomics data 

from similar (but not the same) cells, such as LIGER [29], MATCHER [30] and Harmony [31], 

these methods are deemed unsuitable for the question in the study, since the SV genes and HV 

genes here are obtained from the same cells (or spots).  

We obtained SV genes using three different popular spatially variable genes detection methods: 

Giotto [21], spatialDE [19], and SPARK [20]. We then applied the aforementioned integration 

methods to combine HV and SV genes on a total of 19 real datasets across three spatial 

transcriptomics platforms, including the Mouse Somatosensory Cortex dataset by SeqFISH+[14], 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 21, 2022. ; https://doi.org/10.1101/2021.08.27.457741doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.27.457741
http://creativecommons.org/licenses/by-nd/4.0/


six datasets by 10X genomics’ Visium platform [16,32–36] and twelve datasets by merFISH 

methods [10]. We also evaluated the clustering results on 20 simulated datasets. The clustering 

performance was measured using three primary metrics: AMI (Adjusted Mutual Information), 

which evaluates the accuracy of clustering in spatial omics data by simply comparing the 

clustering labels to the ground truth labels, without taking into account the spatial structure of the 

cells / spots;  VN (total Variation Norm), which evaluates accuracy by comparing the clustering 

labels to the ground truth taking the spatial structure of the cells / spots into consideration; and F-

1 score which evaluates the accuracy of downstream differential expression analysis. We also 

assessed the methods’ performance through secondary practical metrics such as running time and 

memory use. The benchmarking results are expected to provide practical guidelines for 

researchers conducting spatial omics clustering analysis, where the SV genes and HV genes 

present distinct properties of the data. 

 

Results 

Overview of Benchmark Comparisons 

We conducted a comprehensive benchmarking study to evaluate the effect of integrating HV 

genes and SV genes in spatial transcriptomics data on 19 real datasets and 20 simulated datasets, 

using 5 different integration approaches. The characteristics of the integration methods used in 

the study are summarized in Table 1. We strictly selected only methods that integrate multi-

omics data generated from the same cells and excluded methods that align multiple types of 

genomics data from similar (but not the same) cells, since the SV genes and HV genes here are 

obtained from the same cells (or spots).  The processing pipeline for benchmarking is shown in 
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Fig. 1. It starts with spatial transcriptomics data which has two components: a gene expression 

matrix, and spatial data which consists of the spatial coordinates of each spot or cell. After data 

preprocessing and normalization (see Methods), we extracted the HV genes using the gene 

expression matrix and the SV genes using both the gene expression matrix and spatial 

coordinates data. Since HV genes and SV genes normally overlap partially, here we define HV 

genes as genes that are uniquely highly variable genes, to avoid double-counting the overlapped 

genes during integration. We then conducted dimensionality reduction to obtain the same 

number of extracted features, using either the internal steps within the methods (MOFA+, scVI, 

Seurat v4 and CIMLR) or using PCA (Principal Component Analysis) for the approach without 

this step (concatenation). Next, we applied clustering (default Leiden algorithm) for all methods 

except for CIMLR, which has its own built-in clustering step. For a fair comparison of 

evaluation metrics, we repeatedly performed the Leiden clustering algorithm, tuning its 

parameters until we obtained the same number of clusters as those from the ground truth. Finally, 

the clustering performance was assessed by conventional clustering metric AMI (Adjusted 

Mutual Information) and the novel spatial clustering metric VN (Variation Norm). AMI simply 

measures the level of concordance between clustering labels and the ground truth labels; VN 

calculates the concordance between clustering labels and ground truth labels while taking into 

account the spatial distribution of the cells / spots, a unique feature of spatial transcriptomics data. 

We also performed differential expression analysis based on the clustering labels using the F-1 

score, to assess the downstream quality of the clustering labels. Since SV genes are often used as 

features in downstream spatial transcriptomics data analysis, we used the results obtained from 

using SV genes as the baselines, in comparison to those obtained from integration methods. 
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Clustering Accuracy on Real Spatial Transcriptomics Datasets 

We compared the clustering accuracy performance of paired multi-omics integration methods on 

19 datasets with available ground truth information. Our real datasets span over diverse 

resolutions, tissue types and cell type compositions (Table 2). Six datasets are from Visium [15], 

a non-single-cell resolution technology, or its prototype technology. They include a Mouse 

Olfactory Bulb dataset [16], a Human Cerebellum dataset [32], a Mouse Kidney dataset [33], and 

three different Mouse Brain datasets [34–36]. We included the Mouse Somatosensory Cortex 

dataset from SeqFISH+ [14], a single-cell resolution dataset. We also selected twelve datasets on 

separate layers of the Mouse Hypothalamus by merFISH [10], another single-cell resolution 

technology. 

