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Abstract 

 

Synovial fibroblasts (SFs) are specialized cells of the synovium that provide nutrients and 

lubricants for the maintenance of proper function of diarthrodial joints. Chronic TNF signals are 

known to trigger activation of SFs and orchestration of arthritic pathology via proinflammatory 

effector functions, secretion of cartilage degrading proteases and promotion of osteolysis. We 

performed single-cell (sc) profiling of SF’s transcriptome by RNA-sequencing (scRNA-seq) and of 

chromatin accessibility by scATAC-seq in normal mouse SFs and SFs derived from early and 

advanced TNF-driven arthritic disease. We describe here distinct subsets of SFs in the 

homeostatic synovium, serving diverse functions such as chondro- and osteogenesis, tissue 

repair and immune regulation. Strikingly, development of spontaneous arthritis by transgenic 

TNF overexpression primes the emergence of distinct pathology-associated SF subtypes. We 

reveal 7 constitutive and 2 disease-specific SF subtypes. The latter emerge in the early stage, 

expand in late disease and are localized in areas at the interface between the invasive pannus 

and the articular bone. The associated transcription profiles are characterized by enhanced 

inflammatory responses, promigratory behaviour, neovascularization and collagen metabolic 

processes. Temporal reconstruction of transcriptomic events indicated which specific sublining 

cells may function as progenitors at the root of trajectories leading to intermediate 

subpopulations and culminating to a destructive lining inflammatory identity. Integrated analysis 

of chromatin accessibility and transcription changes revealed key transcription factors such as 

Bach and Runx1 to drive arthritogenesis. Parallel analysis of human arthritic SF data showed 

highly conserved core regulatory and transcriptional programs between the two species. 

Therefore, our study dissects the dynamic SF landscape in TNF-mediated arthritis and sets the 

stage for future investigations that might address the functions of specific SF subpopulations to 

understand joint pathophysiology and combat chronic inflammatory and destructive arthritic 

diseases. 
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Introduction 

Chronic arthritides including Rheumatoid Arthritis (RA) are complex inflammatory disorders that 

primarily affect diarthrodial joints causing high morbidity and mortality in human patients. Cells      

driving pathogenicity in the affected joints, include an expanding mass of synovial fibroblasts 

(SFs) typically infiltrated by myeloid and lymphoid cells, which together contribute to the 

development of an invasive pannus that degrades cartilage and promotes osteolysis1,2. Early 

studies in transgenic mice have established a key role for TNF in driving the full pathogenic 

process 3,4. This was confirmed later in humans by the introduction of anti-TNF therapies that 

proved efficacious in neutralizing disease in a large percentage of rheumatoid arthritis (RA) 

patients 5. Further genetic studies in murine arthritis models revealed that, in particular, TNF 

signaling in synovial fibroblasts (SFs) mediates persistent fibroblast activation and promotes pro-

proliferative, immune-regulatory and invasive characteristics. These functions are both 

necessary and sufficient to orchestrate initiation and progression of the inflammatory and 

damaging pathology even in the absence of adaptive immune responses6-8 qualifying SFs as key 

effector cells and crucial therapeutic target in chronic arthritis. 

SFs are the major cellular component of the synovial membrane, a highly specialized, 

multifunctional connective tissue membrane comprised of two anatomically distinct layers: lining 

SFs (LSFs) and the recently identified CXCR3+ lining macrophages9 that form a thin outer layer 

adjacent to inmost structures consisting of sublining SFs (SLSFs), macrophages, adipose cells, 

nerves and blood vessels10.  SFs in the RA proinflammatory microenvironment acquire an 

aggressive phenotype, reminiscent of transformed migratory tumor-like cells11. They operate as 

immune-modulatory cells by secreting cytokines and chemokines and mediate cartilage 

destruction by over-expressing MMP1, MMP3 and MMP9 matrix metallo-proteases12,13 as well 

as the receptor activator of NF-κB ligand (RANKL/Tnfsf11), which causes excessive 

osteoclastogenesis leading to bone erosions14,15.   

Histopathological analysis of RA joints, and studies using a combination of single-cell (sc) and bulk 

RNA-seq analysis of RA patients, indicated that distinct fibroblasts subpopulations in the lining 

and the sublining synovial compartments are linked to specific disease features. Lining fibroblasts 

markers include, podoplanin (PDPN) and Lubricin/Proteoglycan 4 (PRG4), whereas sublining SFs 

are characterized by high THY1 and PDPN expression. The RA SF subpopulations are characterized 

by differential expression of several markers such as CD34, VCAM1, FAP and proinflammatory 

mediators, such as CXCL12, CCL2 and IL616,17. More recent studies classified the fibroblasts found 

in the synovial lining zone as being predominantly responsible for driving articular damage 

whereas fibroblasts located in the sublining layer express genes that function towards 

inflammation18,19. Additional recent evidence revealed a dominant Notch-mediated interplay of 
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perivascular SLSFs with endothelial cells, establishing a positional gradient of Thy1hi SLSFs 

towards Thy1low/Prg4hi LSFs and  driving tissue inflammation20. Although these studies were 

instrumental in providing valuable insights in the classification of pathogenic SF subpopulations 

and their associated functions in the RA synovium, the homeostatic to pathological transitions of 

SFs and the molecular networks that drive them have remained unclear. 

In this study, we aimed to uncouple and characterize the homeostatic and pathological functions 

of SFs in the human TNF overexpressing (hTNFtg) mouse model3. We undertook an integrative 

approach by combining sc transcriptomic and chromatin accessibility data to define the 

underlying molecular switches that determine the staging and progression of disease from 

healthy to early inflammatory and subsequent destructive synovial tissue.  Our data reveal the 

early emergence and further expansion of distinct pathogenic SF subtypes characterized by 

specific differentially activated pathways and regulatory networks emanating from a progenitor 

state that appear repressed in the normal sublining synovium. Changes observed in SFs 

transcriptome were highly correlating to chromatin accessibility alterations and cellular 

trajectory inference pinpointed to novel key transcription factors and target genes driving the 

expansion of the pathogenic clusters at specific time and locations during disease progression. 

Lastly, integrative meta-analysis of our murine data with available human RA data revealed a 

highly conserved core regulatory transcriptional program, validating our modelling approach and 

revealing a set of novel biomarkers specific to TNF-driven RA. Our results provide a solid 

translational potential to prioritize novel molecular and cellular targets specific for the 

pathogenic transitions of synovial fibroblasts in RA. 

 

Results 

Multi sc-omic analysis of hTNFtg mouse model of chronic inflammatory polyarthritis. 

To characterize disease progression and pinpoint what differentiates homeostasis from 

pathogenesis at the level of SF subpopulations in joints synovium, we integrated sc 

transcriptomic and chromatin accessibility profiles (Figure 1a). Our setup included cells from 

healthy tissue (WT, 4 weeks of age (n=3)), hTNFtg mice at an early disease stage displaying 

synovial inflammation (hTNFtg/4, 4 weeks of age (n=3)), and at an established pathological stage 

displaying pannus formation, inflammation, cartilage and bone damage) (hTNFtg/8, 8 weeks of 

age (n=3) (Suppl. Figure 1a). 3’ single cell mRNA-sequencing libraries (10X Genomics) were 

generated for 6,667 sorted non-hematopoietic stromal cells (Cd45-, Cd31-, Ter119-, Pdpn+) 

isolated from whole ankle joint synovium (Figure 1a and Suppl. Figure 1b). In parallel, single-cell 

assay for transposase-accessible chromatin using sequencing (scATAC-seq, 10X Genomics) was 

performed to determine the chromatin accessibility landscape across 6,679 single nuclei (Pdpn-, 
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Thy1+ Fibroblasts have been excluded during gating and sorting (Suppl. Figure 1b). Healthy and 

hTNFtg cells were pooled in each experimental modality, to create a common baseline between 

homeostatic and pathogenic conditions. 

Inspection of marker genes of the major clusters that were isolated by FACS, was used to 

annotate the respective cell types (Methods) and suggested that 10% of the sequenced 

cells/nuclei represented non-fibroblastic cells such as: osteoblasts (Alpl, Bglap2, Ostn), 

chondrocytes (Chad, Clip2), myoblasts/myocytes (Des, Actn3) and vascular cells (Cdh5) (Suppl. 

Figure 2a, b). ScATAC-seq cluster annotation was performed using canonical correlation analysis 

(CCA) and enabled to match scRNA-seq and scATAC-seq cluster identities (Suppl. Figure 3a, b and 

Methods). 

We focused on the 5,903 and 6,046 cells/nuclei presenting SFs characteristics in scRNA-seq and 

scATAC-seq respectively (Suppl. Figures 2c, 3c). Sub-clustering analysis of SF-specific molecular 

maps resolved nine fibroblastic clusters: S1, S2 (a, b, c and d), S3, S4 (a and b), and S5 (Figure 1b 

and Suppl. Figures 2d, 3d). Using as a proxy the classical markers Prg4 and Thy116,18,19, we 

observed a compartmentalization of LSLs (S4a, (Prg4+)) vs SLSFs (S1, S2a, b, c, S3, S5 (Thy1+)) 

(Figure 1c). We also noted that clusters S2d and S4b, which are mainly present in disease stage 

(hTNFtg/4,8), expressed both genes (Suppl. Figure 4). Clustering of cells based on all 1,716 scRNA-

seq marker genes expression (i.e. up-regulated in at least one cluster vs the others) and on 

accessibility patterns at 45,862 marker peaks (i.e. with increased accessibility in at least one SF 

subpopulation compared to the others) revealed cell specificity and shared patterns both at 

transcriptional and chromatin levels (Figure 1d, e). In fact, high correlation coefficient scores 

between gene expression and chromatin accessibility were observed not only within clusters, but 

also across clusters and suggested some architectural/functional overlap amongst SLSFs and 

amongst LSFs and S2d, S4b clusters (Figure 1f). Overall, by using a combined-omics approach we 

could deconvolve SFs varieties. Hence, we reveal specific patterns of gene expression and the 

associated chromatin accessibility signatures, which may be used to further characterize RA 

molecular markers and to understand the gene regulatory networks driving its pathophysiology 

(see below). 

High-resolution maps of transcription regulation in homeostatic joints  

We first characterized SF populations RNA expression specificities in healthy homeostatic joints 

by looking at WT SFs independently (Figure 2a) and by quantifying the number of cells detected 

per sample and per cluster (Figure 2b). We detected cluster specific up-regulated genes (Suppl. 

Figure 5a), which corresponded to established SFs marker genes, and we also identified genes 

that so far had not been linked to SFs biology, probably given their limited expression in a few 

specific cells (Suppl. Table 1).  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2021. ; https://doi.org/10.1101/2021.08.27.457747doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.27.457747
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

S4a expressed high levels of Prg4 (Prg4high) without Thy1, as well as other genes previously 

reported as markers of the lining phenotype, such as Tspan15, Hbegf and Htra4 18,19  (Figure 2c). 

In WT joints, these LSFs were clearly demarcated from the sublining cells (Thy1+, Prg4-) because 

of the very limited number of S2d and S4b cells (Thy1+ Prg4+) (Figure 2a, b), a result that 

establishes that compartmentalization of Thy 1 and Prg4 expression is more robust in WT tissues. 

Functional enrichment analysis revealed that, in contrast to the reported destructive profile of 

the lining cluster in arthritic disease18, in normal conditions LSFs tend to preserve tissue 

homeostasis by regulating the responses towards oxidative stress and the related induced cell 

death, as well as the homeostasis of mitochondrial calcium, a fundamental signaling modulator21 

(Figure 2d). 

Regarding Thy1+ SLSF populations, we find that S1 transcriptional state is marked by the 

expression of Smoc2, Thbs1, Vwa1 genes that encode matricellular proteins and the BMP co-

receptor Rgma (Figure 2c and Suppl. Table 1, 2), which indicate a strong chondrogenic potential 

confirmed by the activated BMP/SMAD signaling pathways detected in the GO enrichment 

analysis (Figure 2e). The expression of genes associated with steroid metabolism, including the 

cortisone-conversion enzyme Hsd11d1 provides to S1 cells a potential anti-inflammatory role22. 

S2 SF subtypes are characterized by common (Comp, Ptn, Gdf10) and divergent marker genes 

and functions (Fig 2c, d and Suppl Table 1, 2). In particular, the S2a population is defined by the 

high expression of WNT modulators Dkk2 and Sfrp1, in accord to the GO enrichment in WNT-

mediated responses, TGF activity and osteogenesis. In addition, the specific expression of Ecrg4 

gene indicates  a role of S2a in regulating tissue repair processes (wound healing)23. In S2b, gene 

expression is correlated with joint morphogenesis and reparative processes; e.g. Osr1 regulates 

Prg424 and plays a pivotal role in fibroblast differentiation25. Moreover, Nr2f2 (COUP-TFII) marker 

gene is implicated in cell fate decisions of stem cells26. Along the same line of evidence, S2c 

cellular state is characterized by BMP signaling pathway activation, suggesting S2c involvement 

in synovium renewal and protection. The role of S2c in tissue homeostasis is also supported by 

specific expression of Klf5 and Clu, involved in regulating proliferation, senescence and/or 

responses to oxidative stress27-29. Other signaling modulators highly expressed in S2c, such as Id1 

and Meox1, are associated with increased expression of the p16/Ink4a locus30-32, a cell cycle 

regulator previously suggested as a therapeutic target for RA33.  

