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Teaser Sentence: Cell type deconvolution and single cell RNAseq analysis identify 
altered endometrial cellular compositions in women with endometriosis 

 

Abstract 

The uterine lining (endometrium) exhibits a pro-inflammatory phenotype in women with 
endometriosis, resulting in pain, infertility, and poor pregnancy outcomes. The full 
complement of cell types contributing to this phenotype has yet to be identified, as most 
studies have focused on bulk tissue or select cell populations. Herein, through 
integrating whole-tissue deconvolution and single cell RNAseq, we comprehensively 
characterized immune and nonimmune cell types in endometrium of women with or 
without disease and their dynamic changes across the menstrual cycle. We designed 
metrics to evaluate specificity of deconvolution signatures that resulted in single cell 
identification of 13 novel signatures for immune cell subtypes in healthy endometrium. 
Guided by statistical metrics, we identified contributions of endometrial epithelial, 
endothelial, plasmacytoid dendritic cells, classical dendritic cells, monocytes, 
macrophages, and granulocytes to the endometrial pro-inflammatory phenotype, 
underscoring roles for nonimmune as well as immune cells to the dysfunctionality of this 
tissue. (147 words) 

 

Introduction 

Human endometrium is a complex tissue that remodels during the menstrual cycle 
under the regulation of ovarian-derived steroid-hormones. It is characterized by 
phenotypic changes in diverse cell groups and changes in their relative abundance by 
cell proliferation and infiltration (1). Endometriosis is a common, steroid-hormone-
dependent disorder in which endometrial-like tissue invades pelvic organs, eliciting an 
inflammatory response and fibrosis, resulting in chronic pelvic pain and/or infertility. The 
latter is due mainly to abnormal eutopic endometrium (within the uterus) that is 
inhospitable to embryo implantation (2).  
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Previous bulk RNAseq and microarray analyses revealed altered transcriptomic profiles 
in eutopic endometrium of women with versus without endometriosis (3–5). With 
disease, eutopic endometrium displays a pro-inflammatory transcriptomic feature and 
fails to elicit normal steroid hormone responses that are essential for endometrial 
transformation (4, 6, 7). This pro-inflammatory feature was also observed in microarray 
and RNAseq profiles of isolated endometrial stromal fibroblasts (eSF), mesenchymal 
stem cells (eMSC), and macrophages (8, 9). However, the full complement and 
abundance of cell types contributing to the pro-inflammatory feature have yet to be 
identified and are addressed herein. 

While single cell (sc)RNAseq characterization can provide insights into phenotypes of 
endometrial cell populations, current costs of this technology are prohibitive for profiling 
samples at large scale in the context of endometrial disorders, which require sufficient 
sampling in both disease and controls across the diverse hormonal milieu of the 
menstrual cycle. Deconvoluting whole tissue level data into cell types provides a 
promising alternative (10–19) where insights such as abundance variation can be 
derived with high statistical power. Cell type deconvolution relies on using appropriate 
cell type signatures for the tissue of interest. While one strategy is to apply tissue-
specific signatures derived from sorted cells or scRNAseq (20–24), it is limited by cell 
types known to the tissue, availability of signatures, batch effects from different 
technologies used to derive the signatures (14), and often does not allow for discovery 
of new cell types.  

To leverage the advantages and overcome the limitations of these approaches, in the 
current study, we used both whole tissue deconvolution analysis (25) and scRNAseq 
analyses to characterize human endometrium from women with or without 
endometriosis. A signature compendium of 64 classical human cell types derived from 
diverse organs in 6 human tissue consortia were used, and a gene set enrichment-
based deconvolution method was adapted (25). Applicability of each signature to 
human endometrium was evaluated by building statistical metrices using scRNAseq 
endometrial data obtained from women without endometriosis (26). In addition, to 
guiding data interpretation, signature evaluation prompted in-depth single cell level 
identification and annotation of 13 immune cell type/subtypes in healthy endometrium, 
including those whose identities and functions have been less well characterized and 
explored in endometrial biology. Herein, we present a comprehensive characterization 
of cellular composition of human endometrium across the menstrual cycle in women 
with and without endometriosis and identification of cell types with altered abundance in 
one or multiple menstrual cycle phases of women with disease. 