To evaluate clustering accuracy, we first compared the methods’ performance using the 

conventional metric AMI (Adjusted Mutual Information). We compared the clustering results 

with those using SV genes as the baseline (Fig. 2a-b, Supplementary Fig. 1a-c). While there is 

no single best integration method for all datasets, there is a strong trend across different SV  

genes detection methods that MOFA+ and the simple concatenation approach yield the best 

results in general (Fig. 2a-b, Supplementary Fig. 1a-c). On average, across different SV genes 

selection methods, concatenation (p-value = 0.004, 0.049, and 0.002 for Giotto, spatialDE, and 

SPARK) and MOFA+ (p-value = 0.018, 0.395, and 0.009 for Giotto, spatialDE, and SPARK) 

have the highest median AMI values across datasets (Fig. 2a), significantly better than the 

baseline. They are followed by scVI, which also have higher AMIs than clustering solely based 

on SV genes, however the advantage is not statistically significant. Oppositely, SNF (p-value = 

7.6e-06, 3.8e-06, and 3.8e-06 for Giotto, spatialDE, and SPARK), CIMLR (p-value = 3.8e-06 for 

Giotto, spatialDE, and SPARK) and Seurat v4 (p-value = 0.008, 0.001, and 3.4e-04 for Giotto, 
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spatialDE, and SPARK) are significantly worse at integrating SV and HV genes, compared to the 

baseline of spatial omics clustering using SV genes (Fig.2a). In particular, Seurat v4 has a much 

wider range of AMIs compared to other methods, prompting a closer look at the AMI values 

across different datasets. Indeed, Seurat v4 shows technology-dependent performance patterns 

(Fig. 2b, Supplementary Fig. 1a-c). It has some of the lowest AMIs in datasets of single cell 

resolutions, particularly in merFISH datasets; However, it is ranked better in the Visium platform.  

Since spatial transcriptomics data measure gene expression in situ, we also evaluated the 

clustering performance of each integration method with respect to the spatial distribution of the 

clustering labels. Towards this, we derived spatial variation norm (VN), a unique metric to fulfil 

this purpose (see Methods). The overall trends of these different integration methods are similar 

to those measured by AMI, although less pronounced (Fig. 2c-d, Supplementary Fig. 2a-c). 

There is no single best method for all datasets, however, concatenation has the highest average 

VN value and is significantly better (p-value = 0.036) than clustering solely based on SV genes 

detected by SPARK method (Fig. 2c). MOFA+ show comparable VN values to the baseline 

condition. Seurat v4 and scVI yield slightly worse median VN value and wider variations. Again, 

on average, CIMLR and SNF underperform the baseline clustering performance of using SV 

genes (Fig. 2c). We observe again technology-dependent performance patterns (Fig. 2c-d, 

Supplementary Fig. 2a-c). Seurat v4 appears to yield better rankings of VN in non-single-cell 

resolution Visium datasets, but worse rankings in datasets of single cell resolutions. The overall 

consistent trends between VN and AMI further confirms that both spatial and quantitative 

features are useful in cell type clustering, when the proper integration methods are used. 

Additionally, we further studied the effectiveness of integration methods by visualizing the 

clustering and ground truth labels over spatial coordinates and two-dimensional UMAP 
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representation based on principal components of all genes (Fig. 2e-f). The example results of 

MOFA+ for three datasets (Visium Mouse Brain Sagittal Posterior, merFISH Mouse 

Hypothalamus (layer -240) and seqFISH+ Mouse Somatosensory Cortex data) show that the 

integrated features can delineate clusters clearly, including edge cases where different clusters 

are not well separated on the two-dimensional UMAP representation. The clustering results 

exhibit clear, non-random spatial structures, further demonstrating the merit of integrating HV 

and SV genes in with respect to improved clustering performance. 