The gene expression signature of S3 suggests that these cells drive processes relative to 

vasculogenesis and regulation of type 2 immune responses, as characterized by the expression 

of Pi16, which functions in pain and fibroblast/endothelial crosstalk34, of the physiological 

vascular normalizing modulators Sema3c35 and Efemp136,37  as well as of  the glucose and immune 

regulator Dpp438 (Figure 2c, d and Suppl. Table 1, 2).  
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Finally, S5 cells show activation of cytokines and chemokine pathways (Ccl7, Cxcl10, IL6 and Ptx3) 

and are associated with immune-regulatory functions including response to IFN-beta/gamma 

and LIF, indicating a strong immunoregulatory role in the synovial membrane under healthy 

conditions. Notably, Notch3, a gene recently highlighted for its role in driving SF identity in the 

perivascular/sublining layer of arthritic synovium20, is also expressed in normal conditions 

exclusively in cluster S5 (Figure 2c and Suppl. Table 1, 2). 

Overall, the analysis of SFs in naïve conditions highlights a previously underexplored functional 

diversity underlying the homeostasis of synovial membrane. 

 
 
Development of inflammatory arthritis associates with transcriptional remodeling of SF 
populations and functions 

We next sought to dissect the processes underlying the appearance and maintenance of TNF-

induced pathological states of SFs. Differential abundance analysis revealed disease-enriched cell 

subpopulations: S2d and S4b. Notably, the proportion of S2d cells increased from almost 

undetectable levels (2%) in healthy conditions to 25% in the hTNFtg joints (Figure 2a, b). Similarly, 

S4b class, which was virtually absent in WT (0.17%), became gradually more evident during 

arthritogenesis (9.72% and 14.08% in early and established arthritis respectively) (Figure 2a, b). 

The mixed expression signature of Prg4 and Thy1 (Prg4+Thy1+), which characterize this 

“intermediate” group of cells, is thus a strong marker of disease state that is observed mainly in 

hTNFtg conditions (Figure 1c, 2a, Suppl. Figure 4).  

In fact, correlation analysis on the most variable genes (MVGs) (Suppl. Figure 5b) of SFs clusters 

highlighted a striking overlap in the transcriptional profiles of the Prg4High S4a SF and the 

intermediate S4b and S2d SF subpopulations, which was already suggested from the patterns of 

selected representative marker genes and GOs (see Figure 2c, d). Correlation scores were higher 

between hTNFtg cells indicating an acute and stable change in these SFs expression signatures 

after onset of arthritis (Suppl. Figure 5b). Intra-cluster differential expression analysis (DEA) 

between hTNFtg and WT cells identified what changes occurred after disease onset and how they 

were mainly detected in S2d, S4a and S4b SFs (Suppl. Figure 5c). The significant intersection of 

cluster and disease marker genes (inter-intra DE) for intermediate and lining clusters suggests 

their synergism and points to what genes are probably essential to drive pathogenic functions 

(Suppl. Figure 5c-e, Suppl. Table 2 and see below). The gain in intermediate cells was offset by 

the shrinkage in proportion of the number of other cell types S2a, b, c, S3 and, to a lesser degree, 

S1 and S5 (Figure 2a, b) and these clusters showed a more homogenous signature and less DE 

genes between WT and hTNFtg, thus underlying their common and stable functions in healthy 

and disease joints (Suppl. Figure 5b, c). 
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Analysis of the shared disease specific up-regulated genes (Suppl. Figure 5a-right, c and d) suggest 

how they might drive the extensive rearrangement of synovium functions and properties during 

arthritis (Suppl. Figure 5e, and see below). For instance, S2d cells express highly important genes 

for joint pathology (Figure 2c, d) including: the ECM component Fbln739, which was recently 

shown to regulate calcium deposition in diseased kidney tissues, suggesting its role in arthritic 

bone remodeling 40; the matricellular protein Thbs4;  the vascular remodeler Cthrc1, which has 

also been proposed as a marker for embryonic progenitors of SFs, fibrocartilage cells of the 

enthesis41  and fibrotic lung fibroblasts 42, and is currently tested as a diagnostic marker for RA 

(https://clinicaltrials.gov/ct2/show/NCT04092244). S2d SFs also express Lrrc15, a recently 

identified marker for cancer associated fibroblasts (CAFs) and activated fibroblasts43,44. Finally, 

expression of Dkk3, a miscellaneous member of DKK family that possibly regulates TGFbeta 

rather than WNT pathway45, associates the murine S2d transcriptional state with the previously 

described human SC-F3 (DKK3+) SF cluster19. In accord, we find that the biological processes 

characterising S2d SFs extend from the regulation of immune and redox response to cell fate 

determination and ECM remodeling, indicating a multi-potent transcriptional signature. In this 

respect, we highlight Runx1 transcription factor (TF) as an outstanding potential regulatory gene 

highly expressed in S2d cells. Although Runx1 has been mainly implicated in hematopoiesis and 

in the commitment/differentiation from chondroprogenitor cells into the chondrogenic 

lineage46, it could also function as a regulator of stromal cells transition from fibroblasts to 

activated myofibroblasts47.  

S4b marker genes including Mki67, Pdgfa, Birc5, Aqp1 suggest pathogenic functions associated 

with the processes of proliferation, cell cycle regulation and apoptosis (Figure 2c, d and Suppl. 

Figure 6a). Expression of cytoskeletal-related genes such as Acta2 also indicates that S4b cells 

display properties similar to those of a myofibroblast-like state of activated SFs. Finally, finding 

C1qtnf3 adipokine, and other chemokines such as Cxcl5, as well as adhesion molecules such as 

Cdh13 reinforces the idea that these cells probably largely contribute to the inflammatory 

process in arthritis (Figure 2c, d). 

Analysis of the S4a lining SFs revealed that during TNF-mediated arthritis they preserve some of 

their homeostatic LSFs marker gene identity, but also show an expansion in the diversity of their 

transcriptome indicating that their reparative functions might be affected after disease onset. 

Indeed, we detected markers of inflammatory response (Ccl2, Ccl5, Hmox1 Saa3), Class I antigen 

presentation (H2-K1, B2m, H2-Q7) and ECM remodeling (Mmp3, Timp1, Cd44) (Figure 2c, d), in 

agreement with previous reports on arthritic LSFs18,19. Notably, a meticulous sub-clustering 

analysis of the S4a cluster indicated the presence of two groups of cells (subclusters hS4a 

(homeostatic) and iS4a (inflammatory)), where homeostatic gene expression and functions are 

minimized during disease expansion, while in parallel there is emergence and expansion of an 
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aggressive inflammatory state (Suppl. Figure 7 and Suppl. Table 3). 

To determine if the functional specialization of SFs described above is reflected in joints’ tissue 

architecture, we spatially localized the expression of some representative cluster specific marker 

genes in healthy and arthritis joints by immunofluorescence (IF) and confocal microscopy. S2a/b-

associated marker Gdf10 and the S2a marker Comp were detected in Thy1-expressing 

mesenchymal cells, directly adjacent to the lining outermost cellular layer closer to the cartilage 

(Suppl. Figure 8a). Comp was also detected on chondrocytes on the articular cartilage. The S5 

marker Notch3 was restricted to a smaller Thy1+ SLSF subpopulation in close proximity to the 

inner compartment of the synovial membrane (Suppl. Figure 8a). Furthermore, CD44 and Ki67, 

markers of the disease-expanding ‘intermediate’ clusters S4b and S2d, display a partial co-

localization with Thy1 expressing SL fibroblasts (Suppl. Figure 8b/e). In particular, a specific 

spatial trend was identified for S2d and S4b SFs as Wisp2, Prg4, Mki67 and Cd44 markers localized 

in areas at the interface between the pannus and the articular bone and in the pannus tissue that 

has invaded the cartilage and bone during inflammation. In contrast S5 and S2 clusters are 

excluded from areas of bone erosion and restricted in the pannus tissue surrounding the joint 

colocalizing with Thy1 expression (Suppl. Figure 8a). Finally, Prg4 expressing SFs localization 

validated the S4a lining subpopulation directly adjacent to the articular cartilage and bone, and 

we observed in situ the expansion and invasive function of intermediate cells at the established 

disease state (Suppl. Figure 8c). 

Collectively, these findings establish detailed molecular, functional, and anatomical maps 

charting the dynamic and diverse effects of TNF on the development and progression of the 

pathogenic SF states. 

 

Predictive markers of the inflammatory expansion of SFs in TNF-mediated arthritis 

To test if our scRNA-seq results can be used to predict reliable arthritis marker gene expression 

in tissues, we performed bulk RNA-seq on sorted LSFs and SLSFs.  LSF (CD31Cd31-, CD45-, Ter119-

, CD90-, Pdpn+) and SLSF (CD31-, CD45-, Ter119-, CD90+, Pdpn+) populations of WT, hTNFtg 4 

and 8 week-old mice were segregated and showed a clear separation of WT and hTNFtg cells 

(Suppl. Figure 9a). DEA revealed more changes in gene expression between lining and sublining 

SFs in healthy animals compared to hTNFtg counterparts (Suppl. Figure 9b, top, and Suppl. Table 

4), again suggesting that SFs tend to lose their sharp bi-modal (lining vs sublining) character in 

arthritic tissues. By calculating FCs between LSF and SLSF for marker genes identified with scRNA-

seq, we confirmed how S4a genes fit with a lining state signature, while S2d and S4b genes are 

more equally expressed in both states and the remaining clusters tend to be defined by genes 

up-regulated in SLSF state (Suppl. Figure 9d). Corroboratively, we find that more genes of sc 
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clusters S4a are detected as bulk LSF markers, more genes representative of S5, S2b and S2b are 

bulk markers of SLSFs, while a balanced number of S2d and S4b markers are found in LSF and 

SLFs bulk DEG lists (Suppl. Figure 10a) and we highlight some representative genes for the SL, 

intermediate (I), and L cells (Suppl. Figure 10b).  Finally, we found candidate diagnostic genes that 

loose or gain differences between LSF and SLSF during disease and propose that they can be used 

to test disease severity by sorting of SFs from joints biopsies followed by quantification of gene 

expression by qPCR (Suppl. Figure 10c).  

 

Development of arthritic pathology depends on activated epigenomic states in SFs 

To identify the pathogenic molecular master switches that remain repressed in healthy joints and 

are activated in arthritis we also analyzed scATAC-seq data to find condition- and cell-type 

specific chromatin signatures and explore what TF and target genes are controlled at the 

epigenomic level. Accessible chromatin patterns recapitulated the significant expansion of the 

SFs subpopulations S2d and S4b upon disease progression (Figure 3a, b). Moreover, by 

performing a two-level differential accessibility (DA) analysis we characterized how SFs functional 

outputs are controlled by the variable repertoire of open chromatin regions (OCRs). We 

established first what genomic regions gained or lost scATAC-seq reads between given SF 

subtypes (inter-cluster analysis) (Figure 3c) and then which loci changed their status (opening or 

closing) in a given cluster in arthritic (hTNFtg 4weeks and hTNFtg 8 weeks combined) vs healthy 

(WT) SFs (intra-cluster analysis) (Figure 3d). We noted a particularly elevated number of cell- and 

subtype-specific OCRs in intermediate cells S2d, S4b and lining S4a and a striking gain in DNA 

accessibility at 27,9 and 49,8% at S2d and S4b specific loci (Figure 3d). Our data supports the idea 

that a drastic rearrangement of chromatin underlies the expansion of these cell types and we 

suggest that the identified regions can serve as novel disease-specific accessibility signatures 

(Figure 3c-d) and they could provide new mechanistic links to what/how key regulatory genes 

control arthrogenesis (see below).  

To interpret the increased expression for the disease-specific genes characterized above and to 

determine the relevant biological effects of the global gain in RNA polymerase II activity and TFs 

binding sites reachability, we determined peak-to-gene linkages (Figure 3e and methods). Many 

gene regulatory links (genes associated with given OCRs) appeared conserved across conditions 

(Figure 3c) and did not display noticeable changes at the chromatin level; this finding agrees with 

the observation that a large majority of the OCRs remain stable (Figure 3d, left). In contrast, for 

the OCRs that change upon disease we reveal 1,786 and 8,807 regions/gene associations that 

distinguish healthy and hTNFtg SFs (Figure 3e).  Many up-regulated genes during the disease 

show a parallel gain in accessibility, particularly for the intermediate cells (S2d and s4b) where 
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up to 40% of the genes were up-regulated in hTNFtg SFs, according to scRNA-seq, also showed 

chromatin opening  in at least one of the associated OCRs (figure 3f, 61 of 151 genes for cluster 

S4b). In fact, for the genes commonly exhibiting scRNA-seq and scATAC-seq increase, we find 

chromatin opening at a larger proportion of their associated regulatory regions compared to the 

genes that are not differentially expressed and only show chromatin opening (Figure 3g). We 

conclude that key pathogenesis driver genes are robustly activated when cells simultaneously 

open a minimal set of linked regulatory regions. 