 

Results 

Traditional Differential Expression Analysis Identifies Immune Pathways 
Associated with Endometriosis Across the Menstrual Cycle 

Microarray data were obtained from a public dataset (GSE51981), which was first 
processed and batch-corrected, followed by differential expression and pathway 
enrichment analyses to ensure agreement of data processing with previous literature 
(Fig. 1). Table 1 describes the study population consisting of 105 samples across 
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various disease stages (34 control, 24 stage I-II, 47 stage III-IV) and cycle phases (47 
proliferative endometrium (PE), 24 early secretory endometrium (ESE), 34 mid-
secretory endometrium (MSE)). 

Batch correction successfully mitigated laboratory-associated variations (Fig. S1). 
Based on PCA dimensionality reduction plots, samples tended to cluster by 
disease/stage (case) versus control and by phase (Fig. 1B). Heatmap clustering, 
focusing on genes highlighted as differentially expressed (FDR < 0.05, and log2 fold 
change >1) in any sample stratification, revealed strong clustering based on case 
versus control status (Fig. S2A). Phase-stratified analysis revealed overall concordance 
in the results (Fig. S2B-D). Several differentially expressed genes were identified 
across multiple phases, but also some phase-specific associations with endometriosis 
(Fig. S2B, C). Among significantly up-regulated genes, 79 were common to all 
menstrual phases such as FOSB, FOS, JUNB, and EGR1, and 182 were shared across 
at least two phases. In addition, there were 27 genes specific to ESE, 106 to MSE, and 
428 to PE. Among the significantly down-regulated genes, 246 genes were common 
across all menstrual phases, including CTSZ, SNTN, AGR3, and OLFM4, and 693 
genes were shared across at least two phases. In addition, there were 64 genes 
specific to ESE, 201 specific to MSE, and 962 specific to PE. Such discordance across 
phases is consistent with previous reports (7, 27); however, it is important to note that 
arbitrary differentially expressed genes (DEG) cutoffs may have amplified some of these 
differences as fold-fold plots revealed a high degree of correlation between phase-
stratified disease versus control DEG results (Fig. S2D). Similarly, concordant DEG 
signatures were also observed when data were stratified by disease stage (Fig. S3).  

Pathway analysis, conducted with GSEA targeting MSigDB’s Hallmark Pathways, 
confirmed the general concordance noted with disease versus control DEG fold-
changes across stratifications and also recapitulated known biology in that many 
immune pathways were among those associated with disease. Interferon alpha and 
gamma responses, TGF-beta, and IL-2 STAT5 signaling, and complement pathways 
were up-regulated in endometriosis consistently across most menstrual phase and 
disease stage stratifications (Fig. S4; FDR < 0.05). TNF alpha signaling and allograft 
rejection, on the contrary, were significantly down-regulated in disease across all cycle 
phases (FDR < 0.05). 

Evaluation of applicability 64 cell type deconvolution signatures to endometrial 
tissue 

Cell type deconvolution provides a powerful opportunity to computationally disentangle 
bulk transcriptomic data into individual cell types. After confirming agreement between 
our data processing with previous literature, we turned toward applying this technique 
by adapting a gene set enrichment-based deconvolution method (25) for use in human 
endometrium (Fig.1). The original method provided a comprehensive signature 
compendium for 64 classical human cell types derived from multiple organ types based 
on 6 human tissue consortia. To allow for discovery of new cell types and relationships 
between cell types, rather than using prior knowledge to select a subset of the 
signatures for analysis, we opted to utilize all signatures and rely on statistical metrices 
to infer likelihood that a cell type, of the 64, may be present in endometrium.  
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Evaluation of statistical significance of xCell output using permutation analysis 