 

Clustering Accuracy on Simulated Spatial Transcriptomics Datasets 

It is possible that the ground truth labels of real datasets are subject to biases from the genes and 

references that were used to obtain the annotations. Therefore, we also performed a simulation 

study where we could generate the dataset along with unambiguous ground truth labels. To 

simulate realistic transcriptomics data, we used the gene expression, spatial coordinates, and 

ground truth cell types of the seqFISH+ Mouse Somatosensory Cortex dataset as our reference 

[16]. We chose this dataset as the base for simulations, given its mild condition: none of the data 

integration methods yielded outlier values of the metrics (AMI and VN) in this dataset, among 

the 19 datasets. We aimed to explore how the level of spatial distinction impacted the integration 

and clustering performance of the methods. A gene’s spatial expression is defined as its 

expression pattern in the context of the spatial distribution of the cells (or spots); the more 

distinct the spatial pattern, the more spatially expressed the gene is. We used the spatial pattern 

of cell types in the ground truth to closely approximate the actual spatial transcriptomics data. 

We varied the level of the spatial distinction profile of SV genes by simulating new spatial 
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patterns for these genes (Fig. 3). The level of spatial distinction for the new spatial pattern is 

controlled by a probability parameter � (see Methods). We varied the values of probability � 

from 0.6 to 0.9 and created five random repetitions for each value. We then evaluated how the 

probability parameter � affects the methods’ performance using the same pipeline (Fig. 1) as the 

previous real datasets. 

As with real datasets analysis, we evaluated the performances of clustering results from different 

integration methods, compared to those based on the SV genes (Fig. 4). With respect to AMI, all 

methods except SNF and Seurat v4, consistently yield significantly higher values compared to 

the baseline condition of using SV genes (Fig. 4a). Moreover, as the level of spatial distinction 

increases, the AMI values of all methods continue to improve, confirming that the level of spatial 

distinction certainty is informative of cell type clustering (Fig.4a). Under varying levels of 

spatial distinction, MOFA+ has the best and the most stable spatial omics clustering performance 

(AMI) among all the integration methods. Other methods such as concatenation, CIMLR and 

scVI also do well. Note that the advantage of MOFA+ over the rest of the methods is more 

apparent when the spatial distinction is relatively small. This suggests that MOFA+ is able to 

effectively integrate HV and SV genes even with low certainty. Again SNF has relatively worse 

stability over different levels of spatial distinction. 

For spatial clustering evaluation using VN, we observe an overall increasing accuracy trend as 

the level of spatial distinction increases for most integration methods (Fig.4b). MOFA+ and 

concatenation have the best and most stable spatial clustering performance among all the 

integration methods. Both methods consistently outperform spatial clustering solely based on SV 

genes, over varying degrees of spatial distinction. scVI also consistently outperforms spatial 

clustering based on SV genes, however the advantage is not as apparent. CIMLR, SNF and 
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Seurat v4 have lower VN values compared to those using solely SV genes, and Seurat v4 has the 

worst stability over different levels of spatial distinction. 

  

Effect on Downstream Differential Expression  

Clustering analysis is usually an important step for other downstream analyses. In order to 

further assess the downstream effect of clustering through integrating SV and HV genes, we 

performed differential expression analysis. For this we used the differential expression analysis 

results based on the ground truth labels as the references. We tested how many original markers 

can be recovered based on the integration cluster labels. We evaluated the downstream 

differential expression analysis performance using the F-1 score (see Methods), in comparison 

with that of the clustering based solely on SV genes. 

For the 19 real datasets, scVI had the highest median F-1 score and significantly better than the 

baseline performance based solely on SV genes (p-value = 0.036, 0.520, and 0.418 for Giotto, 

spatialDE, and SPARK). scVI’s performance is followed closely by MOFA+ and concatenation. 

Seurat v4 achieved worse F-1 scores comparable to that of SV genes, but the disadvantage is 

generally not significant. SNF and CIMLR yielded significantly worse F-1 scores than the 

baseline, both with p-values less than 0.01 (Fig. 5a). The specific values and rankings of the F-1 

scores again present technology dependent patterns, similar to those observed by AMI and VN. 

Seurat v4 obtains better rankings of F-1 scores in non-single-cell-resolution datasets than in 

single-cell resolution datasets (Fig. 5a-b, Supplementary Fig. 3a-c). 
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We performed similar downstream differential expression analysis for the simulated datasets 

(Fig. 5c). MOFA+ has the best and most consistent performance across different SV genes 

detection methods and varying levels of spatial distinction. Besides MOFA+, CIMLR, scVI and 

concatenation also outperform the baseline of using SV genes alone. SNF shows significantly 

worse F-1 scores than the baseline condition. The F-1 score of Seurat v4 is relatively unstable 

compared to other integration methods. It is generally worse than SV genes at lower levels of 

spatial distinction, but improves when the level of spatial distinction is stronger. 