 

Gene regulatory networks controlling SFs homeostatic and pathogenic functions 

To determine which TF might control the cell-type or disease-specific regulatory regions and 

associated genes, we performed DNA motif analyses (Figure 4a, Suppl. Figure 13a). First, we 

highlight cluster-specific groups of TFs likely to maintain diversity in SFs function (Suppl. Figure 

13) For instance, C/EBP family of TFs, involved in many processes including cell differentiation, 

inflammation, aging etc (discussed in48,49) are linked to S5 cluster while GATA family of TFs that 

regulate mesenchymal stem-cell differentiation transition (discussed in50) is linked to S2b. In 

contrast, S2d and S4b intermediate subpopulations are linked to Nfatc, which is known to play a 

central role in bone and joint remodeling during RA pathogenesis51 and S4a and S4b clusters are 

linked to a combination of TFs including the chromatin remodeling mediators Smarcc1, Bach1/2, 

and the pro-inflammatory effectors Junb/d, Rel and Nfkb (Figure 4a, Suppl. Figure 13a). TF 

binding sites (TFBS) that appear in diseased cells (within peaks found to be more accessible in 

hTNFtg SFs) revealed Rel, Nfkb, Junb/d and Runx1 TFBS (Figure 4a). We corroborated this finding 

by inferring the co-accessibility scores of regulatory regions modelled per-cell by employing 

cisTopic52 (Suppl. Figure 14). By analyzing the aggregated WT-hTNFtg space, we identified 12 

topics that show distinct contribution probabilities along the SFs (Suppl. Figure 14b, c). In 

particular, topic 12 matches S4a subpopulation, topic 5 matches S4b subpopulation, and topic 8 

matches S4b and S2d subpopulation (Suppl. Figure 14c, d) Motif analysis was applied on the 

regions defining these topics and confirmed that the intermediate and lining states are controlled 

by master regulators including Klf, Dlx, Creb3, Runx1, and Nfkb (Suppl. Figure 14e).  

We resolved true “positive TF regulators" by establishing which TFs show high correlation 

between motif accessibility and TF mRNA expression at a single cell resolution53. The most 

deviant TFs were detected in the expanding intermediate and lining clusters (S2d, S4b, S4a) and 

to a lesser degree in the S5 subpopulation (Figure 4b). While we see stable high deviation scores 

for a subset of TF regulating the Prg4high lining cluster (Dlx, Lhx and Lmx), we highlight notable 

changes in TF regulatory programs (regulons) during disease progression for the intermediate 

and lining cells S4a, S4b and S2d (compare healthy joint vs early and established disease states), 
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which are operated via the TFs Nfkb, Rela, Relb, Rel and Runx1 (Figure 4b and Suppl. Figure 13b). 

Although, Thy1+ sublining clusters show lower deviation scores and less dynamic changes, we 

note that they are controlled via Klf, Cebpd, Ar, and Nr3c1. We validated these findings by 

verifying that the underlying expression scores of the TFs and of the genes they control (Gene 

regulatory networks- GRNs) parallels the motif deviation patterns (Figure 4c, d and Suppl. Table 

5). 

 

A defined trajectory yields pathogenic SFs in diseased joints 

We next questioned which cells give rise to the emerging S2d, S4b and S4a SF states in disease 

and what transcriptional transitions occur during arthritis progression. We performed cellular 

trajectory analysis by applying scVelo toolkit54 (Figure 5a and Suppl. Figure 15a) and traced the 

cells along an underlying Markov process to determine their respective latent time. This 

procedure enabled to identify plausible root cells and ending points and the most likely path 

bridging them (Figure 5a, Suppl. Figure 15a, b). Root properties were mainly found in the S2b 

state cells albeit cells in S5, S4b, S1 and S3 clusters also exhibited a root-like potential (Suppl. 

Figure 15b). Regardless of the origin, the cells transitioned via S2b, S2d, S4b (Figure 5a) and 

always ended in the area of S4a (Suppl. Figure 15b). Independent trajectory prediction methods 

consistently found a continuum of S2b towards S2a, S2d, S4b and S4a state and confirmed the 

existence of a pathogenic branch (Suppl. Figure 15c) that fits with the observed expansion of the 

underlying SF clusters during disease (see Figure 2b). We hypothesized that proliferative events 

could explain the gain in intermediate cells. Indeed, a subset of S4b cells adjacent to S4a showed 

activation of Cdk1 and Ccnb1 genes (Suppl. Figure 6a) and preferential expression of G2/M phase 

markers (Suppl. Figure 6b, c) indicating that proliferation might explain at least partially the 

increased abundance of the aforementioned cells in hTNFtg mice.  

Consistent with the TNF dependence of our murine arthritic model and the RNA velocity analysis 

outcome, we detected high activity scores for “response to TNF'' for some of the suggested initial 

states like S2b and S5 as well as for the expanded S2d, S4a and S4b clusters (Suppl. Figure 15d, 

upper panel). Intriguingly, S2b exhibit transcriptional proximity to Notch3+ S5 signature (Suppl. 

Figure 15d, lower panel), supporting and complementing the recent evidence, which implicates 

Notch3 signalling in assigning the perivascular identity and priming transcriptional cues of SFs 

during autoimmune arthritis20. 

To understand potential functional relationships within the inferred cellular process, we 

reconstructed transcriptome dynamics in light of the DE status and cells position in the proposed 

continuum. First, we focused on a subset of genes showing both cluster- and disease-specificity. 

The 849 genes isolated from 2322 inter-cluster DE genes (Suppl. Figure 11a and Suppl. Table 6) 
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showed to be mainly affected during the transition of cells into the intermediate (S2d and S4b) 

and pathological-lining states (S4a) (Figure 5b). 107 genes that were also identified by scVelo as 

drivers of the differentiation process thanks to their high likelihood gene scoring (Suppl. Figure 

11b, and Suppl. Table 6) were certified to play crucial roles in the progression of disease (GO 

analysis, (Suppl. Figure 11b and Suppl. Table 7)). Assignment of those genes in three main 

categories - early activation, intermediate activation, and late activation, based on the output of 

hierarchical clustering of the gene expression scores, revealed the structure of the transcriptional 

pattern driving cellular changes from the initial to the final state (Figure 5b) with genes such as 

Runx1, Cd44, Tnfaip3 and Tnfaip6, Icam1 or Inhba also found (Suppl. Table 6).    

The cellular path was also confirmed from open chromatin data (trajectory inference from 

scATAC-seq55) and pseudo-temporal ordering of the cells recapitulated at the epigenetic level the 

pathogenic transitions observed with scRNA-seq (Figure 5c). We next hypothesized that the 

positive regulators that show increased activity along the axis S2b/S5-S4a are essential for 

arthritic genes regulation and we confirmed by correlation analysis between TF gene expression 

and the respective motif accessibility which TFs drive the differentiation during pathogenicity. 

Indeed, in accord with the regulon analysis above, we found that Runx1 denotes a “switch” 

activating the expansion and development of disease-specific S2d, S4b and S4a subpopulations 

and drives directly 27 of the 107 genes we defined as essential to atherogenicity (Suppl. Table 5), 

while TFs like Rel, Nfkb2, Dlx3, Bach1 are key effectors of this process (Figure 5d). Together these 

results suggest that the expansion of the S2b-S2a-S2d-S4b-S4a branch upon TNF expression 

commands arthritis development and influences cell fate choices via specific sets of pathogenesis 

induced genes. 

 

Common transcriptional modules control SFs in human RA and murine hTNFtg inflammatory 

arthritis  

We integrated the previously generated scRNAseq data from synovial biopsies of RA 

patients16,17,19 (H), with our hTNFtg scRNAseq dataset (M) (see Methods for details). We found 

that cells of both species align particularly well in the newly defined UMAP space (Figure 6a, 

Suppl. Figure 16a), and unbiased graph-based clustering identified seven (H1-H7; M1-M7) sub-

populations (Figure 6a, Suppl. Figure 16a). Correlation heatmap of the MVGs between human (H) 

and mouse (M) clusters revealed significant similarities in SFs expression programs in the two 

species, albeit for cluster 2 that contains mainly human SLSFs and only few mouse cells derived 

from the SLSFs that we described above (Figure 6b). The mouse SLSF populations S1, S2a-c, S3 

and S5 located principally to clusters 3 and 4 and matched previously annotated human sublining 

cells expression profiles (Figure 6b, and Suppl. Figure 16-17). The cluster 1 and, to lesser extent, 

the cluster 7 brought together the human and murine Lining Prg4High cells (Figure 6b and Suppl. 
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Figure 17b). They also contain a previously under-appreciated proliferative mixed 

Lining/Sublining SF state (see below), fitting with the idea of their cellular expansion in diseased 

joints. Finally, Cluster 5 contains the bulk of the mouse S2d (Dkk3+) SLSFs and M5 is linked to 

human cells in both clusters 5 and 6, suggesting that both of these human clusters (H5 and 6) 

likely acquire the “intermediate” arthritis-specific profile we identified in hTNFtg SF states (Figure 

6b, and Suppl. Figure 17b).  

Functional inter-species similarities were confirmed via GO enrichment analyses of marker genes 

and co-clustering of (H) and (M) groups (Suppl. Tables 8 and 9). We highlight conserved functions 

and processes of SLSFs in regulating vasculogenesis, cell proliferation, muscle tissue 

development, bone and tissue renewal (clusters H3, M3, H4 and M4) (Figure 6c). We 

demonstrate that M5 and H5 clusters are marked by pathogenic RA features such as 

metalloproteinase secretion, collagen catabolic processes and bone destruction signaling 

pathways, further supporting the similarities with the Dkk3+ SFs in hTNFtg model. Clusters 1, 6 

and 7, which contain SFs from the lining synovial compartment that were previously 

acknowledged for their destructive properties, display pro-proliferative pathways, but also 

appear to regulate immune-related and adhesion/migration pathways (Figure 6c). In addition, 

key marker genes show good levels of conservation between mouse and human data (Figure 6d). 

At the regulatory level, integration of human and mouse data using SCENIC algorithm allowed 

the inference of common TF regulatory networks (regulons). Briefly, we first identified co-

expressed genes to formulate putative regulatory links but retained only regulatory links with 

direct motif relationship between genes and TFs. Finally, we scored each regulon in each cell 

using AUC analysis (see Methods). We then preserved all the common and conserved TFs 

operating in datasets from the RA patients and arthritic mice. We identified the mouse regulatory 

modules (clusters of TFs) by applying pairwise correlation between the motif deviations of the 

mouse/human conserved TFs, and applied hierarchical clustering, as previously described56. This 

approach identified three main regulatory modules defining lining, intermediate and sublining 

states and demonstrate a substantial overlap across species (Figure 7a). Regulons are governed 

by Ar, Dlx3 and Runx1 TF activities (Figure 7b) and GO enrichment analysis of TF and downstream 

genes    (Figure 7c) indicated the modules shared functionalities in both species: module one (Ar) 

controls multipotent functions of the main core of SLSFs; module two (Runx1) conducts functions 

reflecting a rather inflammatory profile consistent with the intermediate profile of our hTNFtg 

SLSFs and we find up to 25 of the 107 core mouse genes as target genes in human cells (Suppl. 

Table 10) highlighting the translational potential for genes like Tnfaip3 and 6, Tlr2, Lrrc15, and 

Bmp2. Of note, module three (Dxl3) exhibits less acknowledged functions, which should be 

related to the lining SF profile of human and mouse SFs (Figure 7c and Suppl. Table 10).    

In conclusion, our integrative approach establishes shared mouse-human SF subsets with highly 
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similar chromatin and transcriptional programs and functional characteristics, validating the 

predictive capacity of hTNFtg model towards deeper mechanistic understanding and effective 

preclinical research and development for the discovery of novel SF-targeted therapeutics. 

 

Discussion 

In this study we postulated that defining the differences between normal and pathogenic 

fibroblast states in the hTNFtg mouse model of polyarthritis, will help us uncover and segregate 

the distinct fibroblast profiles and the underlying regulatory networks that specifically 

characterize the TNF-mediated arthritic pathology.  

The normal synovium 

We report here for the first time that the normal synovium exhibits different SF states, which 

reflects the complexity of the SF tissue serving different functions to maintain homeostasis. 

Owing to their mesenchymal origin, normal SF states segregate by their responses to growth 

factor and differentiation signals such as WNT, BMP, TGFb. In line with the variety of elicited 

responses and the diversity of observed states, our GO analysis was essential to fully appreciate 

the related functionalities of SLSF (Thy1+) clusters regarding angiogenesis control (S3 cluster), 

osteogenic processes (S2 clusters), chondrogenesis and muscle development (S1 cluster). 

Similarly, Thy1- LSFs present a less pronounced profile, regulating lining layer size though 

apoptotic and migrative properties. By their specific secretome (predicted here by the 

transcriptomic signature), lining SFs directly respond to wounding, whereas the mechanisms to 

regulate mitochondrial calcium levels possibly contribute to the proper signaling alertness. 

Detailed mechanistic understanding of the segregation of functions in the homeostatic synovium 

should help to design strategies to help preserve its beneficial properties that seem perturbed 

during pathogenesis. 

The lineage inference of SFs in homeostatic conditions indicates three major poles of initiating 

SFs with cells from S1 and S2b clusters keeping SLSFs character but moving mainly towards S3 

and S2a/S5 states respectively and an “autonomous” S4a activity presenting a stem-cell like 

progenitor character for healthy lining SFs (Suppl. Figure 17). The analysis of the regulatory 

networks behind transcriptional SF states revealed the homeostatic TFs governing the healthy 

synovium, supporting the identity prediction for heathy SFs. We identified members of Dlx family 

(Dlx3 and 4) and Lhx (Lhx2 and 9) to be steadily expressed in healthy Prg4high LSFs.  Although these 

factors have not been yet studied in SF biology, they are known to facilitate crucial functions in 

the skin, in skeletal formation and development, and in tooth morphogenesis57-59, indicating that 

they may have a counterbalancing role in the regeneration of joint structures. LSFs are also 

characterized by the expression of Tgif1, which has been reported to act both as promoter or 
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repressor of cancer, depending on the context. It is a repressor of retinoid60 and TGFb signaling, 

which also recruits histone deacetylases’ activities61,62, regulating chondrogenesis63 and 

inflammatory phenotype of endothelial cells64, suggesting a similar role in the LSF homeostatic 

phenotype. Along the same line of evidence, the members of GATA family regulate S2b SFs 

(GATA-4 and GATA-6), are well linked to mesenchymal responses towards mechanical stress in 

heart tissue65. However, their role in joint homeostasis is still poorly defined. Interestingly, GATA6 

enhances the expression of smooth muscle markers such as α-SMA, SM22-α upon TGFb 

treatment of mesenchymal stem cells66, indicating that it may also affect similar responses and 

activation state of the GATA6-expressing SLSFs.  S1 SFs are marked by Col15a1, governed by 

Tcf15, a transcription factor that labels the primitive identity of haemopoietic stem cell, thus 

supporting their role as an ancestor SF state44,67. 