xCell produces non-zero abundance scores for all cell type signatures assessed, 
regardless of whether those cell types truly exist in the tissue. To overcome this, we 
estimated the statistical significance of enrichment scores using a permutation test (Fig. 
1A, right). Specifically, we permuted the gene labels of the bulk data of our tissue of 
interest and recalculated xCell enrichment scores 1000 times to generate a dataset-
specific null distribution of enrichment scores for each xCell signature. Statistical 
significance of scores from un-permuted data was then calculated relative to the null 
distribution to determine signatures for which enrichment scores were statistically 
significant, i.e., putatively above background. The analysis was performed separately 
for disease and control samples and for each cycle-phase, to ensure retention of cell 
types which might be abundantly present only in one condition or during a specific cycle 
phase (Figs. S5 and S6). xCell signatures passing the permutation test (ecdfnull(median 
xCell score) > 90%) in at least one phase of one tissue condition were retained for 
further analysis and interpretation. Specifically, 50 of 64 xCell signatures passed and 
were deemed statistically significantly above background (Fig. 2A). More signatures 
were deemed significant in secretory phases and in the disease condition (Fig. 2A, Fig. 
S5, S6). In total, 22 signatures were deemed statistically significant only in disease, and 
only platelets were deemed above background solely in control samples. Such a finding 
is in line with the presumed endometrial infiltration of additional immune cell types 
among women with endometriosis (28) and during secretory phases.  

Evaluation of the specificity of cell type deconvolution signatures to human endometrial 
cells using single-cell RNAseq data  

Even when the output of an xCell signature passes the permutation test, the associated 
abundance score does not necessarily reflect the behavior of its nominal target in the 
tissue of interest. Potential for inter-tissue transcriptomic difference of a cell type or 
ambiguity in naming a cell type can lead to low specificity of a signature to its nominal 
target. To overcome this challenge, we built two scores to evaluate xCell signatures’ 
specificity to (ratioNext) and relationship with (onTarget) known endometrial cell types 
(Fig. 2B, see Methods), using a published scRNAseq dataset of human endometrium 
from women without endometriosis (26). We plotted these two scores alongside all of 
our xCell outputs to help interpret the results in the context of endometrial cell types.  

For xCell signatures whose direct nominal target cell type(s) were identified in the single 
cell dataset (Fig. 2B, black boxes), we observed high-to-moderate specificity scores 
with “On target” classification for all except those targeting the cell type enriched with 
endometrial mesenchymal stem cells (low ratioNext, “Off target”) (29), which we refer to, 
herein, as eMSCs. Specifically, we found that all candidate eMSC-targeting signatures 
(MSC, pericytes, and smooth muscle cells) were more differentially up-regulated in eSF 
than in eMSC. Results above were also validated by artificial mixtures constructed with 
purified endometrial cells of varying abundances, described below (Fig. 2C, D). 

For xCell signatures without a direct nominal target cell type in endometrial tissue 
(onTarget=No Ref), we observed high-to-moderate specificity scores for keratinocytes, 
sebocytes, skeletal muscle, and hematopoietic stem cell (HSC) signatures. Given the 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.27.457966doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.27.457966


specialized biological function of keratinocytes, sebocytes, and skeletal muscle, it is 
unlikely that these cell types are present in endometrial tissue. Their high ratioNext 
scores likely reflect the transcriptomic similarity between these cell types and 
endometrial cell types where they show highest specificity (e.g., endometrial epithelial 
cells for sebocytes and keratinocytes). On the other hand, transcriptomic similarity 
between HSC and endometrial endothelial cells may suggest relationship in 
developmental lineage.  