 

Runtime and Memory Usage 

Runtime efficiency and memory usage are two important practical measures for computational 

methods. Therefore, we used real Human Cerebellum dataset by Visium platform for testing. We 

compared the runtime and memory usage of the six integration methods by randomly subsetting 

the number of cells from 500, 1000, 1500, 3000, to 5000 and the number of features from 500, 

1000, 3000, 5000, to 10000. All the integration methods were run on the Garmire Lab server, 

which operated on a Linux operating system (Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz, 

219 GB RAM, 16 GB Nvidia GPU). MOFA+, scVI and SNF were run on GPU nodes and 

concatenation, CIMLR and Seurat v4 ran on regular nodes. 

Increasing the number of cells has a more significant impact on both runtime efficiency and 

memory usage than increasing the number of features (Fig. 6). For running time measurements, 

straightforward concatenation is the most time-efficient method among all, as expected (Fig. 6 a, 

c). The other iterative computational methods such as Seurat v4, CIMLR, SNF, MOFA+ and 

scVI have an ascending order for computing time. Increasingly longer runtimes are needed, as 
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the number of cells or the number of features increases (Fig.6 a, c). For memory usage, 

concatenation is the most memory-efficient method over varying numbers of cells and features. 

On the other hand, CIMLR uses the most memory, which increases significantly more than the 

rest of the methods as the number of cells increases. This could be attributed to CIMLR’s 

adaptation of parallel computation. scVI uses the most memory as the number of features 

increases; it is closely followed by MOFA+ and CIMLR.  

 

Discussion 

The advent of spatial transcriptomics technologies gives us the potential to create a more 

comprehensive map of biological systems. Relative to single cell RNA-Seq technologies, the 

addition of spatial information has the potential to help discover novel SV markers. Previously, 

SV markers have been used for identifying clusters in spatial transcriptomics data; SV genes that 

share similar spatial expression patterns can also be used to define cell types as well as relate cell 

type composition to tissue structure [18–21]. However, these SV markers represent genes whose 

expression pattern across space is non-random, which is a different category from those HV gene 

markers detected by quantitative variabilities conventionally [37–40]. Questions remained: (1) if 

SV gene based clustering can be improved by integrating additional HV genes, which are 

normally used in single cell RNA-Seq and bulk RNA-Seq analysis for clustering; (2) if 

integration of SV and HV genes can improve clustering results in spatial transcriptomics data, 

which computational method(s) are suitable. Since there are no current gold-standard pipelines 

for clustering spatial transcriptomics data specifically, our study fills the niche by conducting a 
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systematic benchmarking study. We have confirmed that combining these two types of markers 

can improve the clustering results, with appropriate integration methods.  

Fig. 7 shows an overview of the spatial omics clustering accuracy (by AMI), spatial clustering 

accuracy (by VN), downstream differential analysis performance (by F-1 score), and runtime and 

memory usage for 19 real datasets across different technology platforms and 20 simulated 

datasets across different spatial distinction levels. We recommend MOFA+ for general spatial 

transcriptomics datasets; straightforward concatenation is also a good approach especially 

considering the computational cost (running time and memory use). However, simulation results 

show concatenation is more sensitive to the level of spatial distinction than MOFA+. 

Technology-specific patterns show that Seurat v4 performs better for integrating HV and SV 

genes of non-single-cell resolution datasets obtained from the Visium platform. SNF generally 

yields worse results than the baseline condition using solely on SV genes. Therefore, the current 

implementation of SNF is not suitable for integrating SV and HV genes in spatial transcriptomics 

data. 

The quality of clustering evaluation above is dependent on the ground truth labels. The ground 

truth labels of 18 out of 19 datasets are derived using all the genes, except for the one seqFISH+ 

dataset whose ground truth labels are based on highly variable genes (see Table 2). Therefore, 

the ground truth labels of the real datasets are generally unbiased toward highly variable genes. 