The diseased synovium in TNF-mediated arthritis 

In our comparative analyses we delineated the nature of changes in the arthritic stroma, 

demonstrating a relative remodeling of both sublining and lining SF molecular profiles. In light of 

the structural properties and homeostatic functions of the SF clusters identified in the healthy 

synovium, we detected a differential expansion of an inflammatory lining profile at the expense 

of the healthy lining SF signature (Suppl. Figure 7). Similarly, we noticed a relative reduction of 

the homeostatic sublining SF profiles (S1, S2a, c, S3, S5 and S4a, Figure 2) possibly reflecting 

aberrations in their functionality during disease, therefore strongly supporting the previously 

reported aberrations in reparative functions68,69  in RA tissue.  In line with the reported expansion 

of the sublining SF compartment in RA18,19, we identified two emerging, arthritis-specific Thy1+ 

SF intermediate subpopulations (S2d and S4b). The S2d cells are defined by the expression of 

Dkk3 and Lrrc15, two markers that had been individually described and recently linked to 

emerged pathological states of fibroblasts in RA19 and other inflammatory and cancerous human 

conditions44,70 respectively. Tissue remodeling and inflammation are among the functions 

characterizing the expanded sublining S2d (Dkk3/Lrrc15+) SF type. The other expanded S4b SFs 

also express Dkk3, however, their state is mainly characterized by high proliferative and DNA 

imprinting capacity, indicative of the structural and epigenetic changes reported for RA71-73. 

Remarkably, the Thy1+ S4b SFs share a high Prg4 expression pattern along with other features of 

lining Thy1- SFs. Since these two fibroblast states are absent in healthy conditions, their 

expansion could be suggestive of a TNF-mediated pattern of SF differentiation in arthritic disease. 

This hypothesis is advocated by the lineage inference based on scVelo showing the major 

differentiation cue in murine diseased synovium: the sublining S2b SFs represent a root fibroblast 

state from which the two arthritis-specific SF subpopulations emerge. The differentiation 

program tends to aim towards Prg4high SF state and suggesting the fate of SLSFs (Thy1+) as a 

continuum towards LSFs (Thy1-) in disease. This transcriptional cue is in line with the detected 
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expansion of the inflammatory lining profile (S4a- Suppl. Figure 7) indicates the S2d and S4b 

states as an intermediate stage in the progressive expansion and differentiation of the arthritic 

SFs.  

Common regulatory networks governing murine and human diseased synovium  

We evaluated the translational impact of these results by comparing our murine data with the 

available scRNAseq data derived from patients with RA. We identified a high degree of similarities 

cluster- and function-wise. Interestingly, the DKK3/LRRC15+ SFs did exhibit high expression 

similarities between species and in line with previous observations, they acquire an intermediate 

signature lying between the sublining/perivascular Notch3+ and the Prg4high lining SFs in both 

human and murine arthritic synovium (Suppl. Figure 18 generated with data described in ref20). 

Whether this shared feature among human RA and both murine arthritic models (chronic-hTNFtg 

and acute Serum Transfer Induced Arthritis-STIA) depends on upstream, arthritogenic TNF signals 

directly, or indirectly through the secondary induction of Notch signaling as previously 

reported74, remains to be explored in vivo. Importantly, the need for understanding if and how 

this intermediate SF state drives the pathogenicity and leads the destructive nature of arthritis 

through activation and expansion of LSFs, signifies the necessity for future targeted functional 

and cell-fate mapping studies.  

 GRNs revealed in both mouse and human datasets and the identification of the open chromatin 

regions (scATAC) around target genes in arthritis, enable us to uncouple the modulators of the 

pathogenic expansion of SLSFs to LSFs and identify unique patterns of activity. Among these 

highly significant factors, the NF-κB pathway components NF-κB1/2, RelA and RelB are well 

known to heavily regulate inflammatory processes including the inflammatory arthritic 

diseases75,76. Interestingly, we have previously addressed the SF-specific NF-κB mediated 

responses in the development of arthritis of the hTNFtg mice and we mechanistically showed 

that a major NF-κB  activator, the IKK2 kinase, acts as dual modulator of arthritis though both the 

inflammatory and the death responses of SFs6. Oxidative stress regulator Nfe2l2/NRF2 is highly 

expressed during disease, along with factors such as Bach1, Fosl1 and Mef2d, which have been 

shown to control NRF2 activity77-79, suggesting a molecular network related to the extensive 

oxidative stress heavily reported for RA80, and highlighting specific components of a pathway 

with therapeutic potential in TNF-mediated arthritis. Interestingly, Nrf2/Keap1 pathway can 

inactivate NF-κB activity through ubiquitin-mediated degradation of IKK281, suggesting links 

between the deregulated NF-κB and NRF2 pathways in arthritis. Additionally to hematopoiesis, 

Runx1 has been associated with the osteochondral differentiation (along with Runx2 and 3), the 

myofibroblastic activation47 and it has been suggested as a dual inflammatory modulator and 

even an epigenetic modifier, depending on the context82-88. Owing to its robust upregulated 

expression, Runx1 emerged as an essential master regulator of DKK3/LRRC15+ SFs in both 
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species, indicating a promising disease-paramount pathway that requires further studies. 

Conclusively, the integrative analysis showed that the hTNFtg SFs shares many commonalities 

with human RASFs both at transcriptional and epigenomic levels, suggesting an added predictive 

value of the hTNFtg model for integrative translational studies of SF functions.   

Conclusion 

To date, this is the first study exhibiting and comparing the homeostatic heterogeneity of SFs 

with SFs in a diseased environment. We provide a map of transcriptomic and epigenomic profiles 

that allowed us to derive general principles by which sets of specific TFs and GRNs cooperate to 

rewire SFs identity and functions during onset and progression of arthritis. Finally, we aligned our 

findings with the human context to highlight the advantages of hTNFtg mouse model to study 

potential novel fibroblast-targeted diagnostic and therapeutic opportunities for RA. 

 

 

Materials and Methods 

Mice/ethical compliance  

All mice were bred and maintained on C57BL/6J genetic background in the animal facilities of the 

BSRC Alexander Fleming under specific pathogen-free conditions in accordance with the 

guidance of the IACUC of BSRC “Alexander Fleming'' and in conjunction with the Veterinary 

Service Management of the Hellenic Republic Prefecture of Attika/Greece. Experiments were 

monitored and reviewed throughout its duration by the respective Animal Welfare Body for 

compliance with the permission granted. 

 

Flow cytometry and fluorescence-activated cell sorting 

Isolation of SFs was performed from both hind paws.  Ankle joints were dissected from 3 WT mice 

at the age of 4 weeks and 6 hTNFtg, 3 at the age of 4 weeks and 3 at the age of 8 weeks. The 

tissues were disaggregated by incubation for 30 min at 37oC in an enzymatic digestion medium 

consisting of DMEM, 10%heat-inactivated FBS, collagenase (0.5mg ml-1) from Clostridium 

histolyticum (Sigma, C5138) and 0.03 mg ml-1 DNase (Sigma, 9003-98-9). Upon washing the cells 

with PBS containing DNase, they were blocked in 1% BSA in PBS and Fc blocker (unlabeled anti-

CD16/32, Biolegend 101302) for 10 min at 4oC and stained with fluorophore conjugated 

antibodies for 20 min at 4oC (anti-Pdpn PE-Cy7, Biolegend 127411; anti-Thy1 A647, Biolegend 

105318; anti-CD31 APC/Fire 750, Biolegend 102433; anti-CD45 APC-Cy7, Biolegend 103116; anti-

Ter119 APC-A780, eBioscience 47-5921-80). After washing with PBS, cells were resuspended in 

FACS buffer (PBS, 1%BSA). Sorting of cells was performed with BD FACSAria III and the BD 
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FACSDiva software and dead cells were excluded by Dapi staining. Sorting gaiting for Single-cell 

RNAseq and bulk RNAseq were different (Sup. Figure1B). For sorted populations, purity and 

viability, was determined by reanalysis for the target population based on cell surface markers 

immediately post sorting. Purity was >99% for each target population. 

 

Histopathology and immunofluorescence.  

Histological H&E staining was performed on paraffin ankle joint sections as previously described7. 

For Immunofluorescence, cryosections were probed with antibodies against Thy1 (Alexa Fluor 

488 anti-mouse CD90.2 Antibody, Biolegend 105315, or Alexa Fluor 647 anti-mouse CD90.2 

Antibody, Biolegend 105318, both Clone, 30-H12), Clu (Polyclonal Rabbit antiHuman CLU / 

Clusterin, LS-C331486, LSBio), Gdf10 (GDF10 Polyclonal Antibody, BS-5720R, Bioss Antibodies), 

CD31 (APC Rat Anti-Mouse CD31, 551262, BD Biosciences, clone MEC 13.3), Notch3 (anti-Notch3 

antibody, ab23426, abcam), Comp (Anti-COMP/Cartilage oligomeric matrix protein antibody, 

ab231977, abcam), CD44 (FITC Rat Anti-mouse CD44, 553133, BD Biosciences, clone IM7), and 

Prg4/Lubricin (Anti-Lubricin/MSF antibody, ab28484, abcam). Alexa-Fluor 647–conjugated 

secondary antibodies (anti-rabbit, A21244, 1834794; anti-rat, A21247, 1719171; anti-mouse, 

A21235, 1868116; and anti-hamster, A21451, 1572558, Invitrogen), biotinylated secondary 

antibodies (anti-rat, BA-9400, and anti-rabbit, BA-1000). Images were acquired with a TCS SP8X 

White Light Laser confocal microscope (Leica) and with an Eclipse E800 (Nikon) microscope 

equipped with a Dxm1200F camera (Nikon). Imaging analysis and quantifications were 

performed with ImageJ/Fiji software (NIH). 

 

Generation of droplet-based single cell RNA sequencing data 

Sorted live Pdpn+ CD45- CD31- Ter119- synovial cells of hind paws of WT mice at the age of 4 

weeks and hTNFtg mice at 2 different stages of the disease, early at 4 weeks and established at 

8 weeks old mice were subjected to 10X Chromium Single Cell 3’ Solution v3. The platform was 

used to generate targeted 3,000 single-cell gel bead-emulsion per sample, loaded with an initial 

cell viability of 80%. The scRNA-seq libraries were prepared following the 10X Genomics user 

guide (Single Cell 3’ v3 reagent kits). After encapsulation, emulsions were transferred to a 

thermal cycler for RT. cDNA was purified and amplified with primers provided in the Single Cell 

3’ reagents (10X Genomics). After purification with 0.6X SPRIselect beads (Beckman Coulter) 

cDNA quality and yield was evaluated using an Agilent Bionalyzer 2100. Using the provided 

enzyme fragmentation mix the libraries were fragmented, end-repaired and A-tailed. Products 

were cleaned using SPRIselect beads and adaptors provided in the kit were ligated. After cleaning 

ligation products, libraries were amplified and indexed with unique sample index i7 trough PCR 

amplification. Final libraries were double sided cleaned and their quality and size was evaluated 

using an Agilent Bioanalyzer 2100. Libraries were sequenced by pooling them in 1 lane on Illumina 
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NextSeq 500 sequencer to a depth of 100 million reads each (one lane 75PE). The forward read 

included 28 bp for the 10X Barcode-UMI, followed by 8 bp i7 index (sample index), and 10 bp on 

the reverse read. Reads were converted to .fastq format using mKfast from cellranger v3 (10X 

genomics). Reads were then aligned to the mouse reference genome (mm10, Ensembl 

annotation release 91). The steps of read alignment, UMI counting and aggregation of individual 

sample count matrices into a pooled single matrix was performed using the 10x Genomics Cell 

Ranger pipeline(v3).  

 

Computational analysis of single-cell RNA sequencing data 

DoubletFinder89 and Seurat R packages90,91 were used for doublet detection and quality control 

of the cells. Cells containing less than 500 genes or more than 10% of reads mapped to 

mitochondrial genome were excluded from further analysis. Downstream analysis of the data 

was performed using the functions of the Seurat package as described below. Normalization of 

the data was performed with the function NormalizeData using “LogNormalise” as the 

normalization method and 10000 as the scaling factor. To identify the most variable genes the 

function FindVariableFeatures was applied with mean.var.plot (mvp) as a selection method and 

the rest of the parameters set to default. Scaling of the gene expression values was achieved by 

the scaleData function. Principal Component Analysis on scaled values of most highly variable 

genes, as identified in previous steps, was performed by the function runPCA. To find the optimal 

number of principal components to be used during the step of clustering and non-linear 

dimensionality reduction, SVD k-fold cross-validation was performed with dismo R library 

(https://cran.r-project.org/web/packages/dismo/index.html). For the clustering of the cells a 

graph-based clustering approach was followed encompassing the construction of a k-nearest 

neighbor graph of the cells and the utilization of Louvain community detection algorithm. The 

functions FindNeighbors and FindClusters were used to achieve that, the first with the parameter 

dims set to the range 1:25 and the second with the parameter resolution set to 0.6. tSNE and 

UMAP non-linear dimensionality reduction methods were used for cell visualization in 2D 

through the functions runTSNE and runUmap using the optimal number of PCs=25. For the 

identification of cluster marker genes, differential expression analysis (Wilcoxon rank sum test, 

adjusted p-value based on bonferroni correction using all features in the dataset, group1=cells 

belonging to the tested cluster, group2=rest of the cells) was performed with the function 

FindAllMarkers excluding genes that exhibited less than 25% of expression in both cell groups or 

an absolute value of average log fold change less than 0.25. The same approach was followed in 

both pooled and individual sample analysis (in this analysis only cells belonging to the analyzed 

sample were used). Gene set overrepresentation analysis was conducted using the R package 

clusterProfiler92. The lists of up-regulated genes from each cluster (pval < 0.01 and avgLFC >= 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2021. ; https://doi.org/10.1101/2021.08.27.457747doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.27.457747
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

0.25), as identified in the previous step, were used as an input gene list. All the active genes of 

the dataset were considered as the background set of genes. ‘Biological processes’ gene sets 

were used and obtained from the GO database. Enriched GO terms were considered those that 

showed an adjusted p-value < 0.05 and a gene count >= 3. 