Importantly, for many xCell signatures that do not have a direct nominal target cell type 
but can potentially target a subtype or a related cell type of an identified cell type (Fig. 
2B gray boxes in the heatmap) we observed high-to-moderate specificity score and 
“On target” classification. Signatures that fall into this category consisted primarily of 
immune signatures, as well as signatures for microvascular (mv) and lymphatic (ly) 
endothelial cells. We reasoned that a high specificity score and a “Passed” permutation 
test suggest that the associated cell type/subtype likely exists in the single cell dataset 
but may have been concealed by more pronounced differences of major cell lineages 
when all cell types were included in the scRNAseq analyses. We therefore performed 
heterogeneity analysis on only immune cells in the endometrial dataset to explore 
endometrial immune cell heterogeneity and to aid further evaluation of xCell immune 
signatures. 

Annotation of endometrial immune cell types at single-cell level using xCell signatures 

Immune-only heterogeneity analysis revealed 13 cell type/subtypes (Fig.3A): 5 were 
from the original “Macrophage” cluster and 8 were from the original “Lymphocyte” 
cluster (26). Classical immune cell type markers allow broad annotation of these cell 
type/subtypes (Fig.3B). They alone however are not sufficient for confident cell type 
annotation or for measuring similarity between identified cell type/subtypes and 
classically defined immune cell types for scenarios described below. We therefore 
iterated between a signature-based scoring method (30) using xCell’s signatures and 
classical marker expression to annotate the 13 identified cell type/subtypes. Most 
intriguingly, we identified one cell type that stemmed from the “Macrophage” cluster but 
expressed classical B cell receptor component genes (e.g., JCHAIN, IGKC) at high level 
(Fig.3B). Our signature-based method revealed a distinct enrichment of plasmacytoid 
dendritic cell (pDC) (Fig.3C) and plasma cell signatures in the same cell type (Fig. S7C). 
The pDC identity of this cell type was affirmed by the expression of genes uniquely 
identified in pDC (31) such as CLIC3 and SCT (Fig.3B) and lack of expression of 
classical plasma cell markers such as CD38 and SDC1 (CD138) (Fig. S8A). Similarly, 
we were able to discern among monocyte, macrophage, and classical dendritic cell 
(cDC) types, identify four NK cell subtypes (NCAM1+, CD160+, CD3+, FCGR3A+), one 
B cell type, and Tregs, whose annotation would not have been possible using classical 
markers alone due to marker co-expression in closely related cell groups. On the other 
hand, we identified one T cell subtype with high percentage of CD8 expression (T 
(CD8+)) (Figs. 3B & S8B) and another T cell subtype with sparse yet unique CD4 
expression (T (CD4*)) (Fig. S8B). xCell’s signatures for CD4+ (Fig. S7B) and CD8+ T 
(Fig. S7E) cells, however, were not uniquely enriched in either of these T cell subtypes. 
Lastly, one lymphocyte cell type distinctly segregated from the rest of lymphocytes (Fig. 
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3A) and uniquely expressed KIT and IL23R (Fig. 3B). We however were not able to 
confidently annotate it using either the signature-based method or classical markers. 

In summary, the aforementioned xCell signatures allowed confident annotation of 
immune cells in healthy endometrium. The unique up-regulation of their scoring in 
endometrial immune cell type/subtypes further confirmed their applicability in 
deconvoluting the tissue. Moreover, xCell’s more than 40 immune cell signatures 
contain not only aforementioned lineage-specifying signatures but also others that are 
either lineage- or function-specifying. We therefore scored all immune signatures in 
each of the 13 immune cell type/subtypes and plotted the result alongside 
deconvolution outcomes of each signature to guide interpretation (see below and Figs. 
5, S7, and S9).  