Moreover, the 20 simulated datasets also support the general conclusion from the real datasets, in 

that MOFA+ and concatenation approaches yield better results over other integration methods in 

general.  
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MOFA+ belongs to a class of matrix-factorization-based methods. Our evaluation shows that it 

may improve clustering results in integrating HV and SV genes, as well as subsequent 

downstream differential expression analyses. This class of models was previously shown quite 

effective in utilizing information from multiple sets of genomics features and extracting useful 

information for integration [29,41,42].  In particular, MOFA+ decomposes each component 

dataset as a product of a shared dimension-reduced latent space and a dataset-specific weight 

matrix. MOFA+ model can learn the shared dimensionally-reduced latent space by borrowing 

information from each component dataset, thus allowing for effective integration (see Method). 

Despite the additional runtime and memory usage, MOFA+ also provides an additional 

advantage over simple concatenation, as the shared latent space learned by MOFA+ can provide 

more insight into spatial transcriptomics features. Dimension reduction also appears to be an 

important factor in successful integration of features. Both Seurat v4 and SNF are based on 

building joint networks, but Seurat v4 has significantly better performance than SNF. Seurat v4 

performs dimension reduction before building the networks whereas SNF attempts to directly 

integrate networks built on data not dimensionally reduced. Though slightly better than SNF, 

CIMLR generally performs worse than the other four methods. This could be attributed to the 

Gaussian kernel assumption that CIMLR makes (see Method). Such an assumption might over-

simplify the complexities of spatial transcriptomics data. 

 

Conclusions 

In general, we recommend MOFA+ for integration of quantitatively variable and spatially 

variable genes in spatial transcriptomics data. We also stress the need for methods to be 
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developed in this area which are further complicated by different spatial transcriptomics 

technology platforms. 

 

Methods 

Data Preprocessing 

For all the computational methods including extracting HV and SV genes, we preprocessed the 

data by first filtering the raw gene expression dataset. The expression threshold was set to 1. The 

minimum number of cells a gene needs to be expressed in was set to 3 and the minimum number 

of expressed genes in a cell was set to at least 5% of the total number of genes. Such values were 

chosen to filter out unexpressed genes or cells without over-processing the data. The SV genes 

method SPARK requires a higher threshold for filtering genes in order to avoid internal 

computational errors. Therefore, we raised the gene filtering threshold to 0.75% of the total 

number of cells for SPARK analyses. As was shown in the benchmarking results, this 

discrepancy did not cause additional inconsistencies. 

Computational methods such as straightforward concatenation, MOFA+, SNF and CIMLR 

require normalized gene expression data. For these methods, the filtered raw gene expression 

data was normalized via log-normalization, and the cells and genes were scaled by Giotto’s [21] 

default scale factor of 6000. We skipped normalization for Seurat v4 and scVI, as they require 

raw data.  

 

Benchmark Analysis Parameters 
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We extracted the HV genes and the SV genes based on normalized expression data. Among the 

computational methods, MOFA+, scVI, Seurat v4 and CIMLR have inherent dimension 

reduction steps (see Supplementary Table 1 for details) which extract combined features on a 

lower dimension. For the rest of the methods that do not have inherent dimension reduction steps, 

we performed dimension reduction using PCA (Principal Component Analysis). The dimension 

of the extracted features was set to be the same across all methods for a fair comparison. The 

optimal number of features were determined empirically by comparing the general clustering 

performance across different values of reduced dimensions. We used Leiden clustering for all 

methods [43] except for CIMLR, which had its own built-in clustering step. For a fair 

comparison of evaluation metrics, we repeatedly performed Leiden clustering, tuning the 

resolution and number of nearest neighbors parameters for each computational method until we 

got the same number of clusters as there were ground truth clusters.  

 

Selection of HV and SV genes 

We used HV (highly variable) genes as features whose expression was informative of how the 

data clustered. We extracted HV genes using the R package Giotto’s calculateHVG function [21]. 

The function fits a LOESS regression model with each gene's log mean expression as the 

independent variable and the coefficient of variance as the dependent variable. Genes with a 

coefficient of variance that was higher than their predicted value past an arbitrary threshold were 

considered to be highly variable. We set the threshold value to the default: 0.1. 

We used SV genes as features whose expression was informative of how clusters were 

distributed spatially. We explored three popular SV genes methods: Giotto, spatialDE and 
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SPARK. For Giotto, we extracted the SV genes using the R package Giotto’s binSpect function 

[21]. The function binarized each gene’s expression value using the K-means method (number of 

centers set to 2). The function then constructed a spatial connectivity network based on the 

cells/spots’ spatial coordinates using Delaunay’s triangulation [44]. A contingency table was 

generated based on the connectivity of the spatial network and the binarized gene expression. 