 

Trajectory analysis 

Velocity analysis was conducted by using velocyto v.0.1793 and scVelo v.0.2.354. In particular, to 

count spliced and unspliced reads for each sample, the 10x velocyto pipeline was run in the 

filtered cellranger-generated BAM files, while for single-cell RNA velocity inference, the 

dynamical model of scVelo was applied. To predict the root and terminal states of the underlying 

Markov process, the respective scVelo functions were applied. The resulting root cells were used 

to infer the latent time ordering of the hTNFtg cells. 

Following the results of RNA velocity analysis, the R package Slingshot94 and python package 

PAGA95 were utilized. During the run of Slingshot UMAP coordinates were used for the cells, while 

clusters S2b and S5 were set as possible starting points. The produced minimum spanning tree 

supported the existence of a pathogenic branch comprised of S2a, S2d, S4b and S4a. 

 

Human scRNA-seq Gene Regulatory Network (GRN) inference 

To infer GRNs from the human integrated scRNA-seq data, the SCENIC96 workflow was applied in 

the normalized expression matrix. Briefly, initially co-expressed genes were grouped using 

arboreto python tool97,98. Next, using CisTarget99 all the inferred groups that included a 

Transcription Factor (TF) were considered as GRNs, while all genes with motif evidence of the 

respective TF in their regulatory space (hg38__refseq-

r80__500bp_up_and_100bp_down_tss.mc9nr, hg38__refseq 

r80__10kb_up_and_down_tss.mc9nr.feather) were considered as valid TF targets. Finally, each 

formed regulon was scored in each cell, using AUCell96. 

 

Integration of human data 

For the integration of human data 3 different datasets were used16,17,19. During the first step of 

the analysis, human genes were converted into mouse homologs using the Ensembl Biomart and 

MGI database, leading to the final set of 17,594 homologous pairs. Regarding the cells that were 

used, from the mouse dataset only the cells originating from pooled hTNFtg samples (3,051 cells) 

were processed and from the three human datasets, only the cells originating from RA patients 

(24,042 cells). After that the integration strategy described in 91 was followed through the Seurat 

package. More specifically all four datasets were processed for normalization and detection of 
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most variable genes using the function normalizeData with default settings and 

FindVariableFeatures (method set to vst and number of variable features to 2,000). Anchors 

between all datasets were identified using the function FindIntegrationAnchors with dimensions 

parameter set to 30 and then these anchors were utilized to integrate the four datasets together 

using the function IntegrateData. The final object containing all the cells was processed in a 

standard way, performing the steps of dimensionality reduction, clustering and differential 

expression analysis. The integrated clusters were defined after using the FindClusters function 

with a 0.3 resolution. Finally, differential expression analysis was performed using findAllMarkers 

function with the following thresholds: pval < 0.01 & avgLFC >= 0.25. As regards the functional 

enrichment analysis, the up-regulated genes of human and mouse datasets were used as an input 

for Metascape100, significant terms and pathways (pval < 0.05) were used to assess similarities 

and differences across the datasets. (For all the comparisons between human and mouse 

described above, the final integrated object was split into two, one containing all human cells 

from the three different datasets and another containing all mouse cells from pooled hTNFtg 

samples.)     

 

Isolation of RNA and bulk 3’ RNA sequencing  

RNA was isolated from sorted ankle joints synovial fibroblasts (sublining and lining) of healthy (4 

weeks of age) and hTNFtg mice (4 & 8 weeks of age) using the RNeasy mini or micro kit (QIAGEN), 

according to the manufacturer’s instructions. The quantity and quality of RNA samples were 

analyzed using Agilent RNA 6000 Nano kit with the bioanalyzer from Agilent. RNA samples with 

RNA Integrity Number (RIN) > 7 were used for library construction using the 3′ mRNA-Seq Library 

Prep Kit Protocol for Ion Torrent (QuantSeq-LEXOGEN™) according to manufacturer’s 

instructions. DNA High Sensitivity Kit in the bioanalyzer was used to assess the quantity and 

quality of libraries, according to the manufacturer’s instructions (Agilent). Libraries were then 

pooled and templated using the Ion PI™ IC 200 Kit (ThermoFisher Scientific) on an Ion Proton 

Chef Instrument or Ion One Touch System. Sequencing was performed using the Ion PI™ 

Sequencing 200 V3 Kit and Ion Proton PI™ V2 chips (ThermoFisher Scientific) on an Ion ProtonTM 

System, according to the manufacturer’s instructions. 

 

Computational analysis of bulk RNA sequencing data 

Quality of the FASTQ files was assessed with fastqc software (Andrews, S. (2010). FastQC:  A 

Quality Control Tool for High Throughput Sequence Data [Online]. Available online at: 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Alignment of the reads to the 

mm10 genome was performed with Hisat2 aligner. FeatureCounts101 was utilized for the step of 

read summarization at the gene level. Differential expression analysis was conducted by 
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DESeq2102. For each contrast differentially expressed genes definition was based on the following 

thresholds |Log2FC| > 0.58 & Pvalue < 0.05. 

 

Single cell ATAC-seq (10x Genomics) 

Single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) protocol 

was performed according to 10x Genomics instructions. Briefly, after sorting of synovial 

fibroblasts (see scRNA-seq protocol for details) and nuclei isolation, nuclei were resuspended in 

1x Diluted Nuclei Buffer (10x Genomics). About 4600 nuclei were added in each transposition 

reaction, aiming a targeted nuclei recovery of 3000 nuclei. Transposition was performed at 37℃ 

for 60 mins. Generation of Gel beads in EMulsions (GEMs) using Chromium Controller (10x 

Genomics), was followed by GEMs incubation and cleanup, based on 10x Genomics 

recommendations. Amplification of libraries was performed in a Veriti Thermal Cycler (Thermo 

Fisher) programmed at 98 ℃ for 45 s followed by 12 cycles of (98 ℃ for 15 s, 67 ℃ for 30 s, 72 ℃ 

for 20 s), 72 ℃ for 1 min and hold at 4 ℃. In turn, libraries were double sided size selected using 

SPRI select reagent (Beckman Coulter) according to 10x Genomics recommendations. Before 

multiplexing, libraries were assayed on Bioanalyzer High Sensitivity DNA ChIP (Agilent), for quality 

check and determination of fragment size. Quantification of libraries was performed using Qubit 

dsDNA HS Assay Kit (Thermo Fisher, Cat. No Q32851). Next generation sequencing was 

performed at EMBL-Genecore (Heidelberg), using the NextSeq 500 platform for paired-end 75 bp 

reads.  

 

Computational analysis of scATAC-seq 

The analysis of scATAC-seq datasets was conducted by using the ArchR suite55. Consequently, 

epigenetic maps of sorted SFs nuclei were obtained for 6,679 single nuclei. Latent Semantic 

Indexing (LSI)53,103, Louvain clustering, and UMAP dimensionality reduction was applied as 

described above (see “Computational analysis of single-cell RNA sequencing data”). To assign 

scATAC-seq cluster identity, gene-activity scores and scRNA-seq gene expression were directly 

aligned between the two modalities91,  by first applying an unconstrained integration to gain prior 

cluster identity knowledge, that was in turn used as a guide for a more refined constrained 

integration55. This procedure grouped cells to 5 major clusters, corresponding to the previously 

annotated cell types described above (synovial fibroblasts, osteoblasts, chondrocytes, 

myoblasts/myocytes and vascular cells, Suppl. figure 3). All non-fibroblast cells were excluded 

from the rest of the analysis, resulting in a total of 6,046 SF cells that were re-analyzed in the 

same fashion. The integration process between scATAC-seq and scRNA-seq SFs labeled the 

scATAC-seq cells according to 9 SF subpopulations (see above), that were visualized in UMAP 

space (Figure 1; Suppl. Figure 3). To identify a robust merged peak set along the SF 
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subpopulations, MACS2104 was applied at two separate pseudo-bulk replicates55. Next, iterative 

overlap peak-merging105 was applied at the level of the pseudo-bulk replicates (per 

subpopulation), and subsequently at the level of SF subpopulations across the whole dataset, to 

form a single merged peak set of 158,713 regions with a fixed length of 500 bp. In turn, peaks 

were annotated according to their respective genomic position (promoter, intronic, exonic, 

distal). Using the unified peak set, differential accessibility analysis between cells was performed 

to identify cluster-specific and condition-specific marker peaks (|Log2FC| > 0.58 & Pvalue < 0.01). 

Marker peaks were further analyzed using motif enrichment analysis ( CIS-BP database), to gain 

cluster-specific and sample-specific marker motifs ( |Log2FC| > 0.58 & Pvalue < 0.05 ).To further 

gain enriched motifs in single-cell resolution, chromVar analysis was conducted106. Consequently, 

to identify “positive TF regulators” in SF subpopulations, TF motif accessibility was correlated 

with integrated TF gene expression across cells, keeping all TFs with Pearson r2 > 0.5 and P 

Adjusted value< 0.05, resulting in 30 positive regulators. Finally, to identify the underlying GRNs, 

peak to gene linkages were called using correlation analysis between enhancer peak accessibility 

and integrated gene expression (see addPeak2GeneLinks() function of ArchR R package55. All links 

between genes and accessible regions with an annotated TF motif were marked as putative 

regulatory links between the respective TF and gene. Subsequently, all putative regulatory links 

were filtered to only keep genes that are upregulated in hTNFtg samples, as also peaks with 

increased accessibility in the disease samples. 
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Figure Legends: 

 

Figure 1. Multiomic transcriptional and epigenetic single cell analysis of Fibroblastic Synovial 

cells.  

(a). Schematic representation of the experimental workflow. We collected ankle synovial tissue 

from WT and hTNFtg mice, enzymatically disaggregated the tissue and sorted the cells into one 

gate representing fibroblasts (CD45-, Ter119-, CD31-, Pdpn+). We profiled the cells with both sc 

3’ mRNAseq (scRNA-seq) and scATACseq using 10X technology and performed cross-modalities 

(scRNA-seq-scATAC-seq) as well as cross-species scRNA-seq integrative analyses with publicly 

available human RA datasets. 

(b). High quality filtered Synovial Fibroblasts (SFs) (n=5,903 cells for the sc-RNAseq and n=6,046 

nuclei for the sc-ATACseq) projected in UMAP space and colored by cluster.  

(c). Feature plots of the SFs shown in panel b, displaying normalized expression values (for 

scRNA-seq) and activity scores (for scATAC-seq) for Prg4 and Thy1 genes.  

(d). Heatmap showing the unsupervised clustering of scRNAseq marker genes (up-regulated 

genes in at least one subpopulation vs the others) according to their average scaled expression 

values (z-score).  

(e). Heatmap showing the unsupervised clustering of scATACseq marker peaks (regions with up-

regulated accessibility in at least one subpopulation vs the others) according to their average 

scaled activity scores (z-score) (see Methods).  

(f). Heatmap of Pearson correlation coefficients between average scaled expression 

values(RNA) and average scaled activity scores(ATAC) of the most variable genes identified by 

scRNA-seq analysis. 

 

Figure 2. Functional remodeling of the synovial mesenchyme between WT healthy and 

hTNFtg arthritic joints.  

(a). UMAP representation of scRNA-seq-derived SFs distributions for the three samples 

separately (WT, hTNFtg/4 weeks and hTNFtg/ 8 weeks as indicated). The cells are colored by 

cluster identities and the marked area highlights the dynamic changes of the intermediate (I) 

and lining (L) subpopulations during disease progression.  

(b). Stacked barchart showing relative abundances (%) of clusters across samples (WT, hTNFtg/4 

weeks and hTNFtg/ 8). 

(c). Dotplot of a selection of cluster marker genes identified by scRNA-seq. The color of the dot 

shows the intensity of expression while the size denotes the percentage of cells expressing the 

gene in each cluster and condition.   

(d). Dotplot of a selection of representative gene ontologies (GO, Biological Processes) per 

clusters/samples as identified by Functional enrichment analysis (see Methods). The colour of 
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the dot shows the statistical significance (-Log10(Padj)) while the size denotes the percentage 

of the cluster marker genes found in the GO gene list. 

 

Figure 3. scATAC-seq recapitulates the remodeling of the synovial mesenchyme between WT 

healthy and hTNFtg arthritic joints.  

(a). UMAP representation of SFs across the three different samples (WT, hTNFtg/4 weeks and 

hTNFtg/ 8 weeks as indicated). Cells are colored by cluster identities and the marked area 

highlights the structural dynamic changes of the intermediate (I) and lining (L) subpopulations 

during disease progression. 