Validation of the xCell approach using artificial mixtures from sorted cells 

Finally, we validated that xCell enrichment analysis could be applied to microarray-
based profiles of endometrial transcriptomes by applying the approach to artificial 
mixtures of microarray profiles of sorted cells. Microarray expression data from four 
FACS-purified endometrial cell types, endothelial cells (n=11 samples), epithelial cells 
(n=7), mesenchymal stem cells (n=28), and eSF (n=31) (8, 32–34) were median 
summarized per gene, combined together into 20 different artificial mixtures, then 
analyzed with xCell (Fig. 2C, D).  The original method has a built-in compensation step 
to reduce spill-over between closely related cell types. However, we observed 1) 
notable variations in deconvolution output in relation to which of the 64 signatures we 
selected as input, likely due to the use of a compensation matrix derived from in silico 
mixtures, and 2) signatures that appeared off-target in endometrial cells compared to 
their nominal cell type. We therefore disabled this step to ensure independence of 
outputs of 64 signatures. Confirming xCell’s utility, yet also the necessity of these 
signature assessment metrics, resulted in an overall positive correlation between input 
ratio and output enrichment scores (Fig. 2C). Yet, it also revealed an interdependence 
of MSC and fibroblast signatures in that enrichment scores for these signatures 
appeared reliant on combined input amounts of both cell types, especially with low input 
abundance of eMSC and eSF (Fig. 2D). We also confirm that removing the 
compensation step does not affect the overall trend in deconvolution output for these 
signatures (Fig. 2C). 

Menstrual cycle phase and endometriosis-associated changes in cellular 
composition of human endometrium  

With metrics built for evaluating the applicability of xCell’s 64 signatures to human 
endometrium, we deconvoluted 105 human endometrium bulk transcriptomic profiles 
into the 64 cell types using the adapted xCell approach (Fig. 1A). Signatures that 
passed the permutation test were retained for downstream analysis. The data were 
obtained in proliferative, early secretory, and mid-secretory phases of the menstrual 
cycle from women with stage I-II or more severe (stage III-IV) endometriosis, as well as 
those without disease (control) (Table 1). The overall clustering of deconvoluted dataset 
was largely explained by disease versus control, followed by menstrual cycle phase 
(Fig. 1B, right). Cellular compositions that contributed to the changes in phase and 
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disease were then assessed via stratified differential enrichment analysis (FDR < 0.05, 
no FC cutoff, Fig. 4) and interpreted alongside signature specificity metrices. 

Deconvolution results for non-immune xCell signatures with confirmed specificity to cell 
types in human endometrium 

Epithelial cells, eSF, and endothelial cells are the major non-immune cell types in 
human endometrium. The specificity of their associated xCell signatures to human 
endometrium was confirmed by our signature analysis (Fig. 2B), with the exception for 
eSF whose signature failed the permutation test. For epithelial and endothelial cells, 
deconvolution analysis revealed both phase and endometriosis-associated changes. 
Epithelial cell enrichment scores in disease were notably elevated compared to control 
and also varied significantly across the menstrual cycle (Fig. 4B, 5A). Endothelial cells 
were enriched in disease in comparison to control (Fig. 4B), with slight increase in MSE 
versus ESE in control (Fig. 5A). For both cell types, among all phases, a more 
significant rise in PE, compared to other phases, was observed in disease versus 
control (Fig. 4B, 5A). Disease-associated changes were also prominent in mv 
endothelial and ly endothelial signatures (Fig. 5A, Fig. 4B), both of which demonstrated 
high specificity to endometrial endothelial cells in our signature analysis (Fig. 2B). While 
ly endothelial signature had elevated PE scores compared to other phases in both 
disease and control, the PE-associated rise in mv endothelial signature was higher in 
disease versus control (Fig. 4C, 5A). 
 
Deconvolution results for immune xCell signatures with confirmed specificity to cell 
types in human endometrium 

pDC, monocytes, macrophages, and NK cells were identified in our heterogeneity 
analysis of single cell data from healthy endometrium (Fig. 3), with confirmed specificity 
of their associated xCell signatures (Fig. 3C) for deconvolution analysis. pDC 
enrichment scores were higher in disease over control across all cycle phases, reaching 
the highest enrichment score and statistically significant difference versus control in 
MSE (Fig. 5B, Fig. 4B, C). Similar patterns were observed for macrophage and 
monocyte scores, both signatures being enriched in disease across the cycle (Fig. 5B, 
Fig. 4B, C). In control, monocyte and macrophage enrichment scores were elevated in 
MSE (Fig. 4B, C), whereas a more statistically significant rise in MSE was observed in 
disease for both (Fig. 5B, Fig. 4B, C). In both control and disease, NK cell enrichment 
scores increased notably in MSE compared to preceding phases (Figs. 5B & 4C). NK 
scores showed slight yet statistically significant increase in stage III-IV endometriosis 
compared to control (Figs. 4C & 5B).  