The function performed the Fisher’s test and generated a spatial expression score for each gene 

with higher values indicating a more distinct spatial expression pattern.  

For fair comparison across SV genes methods, we used the number of SV genes discovered by 

Giotto as the imposed number of SV genes by spatialDE and SPARK. For both spatialDE and 

SPARK, we used their wrapper function in the R package Giotto. spatialDE models the spatial 

gene expression data using a spatial linear regression model based on Gaussian Processes. The 

spatial significance of a specific gene is determined through a likelihood-ratio-type hypothesis 

test on the spatial effects term in the model. Similarly, SPARK can be considered as an extended, 

generalized version of spatialDE model that can directly analyze raw spatial transcriptomics data. 

Since HV genes and SV genes usually overlap, to avoid double counting the overlapped genes in 

integration, we defined HV genes as the genes that are uniquely highly variable in the integration 

step. SV genes are those that are uniquely spatially variable and those that overlap. Suppose 

there are �� unique HV genes and the optimal number of reduced dimensions is �. We denote 

the subset of normalized HV genes as ��(�� genes � � cells). We performed PCA on �� and 

selected the top � principal components, represented by a � � � matrix denoted as ���. We 

used ��� for further clustering analysis. Similarly, suppose there are �� unique SV genes. We 

denoted the normalized SV genes as �� (�� genes � � cells). We performed PCA on �� and 
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selected the top � principal components, represented by a � � � matrix denoted as ���. We 

used ��� for further clustering analysis. 

 

Methods in comparison 

Simple concatenation model: we concatenated the normalized HV genes �� and the normalized 

SV genes ��, represented by a ��� 	 ��
 � � matrix denoted as �. We performed PCA on the 

concatenated dataset � and took the top � principal components for further clustering analysis.  

CIMLR (Cancer Integration via Multikernel Learning) model [27]: we adapted CIMLR, 

which was originally developed to integrate multi-omics cancer data, to integrate normalized HV 

genes �� and normalized SV genes ��. CILMR constructed a group of Gaussian kernels based 

on �� and �� separately. CIMLR then computed the similarity matrix between the two datasets 

by combining the gaussian kernels. Given the number of clusters, dimension reduction and 

clustering via k-means clustering were then performed on the similarity matrix.  

MOFA+ (Multi-Omics Factor Analysis v2) model [25]: MOFA+ is a statistical framework for 

integrating multi-omics single-cell data based on representing the original dataset in lower 

dimensions through matrix factorization infused with a Bayesian technique for enhancing model 

sparsity. We adapted MOFA+ to integrate HV genes and SV genes. We used the normalized HV 

genes �� and the normalized SV genes �� as input. MOFA+ aims to reconstruct ��  using lower 

dimensional matrices ���	
� �� � �
 and ��  ��� � �
: (�  represents random noise) (Eq.2). 

���	
� represents the low-dimensional factors common across all datasets and ��  represents 

each feature's association score with each factor. We used ���	
� for further clustering analysis. 
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�� � ���	
���

� 	 � , � � 1,2     �2
 

scVI (Single-Cell Variational Inference) model [23]:  scVI constructs latent space 

representations of cells using a variational autoencoder. The encoder neural network maps gene 

expression values onto parameters of the probability distribution from which latent variables are 

sampled, while the decoder neural network takes as input such latent variables and aims to 

reproduce the original input, by producing the parameters of the ZINB (zero-inflated negative 

binomial) distribution modelling the gene expression values. The model also uses neural 

networks to model dropout patterns and adds scales to account for differences in gene expression 

between different cells. We concatenated the raw HV genes and the raw SV genes and fed them 

as input to the scVI model. We used scVI with a single hidden layer in an encoder and optimized 

the dimension of the hidden layer, and the dropout rate through a grid search, optimizing for the 

minimum reconstruction error.  

SNF (Similarity Network Fusion) model [28]: we adapted the SNF algorithm to construct 

graph representations of normalized HV genes �� and normalized SV genes �� and merged them 

to construct a coherent picture. Each node on such graphs corresponds to different cells and the 

edge weights correspond to the degree of similarity (correlation) between them when separately 

considering highly variable and SV genes. The graphs were fused through iterative updates, 

inspired by diffusion processes, which gradually bring the graphs closer together. We performed 

clustering analysis on the integrated similarity graph. 