(b). Stacked barchart showing relative abundances (%) of clusters across samples (WT, hTNFtg/4 

weeks and hTNFtg/ 8 weeks).  

(c). Upper panel: Schematic representation of the marker peak detection procedure. Lower 

panel: Heatmap showing the clustering according to z-scores of normalized accessibility for 

50,636 marker peaks across SF subpopulations and disease states (WT, hTNFtg). 

(d). Upper panel: Schematic representation of the disease specific marker peak definition. 

Lower panel: left, Stacked barcharts depict the proportions of stable (shared between WT and 

hTNFtg) and hTNFtg-specific marker peaks; middle, Heatmap showing the clustering according 

to z-scores of normalized accessibility for 7,799 disease-specific marker peaks (hTNFtg-up-

regulated) across SF subpopulations for WT and hTNFtg cells. Right, Barchart depicting the 

number of disease-specific marker peaks (disease-opening regions) per cluster. 

(e). Heatmap showing the z-score of normalized accessibility and integrated gene expression of 

22,742 peak-to-gene links across WT and hTNFg SF subpopulations. Upper part, peak-to-gene 

links that are shared between disease states. Middle part, peak-to-gene links that are unique to 

hTNFg cells. Lower part, peak-to-gene links that are unique to WT cells.  

(f). Stacked barchart depicting the number of disease-specific marker genes (described in e, 

middle part) exclusively found in scATAC-seq data (red), shared between modalities (purple) 

and exclusively found in scRNA-seq data (grey). 

(g). Barchart depicting the number of regions per genes with gains in accessibility detected in 

disease for genes found only in scATAC-seq data (red) or showing combined up-regulation in 

scATAC-seq and scRNA-seq (purple).  

 

Figure 4. Integrative analysis of scATAC-seq and scRNA-seq infers putative arthritic regulatory 

programs. 

(a). Heatmap showing the clustering of TF motifs according to P-adjusted values (scores of motif 

accessibility) (see Methods) and displayed for healthy and disease state (WT, hTNFtg as 

indicated). Motif enrichment analysis was performed within the disease-specific marker peaks 

depicted in Figure 3d (right panel). Color signifies the magnitude of the enrichment (−log10 (P 

adjusted value), hypergeometric test). 
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(b). Heatmap showing the average motif activity across SF subpopulations and samples (WT: 

wt-4w, hTNFtg/4 weeks: tg-4w and hTNFtg/ 8 weeks: tg-8w as indicated), as expressed by 

deviation z-scores (chromVar). Displayed regulators are all the TFs for which gene expression is 

positively correlated with TF motif accessibility in at least one cluster (Pearson correlation > 0.5, 

P-adjusted value < 0.05). 

(c). Expression dotplot of positive TF regulators shown in (b). The color of the dot shows the 

intensity of expression, and the size denotes the percentage of cells expressing the gene in each 

cluster and condition.  

(d). Violin Plots of gene signature scores across SF subpopulations and disease states (WT, 

hTNFtg as indicated). Gene signatures of Ar and Runx1 are composed of 23 and 183 regulated 

genes respectively. The target genes show significant increased expression in sublining cells (Ar) 

or intermediate and lining cells (Runx1) and are linked to differentially accessible peaks 

between disease states that are enriched with Ar or RunX1 motifs. 

 

Figure 5.  Inference of Synovial Fibroblast transcriptomic and open chromatin trajectories 

driving arthritis in the joints.  

(a). UMAP representation of RNA velocity analysis highlighting cell transitions and dynamic 

relations between SF clusters i. Left panel shows the large RNA velocity scores and the well-

defined direction of the trajectory in the pathogenic branch (doted square) comprised of 

intermediate (I, S2.d and S4.b) and inflammatory lining (L, iS4.a, see Suppl. Figure 7) clusters 

detected in hTNFtg cells. Right panel shows the directions and amplitude of the inferred 

trajectory overlaid on a sample-resolved UMAP plot detailing the position of WT and hTNFtg (4, 

8 weeks) samples. 

(b). Left: heatmap depicting the inter-cluster FC values (left) in line with the intra-cluster (Tg vs 

WT) FC values for the 849 genes displaying both cluster specificity (marker gene of at least one 

of the represented cluster) and disease-associated changes (tg vs WT) (binary values are used 

to denote up regulation (1, orange) or down regulation (-1, purple) of those genes in the intra-

cluster Tg Vs Wt comparison, see Methods). Note the overrepresentation of genes expressed in 

the pathogenic branch. Right: heatmap showing the z-scores for 107 genes obtained from the 

inter-intra DE genes (depicted on the left) with the likelihood genes predicted by scVelo and 

obtained from (a).  hTNFtg cells of the main trajectory (see suppl. fig 15b) were ranked 

according to the latent time values obtained when an S2.b cell was set as root of the trajectory. 

Genes were clustered according to z-score to reveal the sequence of gene expression switches 

observed along the process 

(c). scATAC-seq trajectory analysis (summarized by the black smoothed arrow) that 

recapitulates the existence of a pathogenic process developing through S2.d - S4.b - S4.a 

clusters. Color indicates the cellular fate across the inferred trajectory. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2021. ; https://doi.org/10.1101/2021.08.27.457747doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.27.457747
http://creativecommons.org/licenses/by-nc-nd/4.0/


 34 

(d). Heatmap showing the integrated gene expression activity (left panel) and the TF motif 

deviation (right panel) of the positive TF regulators described in Figure 4b along the 

pseudotemporal axis (left to right, black arrows) in the S2.b/S5 - S2.a -  S2.d - S4.b - S4.a branch 

determined in (c). Note how TFs gene expression is significantly correlated with TF motif 

deviation across the cell trajectory. 

 

Figure 6. Integrative analysis of SFs from hTNFtg 197 murine model and human RA joints.  

(a). Integration of 24,042 RA patients’ SFs (3 different studies, Zhang et al., 2019, Wei et al., 

2020 and Stephenson et al., 2018) with our 3,051 hTNFtg SFs identified 7 human(H)-mouse(M) 

aligned SF clusters. Separate plotting of UMAPs distribution for the pooled human 

(downsampled to 3051 cells) and mouse datasets cells colored by cluster identity highlights the 

striking inter-species overlap for homeostatic, intermediate and lining groups. 

(b). Correlation heatmap (average expression of MVGs) between human and mouse SF clusters. 

Note the highly significant similarities in H and M expression programs within a given cluster 

and within functional groups of cells. 

(c). Heatmap showing a selection of enriched functional terms and pathways in H and M 

clusters. Note the co-clustering of H and M in a given group of cells, and the segregation of 

distinct GO term enrichment for each functional group. 

(d). Feature plots of representative marker genes commonly expressed between homologous H 

and M cells for homeostatic (green box), intermediate (blue box) and lining (red box) groups, as 

well as for Prg4 and Thy1 genes (black box). 

 

Figure 7. Shared Gene Regulatory Networks (GRNS) in SFs of hTNFtg mice and human RA. 

(a). Regulatory network analysis in mouse and human datasets reveals 17 shared regulons. 

Correlation and clustering analysis according to hTNFtg data reveals organization of the 

regulons in 3 main modules. Shown on the right are representative underlying TF motifs for 

each group. 

(b). UMAP plot depicting the cells with activity of regulons AR, RUNX1 and DLX3 for the human 

data. 

(c). Summary table of the GO enrichment analysis of the modules shown in (a). For each 

module we indicate the TFs (displayed in the second column) and the commonly enriched GOs 

and mouse and human regulons respective p-values (third to fifth column).  

Supplementary Figure Legends: 
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Supplementary Figure 1. Arthritic manifestations in the ankle joint samples and sorting 

strategy of the digested joints employed for the scRNA-seq analysis of non-hematopoietic 

stromal cells of the hTNFtg and WT mice. 

(a). Representative haematoxylin and eosin staining of the ankle joint at the talus level from 4-

week-old WT, 4- and 8-week-old hTNFtg mice 

(b). Gating strategy for flow-cytometric analysis of synovial fibroblasts. Intact cells are identified 

based on forward scatter (FSC-A) and side scatter (SSC-A) characteristics. Dead cells (Dapi), 

leukocytes (Cd45+), endothelial (Cd31+) and pro-erythroblasts (Ter119+) were excluded from 

analysis. Within the Lin- (CD45-CD31-Ter119-) gate, synovial lining (PDPN+, Thy1-) fibroblasts 

could be distinguished from sublining fibroblasts (PDPN+, Thy1+). The cell sorting strategy for sc 

analyses is highlighted with the red gating, whereas the cell sorting strategy for Bulk RNA-seq is 

highlighted with the green gating. Pericytes that haven’t been selected in any of the approaches 

are highlighted in the black doted (Pdpn-, Thy1+).   

 

Supplementary Figure 2. Complementary scRNA-seq analyses of non-hematopoietic stromal 

cells derived from hTNFtg and WT ankle synovia. 

(a). UMAP projection showing the different cell types in the pooled RNA-seq dataset (left) and 

barplot showing their relative abundance (right). 

(b). Violin plots showing normalized expression values of genes across the different cell types. 

(pooled dataset - all cells included) 

(c). Barplots depicting the number of genes detected per cell (left) and the number of total 

reads per cell (right) (pooled dataset – only fibroblast cells included) 

(d). Barplots depicting the relative abundances of clusters in the pooled RNA-seq data 

containing only fibroblasts (left panel) and violin plots showing normalized expression values 

for fibroblast markers. (pooled dataset – only fibroblast cells included) 

 

Supplementary Figure 3. Complementary scATAC-seq analyses of non-hematopoietic stromal 

cells derived from hTNFtg and WT ankle synovia. 

(a). UMAP projection showing the different cell types in the pooled ATAC dataset (left) and 

barplot showing the percentage of the different cell types (right). 

(b). Violin plots showing gene activity scores for selected genes across the different cell types. 

(pooled dataset - all cells included) 

(c). Left panel: Average plots of reads distribution around TSSs for WT, hTNFtg/4 weeks and 

hTNFtg/ 8 weeks samples showing a sharp peak at TSS and a smaller peak (right of TSS) due to 

the stably positioned +1 nucleosome. Right panel: Plot showing fragment size distributions with 

negligible variability across samples (WT, hTNFtg/4 weeks and hTNFtg/ 8 weeks as indicated). 
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(d). Barplots depicting the percentage of clusters in the pooled ATAC-seq data containing only 

fibroblasts (left panel) and violin plots showing gene activity scores for fibroblast markers. 

(pooled dataset – only fibroblast cells included) 

 

Supplementary Figure 4. Prg4 and Thy1 expression in hTNFtg and WT SFs. 

(a). Barplots showing the percentage of Thy1 positive, Prg4 positive and double positive SF cells 

in each cluster per sample for scRNA-seq (top) and scATAC-seq (bottom) modalities.  

(b). UMAP showing SFs distribution for the pooled scRNA-seq (left) and scATAC-seq (right) 

datasets. Cells are colored for Thy1 positive, Prg4 positive, double positive SF cells, and double 

negative cells. 

(c). Similar to (b), but cells are colored by sample of origin. 

 

Supplementary Figure 5. Differential Expression Analysis (DEA) of hTNFtg and WT SFs 

transcriptomes  

(a). (Top) Tables summarizing the numbers of up-regulated (UP) and down-regulated (DOWN) 

genes after DEA between a given cluster and the others (inter-DE) for WT, Tg4 and Tg8 cells.  

(b). Heatmap of correlation scores between most variable genes (MVGs) for all SF clusters in 

WT, hTNFtg/ 4w and hTNFtg/ 8. Individual clusters and samples are color-coded. Pathology- and 

homeostasis-specific highly correlated groups of clusters are highlighted with black dotted lines. 

(c). Divergent barplot showing the number of up (green) and down (red) -regulated genes after 

DEA between Tg and wt cells (Intra-DE) of a given cluster.  

(d). (Top) Table summarizing the number of inter-intra DE genes commonly up-regulated in 

different cell subsets showing the similarities in genes defining S2.d S4.b and S4.a clusters 

(doted box) and (Bottom) circos plot visualizing the extent of shared up-regulated genes 

between these clusters. 

(e). Functional enrichment analysis of intra-DEGs (hTNFtg vs WT) for the clusters S2.d, S4.b and 

S4.a. Functional terms in the heatmap are colored according to statistical significance of the 

enrichment. 

 

Supplementary Figure 6. Cell cycle analysis of SFs from hTNFtg and WT mice. 

(a). Feature plots showing normalized expression values of genes associated with cell cycle 

proliferation. 

(b). UMAP projection depicting the phase of the cell cycle for each cell in the pooled dataset 

(see Methods). 

(c). Barplots showing the percentages of cells in each cluster (per sample) belonging to phase 

G1(left), S(center) and G2/M(right). 
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Supplementary Figure 7. Sub-clustering analysis of lining population revealed two distinct 

sub-clusters. 

(a). UMAP representation of the identified lining sub-clusters. Cells belonging to the 

homeostatic group are colored in blue, while cells belonging to the inflammatory group are 

colored in red. UMAP plots of the re-clustering is also shown as an inset. 

(b). Barplot showing the relative abundances of cells in each sub-cluster in healthy condition 

and during disease progression. 

(c). UMAP Feature plots of selected genes showing differential patterns of expression between 

the two sub-clusters. 

(d). Dotplot of shared and specific enriched GO biological processes in the two sub-clusters. 

 

Supplementary Figure 8. Spatial distribution of representative sc SFs clusters markers in the 

invasive pannus formed at hTNFtg ankle joints at an established arthritis state.  