Deconvolution results for immune xCell signatures with functional applicability to cell 
types in human endometrium 

As mentioned earlier, xCell’s comprehensive immune signatures include those that are 
function-specifying. Our signature-based annotation of the single cell dataset revealed 
that some of these signatures were uniquely enriched in cell type/subtypes that we 
annotated by lineage and classical markers in healthy endometrium. For example, both 
macrophage M1 and M2 signatures are uniquely enriched in monocytes and 
macrophages in healthy endometrium (Fig. 5C). Deconvolution results revealed an 
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across-cycle increase in disease versus control for both signatures (Fig. 4B), with an 
elevation in MSE compared to ESE in both disease and control (Fig. 4B) with higher 
statistical significance in disease (Fig. 5C). Both xCell’s DC and activated DC (aDC) 
signatures were enriched in monocytes, macrophages, and cDC cells at single cell level, 
whereas immature DC (iDC) signature was elevated additionally in pDC and B cells (Fig. 
S7A). Deconvolution results revealed overall increases in DC and aDC in disease 
versus control, with a dip in score dynamics (significantly lower DC score in ESE vs. PE;  
lower aDC score in ESE vs. MSE although not statistically significant) observed in 
disease (Figs. 4B & S7A). Enrichment scores for iDC were elevated in PE compared to 
ESE and MSE in both disease and control (Fig. S7A). 

For some signatures, lineage identity of cell type/subtypes where the signatures were 
uniquely enriched, differed from the lineage identity of the signature. For example, Th1 
signature was uniquely enriched in NCAM1+ and FCGR3A+ NK cells in healthy 
endometrium, Tdg signature was elevated in all NK cell types, and CD8+ Tem signature 
was elevated in all NK cell types and CD8+ T cells (Fig. 5C). Deconvolution results 
showed across-phase decreases in both Th1 and Tdg signatures in control but 
deviating behaviors in disease (Fig. 5C). CD8+ Tem signature had higher scores across 
all phases in disease compared to control and increased in MSE compared to the 
preceding phases in both disease and control (Figs. 5C & 4B, C).  

Deconvolution results for immune xCell signatures with low specificity to cell types in the 
healthy human endometrium dataset 

Based on classical marker expression, we identified CD4 expressing T cell, CD8+ T cell, 
Treg, and B cell in the healthy endometrial single cell dataset. xCell’s CD4+ or CD8+ 
cell type signatures that passed the permutation test did not show unique enrichment in 
the respective cell subtypes (Fig. S7B). Most of xCell’s CD4+ T cell signatures had 
overall elevation in lymphocytes, which explained the moderate ratioNext scores 
received in our signature analysis and suggests their deconvolution outcome likely 
reflects the collective abundance of lymphocytes.  

Although xCell’s Treg and cDC signatures show moderate enrichment in Treg and cDC 
identified in the single cell dataset, deconvolution results of these signatures did not 
pass our permutation test (Figs. 2B, S5, S6, S7A, B). 

Intriguingly, xCell signatures for B cell types generally scored higher in “Macrophage” 
cell type/subtypes than in “Lymphocyte” cell type/subtypes (Fig. S7C). This may be due 
to lower numbers of B cells as well as the shared antigen presenting functions between 
B cells and macrophages leading to joint clustering of these cell types. However, only 
naïve B cell signatures showed moderate elevation specific to B cells identified in the 
single cell dataset, yet this signature did not pass the permutation test. Enrichment 
scores for all B cell types were low and relatively constant in control, except for class-
switched B cells, which displayed a slight increase across cycle, and for pro B-cell 
scores, which were elevated in PE and ESE. In disease, all B cell scores were elevated 
in all phases compared to control, although with a higher extent in PE compared to 
other phases (Figs. 4B, C & S7C).  