Seurat v4 (Weighed Nearest Network) model [24]: we adapted Seurat v4 to compute cell-

specific weights separately for the raw HV genes and the raw SV genes. Such weights reflected 

the “usefulness” of information from HV genes and SV genes. Seurat v4 integrated the HV genes 

and SV genes while leveraging their constructed weights so the integrated data reflected the 
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information of its component datasets. Nearest neighbor graph construction and clustering were 

then performed on the integrated data. 

 

Ground truths for real data sets 

The quality of the ground truth labels are essential to the evaluation of methods’ performance. 

We had complete control over the ground truth labels of the simulated datasets as they were 

arbitrarily generated. For the real datasets, we obtained ground truth labels from the original 

studies whenever possible. For the Mouse Olfactory Bulb dataset [16] generated by the 

technology that was later named Visium, we were able to recreate the cell type assignments 

based on the original supplementary materials. For the rest of the five Visium datasets, we used 

the clustering labels provided by 10X [32–36]. For the Mouse Somatosensory Cortex dataset by 

SeqFISH+ [14], we used the clustering labels generated by Giotto package [21]. For the 

merFISH datasets, we used the cell type annotations in the original report [10].  

 

Simulation Study 

Using the seqFISH+ Mouse Somatosensory Cortex dataset as reference, we used the original 

unique HV genes of the real dataset as the HV genes in this simulation study. We selected SV 

genes whose adjusted p-values are below 0.05. To ensure the simulated spatial expression 

patterns are meaningful with respect to identifying the ground truth cell types, we matched 

different SV genes to the ground truth cell type whose spatial expression pattern had the highest 

level of concordance. 
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We adapted Giotto’s [21] simulateOneGenePatternGiottoObject function to simulate spatial 

expression profiles for each individual selected spatially variable gene. We used the spatial 

patterns of cell types in the ground truth to guide customized simulations for spatial gene 

expression patterns. Given a customized pattern that contains � cells, with probability �, the 

spots where the gene is highly expressed will fall into the customized pattern in the simulated 

dataset. When � � 0.5, the cells will fall into the customized pattern completely randomly; when 

� � 1.0, the cells will fall into the customized pattern with absolute certainty. We tested four 

different values for spatial probability � (0.6, 0.7, 0.8, 0.9) to represent different noise levels in 

clustering labels, and repeated the experiment 5 times for each value of �.  

 

Hypothesis Tests 

We performed non-parametric paired Wilcox tests to further investigate the efficacy of the 

performance of the integration methods in comparison to the baseline performance of solely SV 

genes. For each metric (AMI for omics clustering, VN for spatial clustering, F-1 for downstream 

differential expression analysis), we performed the paired Wilcox test on each pair of SV genes 

metrics and integration method metrics. The null hypothesis is that the metric performance of 

solely SV genes comes from the same distribution as the performance of the integration method. 

The methods whose corresponding p-values are less than 0.05 were considered to perform 

statistically significantly different from the baseline SV genes. 

 

Evaluation Metrics 
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Adjusted Mutual Information (AMI): To evaluate general accuracy of clustering in spatial 

transcriptomics data, we computed the Adjusted Mutual Information (AMI) [45] of each set of 

clustering results compared with the ground truth. AMI measures the level of concordance 

between two sets of labels and is widely used for measuring clustering accuracy in scRNA-Seq 

datasets with no spatial context [46–48]. AMI is bounded between 0 and 1, with higher values 

indicating better clustering performance.  

Variation Norm (VN): To evaluate the clustering results accuracy in the spatial context, we 

used a metric based on the total variation norm denoted as VN [49–52]. The larger VN is, the 

more accurate the spatial clustering is compared to the ground truth. We denote the set of 

clustering labels of a certain method as � and the set of ground truth labels as �. For each set of 

labels, we computed the average pairwise Euclidean distance between the cells or spots within 

each cluster. We denote the density functions of such group-wise average distance as ���|�
 for 

the clustering labels � and ���|�
 for the clustering labels �, respectively. Thus, comparison of 

���|�
 and ���|�
 allows for evaluation of clustering accuracy while taking into account the 

relative spatial structure of the cells / spots. We computed the total absolute error �����
 as   