Representative confocal section (n=3 mice per genotype) depicting expression of marker genes 

identified upon SF clustering. Dashed yellow line in all the hTNFtg images indicates, sub-lining 

localization at the level of the intersection between pannus (p) and bone (b), dashed lines in 

every picture and highlights the destructive pannus that has invaded in the talus bone of the 

ankle joint. Representative confocal images of ankle joint sections at the talus level of 4-week-

old wt mice, top panels and 8-week-old hTNFtg mice (n= 3 mice per genotype). The marker 

genes and the associated subpopulations are indicated on each panel.  

(a)., (d). S2c marker Clu shows a well distributed expression withing the sublining compartment, 

defined by Thy1 expression. S2a and b marker Gdf10 in green, shows expression mainly in the 

pro-inflammatory pannus surrounding the joint. S5 marker Notch3 displays a perivascular 

localization in the healthy synovial membrane, and an expansion in the arthritic ankle joint, co-

localized withing the Thy1+ sublining.  

(b)., (e). Cd44 in green and Comp in white co-expressed in the restricted S2d subpopulation in 

the healthy joint, however, both expanding arthritic subpopulation S2d and S4b indicated by 

co-staining of Cd44 with Ki67, are localized at the edges of the pannus both inside and outside 

of the bone.  

(c)., (f). Prg4 in green, marker gene for the S4a lining subpopulation displays exclusive 

expression in the outermost SF layer of the healthy joint and in the hTNFtg joint, its expression 

is expanded and is mainly detected in the invasive pannus in the bone but also within the 

interface pannus bone zone. All Scale bars, 50μm., b: bone, p: pannus.  

 

Supplementary figure 9. Bulk RNA-seq analysis of sorted SFs from ankle joints of WT and 

hTNFtg mice (1/2). 

(a). PCA plot of bulk RNA-sequencing samples. Note how samples are grouped horizontally as 

wild type (left) and transgenic (right) and vertically as sub-lining (top) and lining (down) 
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(b). Volcano plots showing the number and characteristics of up and down regulated genes for 

the comparisons WT L vs WT SL, Tg4 L vs Tg4 SL and Tg8 L vs Tg8 SL 

(c). Scatter plot showing the extent of the overlap (and the correlation in FCs) for lining, 

intermediate and sublining specific DEGs between scRNA-seq and bulk RNA-seq. Note the lower 

numbers in hTNFtg samples. 

(d). On the left side: box plots showing Log2FC values(L vs SL comparisons) in each sample of 

bulk RNA-seq data for the marker genes of each cluster in the scRNA-seq dataset. On the right-

side, error-bar plots showing the standard error of Log2FC values for 3 selected marker genes 

per cluster. Results are shown per sample as indicated. 

 

Supplementary figure 10. Bulk RNA-seq analysis of sorted SFs from ankle joints of WT and 

hTNFtg mice (2/2) 

(a). Proportions (%) of the marker genes (found by scRNA-seq for a specific cluster), which are 

also up regulated in bulk RNA-seq for lining (shades of red) and sublining cells (shades of blue). 

(b). Heatmap of scaled normalized counts obtained with bulk RNA-seq assay for the sc marker 

genes described in figure 2C (for sub-lining (SL), Intermediate (I), and Lining (L)). 

(c). Heatmap showing the differences across samples (compare WT with hTNFtg) in significance 

of FC between lining (L)and sublining (SL) cells detected in bulk RNA-seq. The boxes highlight 

candidate genes that can be used for RT-PCR to test disease status. 

 

Supplementary figure 11. Complementary DE analyses  

(a). Right: Heatmap depicting the inter-cluster FC values for the 2322 genes displaying cluster 

specificity (marker gene of at least one of the represented cluster). Left: Heatmap depicting the 

bulk RNA-seq FC values of those genes (see Methods). Samples are individually shown. Note the 

overrepresentation of genes expressed in the lining cells according to bulk RNA-seq in sc S4.a 

cluster, and the enrichment of genes expressed in the sublining cells according to bulk RNA-seq 

in homeostatic clusters S5, S2.a and S2.b. In contrast cluster S2.d and S4.b are specified by 

genes not DE between join compartments according to bulk RNA-seq (see Supplementary figure 

10a for quantification). 

(b). Top: Venn diagram showing the extent of the overlap (107 genes) between inter-intra DEGs 

and scVelo likelihood hTNFtg genes for the clusters of the trajectory path described in Figure 5. 

Bottom: Heatmap showing clusters obtained after Functional enrichment analysis. Note the co-

clustering of pathogenic (S2.d, S4.b, S4.a) cells functions. 

 

Supplementary figure 12. Runx1 motif-enriched regulatory elements control the expression 

of Runx1 and Cd44 genes during the arthritic disease state. 

(a). Genome track snapshot of the extended Runx1 gene locus (chr16, 92,576,073–92,926,074). 

Single-cell gene expression (Log2 GeneIntegrationMatrix: Runx1) across SF subpopulations and 
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disease states (wt, hTNFg) is shown to the right. Merged peaks across SF subpopulations 

(Peaks), and differentially accessible peaks between SF subpopulations (All_DARs) are shown 

below. Differential accessible peaks with significantly increased scATAC-seq signal in S2d hTNFg 

(S2d_DARs), S4b hTNFg (S4b_DARs), and S4a hTNFg (S4a_DARs) cells are also reported 

accordingly. Inferred peak-to-gene linkages for intragenic and distal intergenic regulatory 

elements are shown below (Peak2GeneLinks). Color scale signifies the level of correlation 

between peak scATAC-seq accessibility and integrated gene scRNA-seq expression (value). 

(b). same as in a for the extended Cd44 gene promoter region (chr2, 102,851,664–

102,951,665).  

 

Supplementary Figure 13. Motif enrichment analysis in scATAC-seq cluster-specific accessible 

regions define distinct types of regulatory programs across SF subpopulations. 

(a). Heatmap showing the motif enrichment P-adjusted values of each SF subpopulation. Motif 

enrichment analysis was performed within the SF marker peaks depicted in figure 1D (lower 

panel). Color signifies the magnitude of the enrichment (−log10 (P adjusted value), 

hypergeometric test). Columns are order by using binary sorting. 

(b). Feature plots of selected TF motifs with regulatory activity in the homeostatic, intermediate 

and lining SF subpopulations. Color signifies the motif deviation scores (see Figure 4 and 

Methods). 

 

Supplementary Figure 14. Cis-regulatory modeling (CisTopic) on scATAC-seq recapitulates the 

identification of putative arthritic regulatory programs.  

(a). UMAP representation of SFs across the two disease states using cell-topic probabilities. (Wt 

and hTNFtg as indicated). Cells are colored by cluster identities and the dotted line/marked 

area highlights the dynamic changes of the intermediate and lining subpopulations during 

disease progression. 

(b). CisTopic modelling (see Methods) of cis-regulatory topics using Latent Dirichlet Allocation. 

An optimal model of 12 topics (arrow) was selected based on log likelihood. 

(c). UMAP Feature Plots of per-cell topic probabilities for each modeled topic on the aggregated 

scATAC-seq dataset. 

(d). Heatmaps showing the per-cell topic z-scores (columns) for each modeled topic (rows), for 

each disease state (left panel: WT, right panel: hTNFtg). 

(e). Selection of representative motif enrichment results found on the most contributing 

regions of topic 5, topic 8 and topic 12. 
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Supplementary figure 15. Ordering of the cells across the identified trajectory using latent 

time values and alternative methodologies. 

(a). UMAP plots displaying RNA velocity results detailing cell transitions and dynamic relations 

between SF clusters in the WT and the hTNFtg datasets (week4 and week8, Tg4 and Tg8 

respectively). 

(b). left side: UMAP plost of hTNFtg sample, cells are colored by their potential of belonging to 

the initial(left) or final state(right) of the identified trajectory (upper panel) and UMAPs of 

hTNFtg samples, cells are colored by latent time value (lower panel). In the latent time panels, 

on the left, the calculations were performed by considering the root cell from cluster S5, while 

on the right panel cells from cluster S2.b were considered root. (See Methods). 

Right Side: UMAP plot highlighting the selected trajectory trend across S2.b/S5, S2.a, S2d, S4.b 

and S4.a). 

(c). Partitions identified by PAGA algorithm and minimum spanning tree produced by Slingshot 

propose a similar global structure of the mouse data, supporting the existence of a trajectory 

backbone which includes clusters S2.a, S2.d, S4.b, S4.a. 

(d). UMAP projections of WT (left) and hTNFtg (right) samples, where cells are colored based on 

signature scores for the GO term “Response to TNF” (upper panel) or on the normalized 

expression of Notch3 (lower panel). 

 

Supplementary Figure 16. Human/Mouse integrative analysis employing the available scRNA 

datasets from SFs of RA patients and the hTNFtg mice. 

(a). UMAP projections showing the distribution of cells in the integrated aligned H-M clusters 

for each of the datasets used in human mouse integration analysis, as indicated. 

(b). Barplots showing the relative abundances of cells belonging to each of the integrated 

clusters in the datasets described in (a). 

 

Supplementary Figure 17. Distribution of human and mouse SF cells as previously annotated 

upon the integrative analysis.  

(a). Cells from the 4 datasets used in integration analysis are plotted in the common integrated 

UMAP space and are colored by their original annotation. 

(b). Barplots showing the distribution of cells (using the original annotation) to the integrated 

clusters for the datasets on the left. 

 

Supplementary Figure 18. Dkk3 and Lrrc15 expression in the intermediate transcriptional 

state of SFs in murine and human arthritis 

(a). Feature plots of mouse synovial fibroblasts from Wei et al., 2020. Cells are colored by 

normalized expression of genes Thy1, Prg4, Lrrc15 and Dkk3. 
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(b). UMAP projection(left) of mouse synovial fibroblasts shown in (a). Cells are colored by 

signature score. The signature score is calculated as the sum of scaled normalized expression 

values for the 71 intermediate genes described in Wei et al., 2020. Density plot(right) of the 

same signature scores for human RA synovial fibroblasts from Zhang et al., 2019. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2021. ; https://doi.org/10.1101/2021.08.27.457747doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.27.457747
http://creativecommons.org/licenses/by-nc-nd/4.0/


z
-s

c
o

re

Figure 1

a                                          

b                                          c                                          
d                                          

f                                          

S3
S1
S2.a
S2.c
S2.b
S5
S4.b
S2.d
S4.a

Marker genes, n= 1,716

S3
S2.a
S5
S2.b
S1
S2.c
S4.a
S2.d
S4.b

Marker peaks, n= 45,862

Ankle Joint 

dissociation

WT

hTNFtg

(4w, 8w)
Pdpn+ Lin-

(CD45, Ter119, CD31)

Cell sorting

Cell capture, RT

Nuclei capture/Transposition

Microfluidics, Library preparation & 

Sequencing

Integration

scRNA - scATAC

Integration   

scRNA-seq

Mouse - Human

n= 5,903 cells n= 6,046 cells

low high

low high

z
-s

c
o

re

e                                          

Pearson 
correlation

-0.4

0

0.4

1

Cluster

UMAP1

U
M

A
P

2

UMAP1

U
M

A
P

2
T

h
y

1
P

rg
4

scRNA-seq scATAC-seqscRNA-seq scATAC-seq

Normalized expression             Activity scores

scRNA-seq

scATAC-seq

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2021. ; https://doi.org/10.1101/2021.08.27.457747doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.27.457747
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2

a                                          

UMAP_1

U
M

A
P

_
2

WT hTNFtg/4 hTNFtg/8 b                                          

c                                          d                                          

n= 2,852 cells n= 1,553 cells n= 1,498 cells

WT
hTNFtg
4w 8w

Avg. scaled 

expression

% Percentage 

of expression

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2021. ; https://doi.org/10.1101/2021.08.27.457747doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.27.457747
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3

a b

c

n= 1,615 cells n= 2,713 cells n= 1,718 cells

Accessibility changes 

between SFs

d

e

Accessibility changes 

in disease

WT

hTNFtg

hTNFtg

WT

z-score

S1

S2.b

S2.a

S2.c

S2.d

S3

S4.a

S4.b

S
h

a
re

d
n

 =
 1

2
,1

4
9

h
T

N
F

tg
n

 =
 8

,8
0
7

W
T

n
 =

 1
,7

8
6

scATAC-seq scRNA-seq

S5

n=  50,636 cluster-
specific peaks

n=  7,799

cluster/disease-specific peaks

stable   up-hTNFtg down-hTNFtg

f

g

UMAP_1

U
M

A
P

_
2

WT hTNFtg/4 hTNFtg/8 WT
hTNFtg

4w 8w

stable hTNFtg

UP

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2021. ; https://doi.org/10.1101/2021.08.27.457747doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.27.457747
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4
a

b c

Bach1
Nfe2l2
Fosl1
Batf3
Runx1
Rela
Nfkb2
Relb
Nr3c1
Cebpd
Irf1
Ar
Klf11
Tcf15
Zfp281
Foxo6
Klf1
Klf12
Klf3
Creb3
Dlx3
Dlx4
Lhx2
Lmx1b
Irx2
Rora
Rorb
Foxd1
Foxc2
Barx1