Deconvolution results for xCell signatures lacking representation in the healthy human 
endometrium dataset (enriched in disease) 
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For several xCell signatures that passed the permutation test there were no associated 
cell types in the healthy single cell dataset. Thus, we have less certainty about how 
applicable these signatures are for potential endometrial versions of their cognate cell 
types. These signatures include NKT cells, neutrophils, eosinophils, basophils (Fig. 5D), 
common myeloid progenitors (CMP), and multipotent progenitors (MPP) (Fig. S7D), 
which all have relatively low enrichment scores in control (Figs. S5 & S6) and 
consistently higher enrichment scores, across the cycle, in disease. The increase is at 
least two fold higher in PE for all of these cell types (Figs. 4B, 5D & S7D). For NKT, 
eosinophils, basophils, and MPPs, a statistically significant increase was also observed 
in control MSE compared to a proceeding phase, although xCell’s basophil signature 
was enriched in two NK subtypes (Fig. 5D). 

As with our specificity analysis, keratinocyte and sebocyte enrichment scores correlated 
closely with epithelial cell scores (Figs. 4A & S9). HSC and endothelial signatures also 
correlated in the single cell dataset (Fig. 2B), although their enrichment score results 
deviated slightly in ESE (Figs. 4A, 5A & S9).  

In both disease and control, we report a steady across-cycle decrease in erythrocyte, 
neuron (Fig. S9), and megakaryocyte-erythroid progenitor (MEP) signature enrichment 
scores and an overall elevation in disease (Fig. S7D). Increased enrichment scores 
were also observed for the common lymphoid progenitor (CLP) (Fig. S7D) signature in 
control and mesangial cell signature in disease (Fig. S9). 

 

Discussion 

In this work, we comprehensively examined the cellular composition of human 
endometrium across the menstrual cycle in women with and without endometriosis, via 
integrated bulk tissue deconvolution and scRNAseq analysis. Our approach was 
uniquely designed such that we leveraged a large sample size of bulk data, a 
comprehensive signature compendium for 64 classical human cell types based on 6 
human tissue consortia, a GSEA-based deconvolution method, and a high resolution of 
single cell RNAseq data - mitigating limitations inherent in each factor. Importantly, 
while benefitting from the comprehensiveness of the 64 signatures, we designed 
statistical metrics to evaluate the applicability of each to human endometrium to ensure 
statistical significance and guide interpretation. With this approach, we identified cell 
types with altered enrichment in one or multiple menstrual cycle phases of women with 
endometriosis versus controls without disease. Also, novel transcriptomic-level 
signatures for 13 immune cell type/subtypes in healthy endometrium, not heretofore 
reported in endometriosis, including pDC and monocytes, were identified. The positive 
enrichment of these transcriptomic signatures might indicate presence in endometrium 
of previously unidentified cell types, or even phenotypes among known cell types, that 
had not been previously investigated (see discussion below for NK, and T cell subtypes).  

Contributions of Non-immune cells to Endometriosis 

Our signature evaluation confirmed the specificity of xCell’s signatures to most major 
non-immune endometrial cell types, including epithelial cells, and endothelial cells, but 
not fibroblasts. We observed increased enrichment scores in PE with endometriosis for 
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epithelial cells and endothelial cells. This is consistent with observations of increased 
endothelial proliferation in women with endometriosis and menorrhagia versus controls 
(35–37) has been observed.  