�����
 � � |���|�
 � ���|�
|�� 

The accuracy measure VN is defined as  

 !��
 � 1 � 0.5 " �����
 

F-1-score in differential expression: we performed traditional quantitative downstream 

differential expression analysis over the clustering results in a one-vs-all manner using the 

marker gene detection method “Gini” in Giotto package [21]. We used the marker gene detection 

results based on the ground truth clustering labels as reference. We compared the marker genes 
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detected based on the integration method vs. those in the reference. Considering the marker gene 

detection as a binary classification problem, we counted the number of true positives (TP), false 

positives (FP) and false negatives (FN). We then computed the F-1 score. The larger the F-1 

score is, the more accurate the prediction. 

#$: &'�( �)��&�*(� 

+$: ,-.�( �)��&�*(� 

+!: ,-.�( �(�-&�*(� 

+1 � 2#$/�2#$ 	 +! 	 +$
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Figures legends 

 

 

Figure 1.  Benchmark workflow. The workflow is composed of three general steps. Step 1: 

extraction of the HV and SV genes. Step 2: integration and dimension reductions of the HV and 

SV genes. Step 3: clustering analysis and evaluations based on the integration results. 
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Figure 2. Performance comparisons of different data integration methods on real spatial 

transcriptomics datasets, in three representative platforms including merFISH, SeqFISH+, and 

Visium, across three different spatially variable genes selection methods including Giotto, 

spatialDE and SPARK. (a-b) Results on AMI, shown as (a) AMI boxplot of over all 19 real 

datasets, including two-sided paired Wilcoxon test results on the null hypothesis that the 

performance of the integration method is the same as the performance of solely SV genes. *: p-

value < 0.05, ** : p-value < 0.01, ***: p-value < 0.001; (b) AMI ranking of different integration 

methods for all real datasets; (c-d) Results on VN, shown as (c) VN boxplot over all 19 real 

datasets, including two-sided paired Wilcox test results on the null hypothesis that the 

performance of the integration method is the same as the performance of solely SV genes. *: p-

value < 0.05; (d) VN ranking of different integration methods for all real datasets; (e-g) 

comparison of MOFA+ results and ground truth labels visualized in the UMAP and spatial 

context for (e) the Visium Mouse Brain Sagittal Posterior dataset, (f) the merFISH Mouse 

Hypothalamus dataset (layer -240), and (g) the seqFISH+ Mouse Somatosensory Cortex dataset.  
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Figure 3. The design of simulation workflow based on the real dataset. The workflow consists of 

three major steps. Step 1: select HV genes. Step 2: select SV genes whose adjusted p-values are 

below 0.05. Step 3: simulate new spatial expression patterns for the selected SV genes. 

 

 

Figure 4.  Clustering performance comparisons of different data integration methods on 

simulated spatial transcriptomics datasets, by varying probability ��
 of spatial clustering 

certainty (0.6, 0.7, 0.8, 0.9), for different spatially variable gene selection methods including 

Giotto, spatialDE and SPARK. Shown are metrics using (a) AMI and (b) VN. Five repetitions 

are run in each condition, and the average scores are displayed, with standard deviations. 
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Figure 5. Effect of integration methods on downstream differential expression results measured 

by F-1 scores, for different spatially variable gene selection methods including Giotto, spatialDE 

and SPARK. (a-b) Results on real datasets, in three representative platforms, including merFISH, 

SeqFISH+, and Visium, shown as (a) F-1 score boxplot over all 19 real datasets, including two-

sided paired Wilcox test results on the null hypothesis that the performance of the integration 

method is the same as the performance of solely SV genes. *: p-value < 0.05, ** : p-value < 0.01, 

***: p-value < 0.001, ****: p-value < 0.0001; (b) F-1 score ranking for all real datasets; (c) 

Results on the same simulation datasets as in Figure 4.  
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Figure 6. Comparison of running time and memory usage of integration methods using the 

Visium Human Cerebellum dataset.  (a-b) The practical performance relative to the number of 

cells, measured by (a) running time, and  (b) memory usage.  (c-d) The practical performance 

relative to the number of features , measured by (c) running time, and (d) memory usage. 
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Figure 7. Heatmap summary of metrics ranking of integration methods over real and simulated 

datasets, by Tier 1 metrics: AMI, VN, F-1 statistics of downstream differential expression 

analysis, and Tier 2 metrics: runtime and memory usage.   
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