d Ar regulon Runx1 regulon

M
y
o

g

Z
fp

2
3

8

N
h

lf
2

T
c

f2
1

M
y
o

d
1

T
a

l1

L
y
l1

A
s
c

l2

A
s
c

l1

T
c

fa
p

4

N
h

lh
1

N
r3

c
1

N
fi

c

H
o

x
b

1
3

P
g

r

N
P

H
o

x
d

1
3

H
o

x
b

9

N
P

H
o

x
c

1
3

G
a

ta
3

G
a

ta
1

G
a

ta
5

S
o

x
1

2

G
a

ta
6

G
a

ta
4

G
a

ta
2

T
c

fe
c

S
m

a
d

3

S
m

a
d

2

S
m

a
d

9

E
2

f4

L
h

x
8

P
d

m
4

R
u

n
x

1

R
u

n
x

3

R
u

n
x

2

C
re

b
3

l3

C
re

b
3

N
r1

h
4

N
r1

h
5

9
4

3
0
0
7
6
C

1
5
R

ik

K
lf

1

A
tf

2

R
a

rg

E
s
r1

K
lf

6

K
lf

3

F
o

s

A
tf

7

S
m

a
rc

c
1

F
o

s
l1

N
fe

2
l2

M
e

o
x

2

D
lx

4

R
a

ra

M
e

o
x

1

N
fa

tc
1

R
e

l

R
e

la

N
fa

tc
2

N
fk

b
1

N
fa

tt
5

R
e

lb

B
a

c
h

1

B
a

c
h

2

J
u

n
d

F
o

s
b

J
u

n
b

C
e

b
p

b

C
e

b
p

d

C
e

b
p

g

C
e

b
p

a

C
e

b
p

e

Ir
x

5

hTNFtg

WT

h
T

N
F

tg

W
T

h
T

N
F

tg

W
T

h
T

N
F

tg

W
T

h
T

N
F

tg

W
T

h
T

N
F

tg

W
T

h
T

N
F

tg

W
T

h
T

N
F

tg

W
T

h
T

N
F

tg

W
T

h
T

N
F

tg

W
T

h
T

N
F

tg

W
T

h
T

N
F

tg

W
T

h
T

N
F

tg

W
T

h
T

N
F

tg

W
T

h
T

N
F

tg

W
T

h
T

N
F

tg

W
T

h
T

N
F

tg

W
T

h
T

N
F

tg

W
T

h
T

N
F

tg

W
T

z-score

-2 2

-log10(Padj)

0 100

0.2

0.3

0.4

0.5

S
ig

n
a

tu
re

 s
c

o
re

% Percentage of 

expression

0 100

Avg. scaled 

expression

low high

0.2

0.4

0

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2021. ; https://doi.org/10.1101/2021.08.27.457747doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.27.457747
http://creativecommons.org/licenses/by-nc-nd/4.0/


S2b

S5

S2.a

S2d

S4b S4a

S3 S2c

S1

a

b

c d Nr3c1
Ar

Klf3
Hoxd13

Cebpd
Nfic

Nfib
Irf1

Nfia
Runx1
Nfkb2

Rel
Nfe2l2

Nfkb1
Bach1

Rela
Fosl1

Relb
Rarg
Mef2d

Nfe2l1
Dlx3

Barx1
Hivep1

Figure 5

S1

S2.b

S2.c

S3

S2.a S2.d

S4.b
S5

S4.a

S2
.b

S5 S2
.a

S2
.d

S4
.b

S4
.a

Overlap with
likelihood genes:

107 

Latent time ordering

in
te

r-
in

tr
a 

D
E

84
9 

ge
ne

s
scRNA-seq

sc
A

TA
C

-s
eq

hTNFtg/8

hTNFtg/4

WT

hTNFtg/4
hTNFtg/8

Latent time

Low           Hi



Figure 6

a                                          
Human hTNFtg

b                                          

d                                          

c                                          

Spearman 
correlation

M2 M3 M4 M5 M1 M6 M7 

H2 

H3 

H4 

H5 

H1 

H6 

H7 

Human 

Mouse 

-log10(P-value)

Normalized 
expression

low

high

UMAP1

U
M

A
P

2

UMAP1

U
M

A
P

2

4      3      2                                          

SLSFsIntermediate

6      5                                           7      1                                           

LSFs  



Figure 7

a
b

c

Pearson correlation

Modules
Transcription 

Factors

GOs P-val

human

P-val

mouse

Module1

AR

fat cell differentiation

positive regulation of defense response

epithelial cell proliferation

osteoblast differentiation

BMP signaling pathway

tissue migration

regulation of inflammatory response

muscle tissue development

1.60E-13

1.67E-13

7.55E-09

1.92E-06

4.63E-06

1.04E-05

4.32E-05

0.00017557

0.000210545

8.86E-05

2.11E-06

0.016277958

0.00049412

0.000135733

2.22E-07

0.00963979

IRF1

NR3C1

CEBPD

KLF3

KLF12

Module2

RELA

cellular response to tumor necrosis factor

regulation of inflammatory response

I-kappaB kinase/NF-kappaB signaling

regulation of cell-cell adhesion

NIK/NF-kappaB signaling

chondrocyte differentiation

regulation of autophagy

antigen processing and presentation

regulation of peptidase activity

regulation of Wnt signaling pathway

6.86E-13

2.98E-10

1.27E-08

1.91E-08

8.04E-08

2.76E-06

9.52E-06

1.25E-05

0.000469413

0.000852893

1.36E-07

1.68E-12

0.000305922

2.35E-08

0.009225654

0.001252884

0.00625638

4.81E-12

9.34E-08

0.044113056

RELB

NFKB2

RUNX1

BATF3

BACH1

NFE2L2

Module3

DLX4
regeneration

mesenchymal cell differentiation

homeostasis of number of cells

T cell activation

response to lipopolysaccharide

8.14E-05

0.001027017

0.018224425

0.012398227

0.030163392

0.001356068

0.000165115

0.000104426

0.0018034

1.45E-05

DLX3

CREB3

RORA

a

Rora

Creb3

Dlx3

Dlx4

Nfe2l2

Bach1

Batf3

Runx1

Nfkb2

Rela

Klf12

Klf3

Cebpd

Nr3c1

Irf1

Ar

Relb

C
re

b
3

D
lx

3

D
lx

4

N
fe

2
l2

B
a
c
h

1

B
a
tf3

R
u

n
x

1

N
fk

b
2

R
e
la

K
lf3

C
e
b

p
d

N
r3

c
1

Irf1

A
r

R
e
lb

K
lf1

2

R
o

ra

low high

SLSFsIntermediateLSFs  



Supplementary figure 1

a WT

hTNFtg/4 hTNFtg/8

b

Bulk/SFs

SC/L SC/SL

Pericytes, not gated



Supplementary figure 2

a                                          

d

c                                          

b                                          

Chondrocytes

Fibroblasts

Myocytes

/Mural

Osteoblasts

Vascular

Myocytes

n= 6,667 cells

scRNA-seq



Supplementary figure 3

a                                          

d

c                                          

Fibroblasts

Chondrocytes

Vascular

Myocytes

/Mural

n= 6,679 cells

scATAC-seq

Osteoblasts

b                                         

WT

hTNFtg/4

hTNFtg/8



Supplementary figure 4
a

b

c

WT hTNFtg/4 hTNFtg/8

%

%

s
c
R

N
A

-s
e
q

s
c
A

T
A

C
-s

e
q



Supplementary figure 5
a

d

WT hTNFtg/4 hTNFtg/8

Cluster-specific genes

e

hTNFtg vs WT

disease-specific genes

hTNFtg vs WT

-l
o

g
1

0
(P

v
a

l)

b c

WT

hTNFtg/4

hTNFtg/8



Supplementary figure 6

a                                          

c                                         

b                                        

G1

G2/M

S

C
c
n

b
1

C
d

k
1

M
k
i6

7

WT
hTNFtg

week4 week8

low

high

G1 phase S phase G2/M phase

Normalized 
expression



Supplementary figure 7

a                                          

d

b                                          c                                         

WT
hTNFtg

4w 8wInflammatory iS4.a

Homeostatic hS4.a

low high

low high

Normalized 
expression

Normalized 
expression



Supplementary figure 8
W

T
/4

 w
e

e
k

s

a                                          

Clu
S2cThy1 S2b/a

Notch3
Thy1

CD31

S5

b                                          

SLSFs
Expanding 

intermediate LSFs

Gdf10
Thy1

CD44
Thy1

Comp

S2d/S4b
Prg4
Thy1 S4a

c                                          

h
T

N
F

tg
/8

 w
e

e
k

s Clu
Thy1 S2cp

b

p

S2b/a
Gdf10
Thy1

b

p
p

Thy1

Notch3

S5

b

p

d                                         e                                         

50μm

CD44
Thy1

Ki67

S4.b
Prg4
Thy1 S4a

p b
p

b



Supplementary figure 9

a                                          

d                                         

b                                         
1033807 361274 697689

WT hTNFtg/4 hTNFtg/8

c                                         WT hTNFtg/4 hTNFtg/8
WT (SL)

WT (L)

hTNFtg/4 (SL)

hTNFtg/4 (L)

hTNFtg/8 (SL)

hTNFtg/8 (L)

Sample

(L) up(SL) up (L) up(SL) up (L) up(SL) up

BULK

(S
L

)
(I

),
 (

L
)

S
C



Supplementary figure 10

a

b

z-score

L vs SL

WT hT
NF

tg
8

hT
NF

tg
4

Log2(FC)

c

SL
 sc

 m
ar

ke
rs

I s
c  

m
ar

ke
rs

L  
sc

  m
ar

ke
rs



Supplementary figure 11

a                                          

Inter-intra 

DEGs 
(848)                                          

b                                          

scVelo likelihood

hTNFtg genes
(248)      

Inter-cluster
Diff. Expressed Genes

n
 =

 2
3
2

2
 g

e
n

e
s



Supplementary figure 12

a

b



M
yo

g
Tc
f2
1

Zf
p
2
3
8

A
sc
l2

A
sc
l1

M
yo

d
1

Tc
fa
p
4

N
h
lh
2

Ta
l1

Ly
l1

N
fi
c

P
gr

N
r3
c1

H
o
xb
1
3

H
o
xd
1
3

H
o
xc
1
3

H
o
xa
1
3

N
fi
b

N
fi
a

H
o
xd
9

G
at
a1

G
at
a2

G
at
a5

G
at
a6

G
at
a3

G
at
a3

So
x1
2

K
lf
5

K
lf
7

R
u
n
x1

R
u
n
x3

R
u
n
x2

N
fa
tc
2

N
fa
t5

N
fa
tc
3

N
fa
tc
4

N
fa
tc
1

Te
ad

4
K
lf
4

K
lf
8

K
lf
6

K
lf
3

K
lf
2

K
lf
1

K
lf
1
2

Es
r1

R
ar
g

A
tf
5

94
30
07
6C

15
R
ik

C
re
b
3
l3

C
re
b
3

A
tf
7

A
tf
2

Sm
ar
cc
1

Fo
s

B
ac
h
1

Fo
sb

B
ac
h
2

Ju
n
d

Ju
n
b

N
fe
2

N
fe
2
l2

B
at
f3

R
el

N
fk
b
1

R
el
a

C
eb

p
d

C
eb

p
b

C
eb

p
g

Cebpd Irf1 Ets1 Nfkb2

Rel

a

Relb Runx1 Dlx3

WT

hTNFg

WT

hTNFg

-0.05   0   0.5     0.15 

Deviation scores

a

b

Supplementary figure 13

-log10(Padj)

0 100



WT hTNFg

Topics Transcription Factors

Topic 5 Bach1, Rel, Runx1, Nfe2l2, Cebpb

Topic 8 Atf3, Bach1,Runx1, Runx2, Klf1

Topic 12 Creb5, Atf7, c-Jun, Sp2, Dlx3

Supplementary figure 14

a b

c

d

e

S2.b

S2.a

S2.c

S2.d

S3
S4.a

S4.b

S1

S5

S2.b

S2.a

S2.c

S2.d

S3

S4.a

S4.b

S1

S5



a

b

d

c

WT hTNFtg
4 weeks

hTNFtg
8 weeks

PAGA

Slingshot

Starting point Ending point

Latent time

Supplementary figure 15

S1 S2.cS2.a S2.d S5S4.aS2.b S3 S4.b

Potential

low high

Root S2.bRoot S5

low high

Latent time 

Signature score

low high

Normalized expression

low high

Response to TNF

Expression of Notch3

WT hTNFtg

hTNFtg S2.b S5

S2.a
S2.d

S4.b

S4.a

S2.cS1

S3



Supplementary figure 16

a                                         

b                                          

Zhang et al., 2019                                         Wei et al., 2020                                         Stephenson et al., 2018                                         hTNFtg(pooled)                                      

4      3      2                                          

SLSFsIntermediate

6      5                                           7      1                                           

LSFs  



Supplementary figure 17

a b

Zhang et al., 
2019                                         

Wei et al., 2020                                         

Stephenson et 
al., 2018                                         

hTNFtg(pooled)                                         

0 2
5

5
0

7
5

1
0
0



Supplementary figure 18 

a

b
Intermediate

Lining

Sublining

THY1+HLA-DR+

THY1+DKK3+

THY1- CD55+

THY1+CD34+

Intermediate Gene score

(Human)

Intermediate Gene score

(Mouse)

Normalized expression

low high


	Manuscript_scRA_Armaka et al_ALONE
	Figures_Armaka et al_ALONE
	Figure1
	Figure2
	Figure3
	Figure4
	Figure5
	Figure6
	Figure7
	Supplementary1
	Supplementary2
	Supplementary3
	Supplementary4
	Supplementary5
	Supplementary6
	Supplementary7
	Supplementary8
	Supplementary9
	Supplementary10
	Supplementary11
	Supplementary12
	Supplementary13
	Supplementary14
	Supplementary15
	Supplementary16
	Supplementary17
	Supplementary18