eMSC is an endometrial cell type that exhibits mesenchymal stem cell characteristics in 
vivo (38) and in vitro (8, 29). Based on different characterization metrices, this cell type 
has been referred to as mesenchymal stem cells (8, 29, 39), pericytes (34), perivascular 
cells (40), or smooth muscle cells (26), each of which is represented by a different xCell 
signature. Our evaluation using both single cell data and artificial mixtures discovered 
the lack of specificity of xCell’s signatures (MSC, pericyte, and smooth muscle cell) to 
eMSC, especially with low eMSC abundance (Fig. 2C), due to concurrent expression of 
these signatures in eSF. This observation confirms the close relationship between these 
two endometrial cell types and their common association with progenitor MSC and 
pericytes. eMSCs are implicated in endometriosis (8, 29) and future studies should use 
unique markers identified for this cell type, such as RGS5, GUCY1A2, and NOTCH3 (8, 
26, 34).  

xCell’s fibroblast signature did not pass the permutation test despite receiving moderate 
ratioNext score and “onTarget” classification (Fig. 2B). This discrepancy may be due to 
many factors.  Firstly, expression levels of fibroblast signature genes that passed the 
thresholds for ratioNext calculations (i.e. adjusted p-value and log2(fold change), 
Method) often showed only the borderline fold changes, and as Subramanian et al. 
explain, signatures of this nature can be expected to score poorly in a gene set 
enrichment based method (41). Furthermore, seemingly unrelated signatures such as 
chondrocytes, astrocytes, smooth muscle, and MSC showed highest enrichment for the 
eSF cluster of the single-cell data (Fig. 2B) and artificial mixture analysis confirmed that 
one of these cognate cell types, eMSC, could contribute to Fibroblasts-signature 
enrichment scores (Fig. 2C,D). Our signature evaluation method (Fig. 1A) thus 
considered output of this signature with low confidence. It’s known that eSF have their 
own unique phenotype that is distinct from other fibroblasts of the body in many ways, 
and that expression profile as well with hormonal changes in the endometrium (8, 26, 
34). Future studies should use published dataset (8, 26, 34) to identify signatures that 
are specific to human eSF.  

Contributions of Immune Cells to Endometriosis  

Our scRNAseq analysis identified 13 transcriptomically distinct immune type/subtypes in 
healthy endometrium, which were previously broadly categorized into lymphocytes and 
macrophages (26). The use of a signature-based method (30) and classical cell type 
markers allowed us to confidently annotate pDC and monocytes, which have not been 
confidently identified at single cell resolution or functionally examined in endometrium. 
With confirmed applicability of xCell’s signature for both cell types in endometrium, our 
deconvolution results revealed relative increases in pDC and monocytes during MSE in 
women with endometriosis (Figs. 4 & 5), suggesting likely involvement in inflammation. 
pDC have known involvement in the inflammatory response normally and in pathologic 
settings, through interaction with vasculature and T cells (42). Increased monocytes are 
congruent with increased expression of monocyte chemoattractant protein-1 (MCP-1) in 
endometrium of women with endometriosis (43, 44). Moreover, we observed a greater 
increase in monocytes in women with stage III-IV endometriosis, which may contribute 
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to lower implantation rate and live birth rates compared to women with stage I-II disease 
(45). 

We have previously shown that endometrial macrophages (M1 and M2) in 
endometriosis are predominantly pro-inflammatory (9). Phase- or disease- stratified 
abundance quantification of endometrial myeloid cell types, including macrophages, 
monocytes, and dendritic cells, however, are limited. Here we report the unique markers 
that discriminate diverse endometrial myeloid cell type/subtypes for future studies. 

Our scRNAseq analysis of immune cells in healthy endometrium has identified immune 
cell type/subtypes that are beyond definition of xCell’s 64 signatures, such as four NK 
cell subtypes, one CD8+ T cell subtype, one CD4 expressing T cell subtype, and a KIT+ 
lymphocyte cell type. Intriguingly, xCell’s Th1, Th2, Tgd, and CD8+ Tem signatures, 
were more enriched in NK cell subtypes rather than the T cell subtypes in the single cell 
dataset (Figs. 5 & S7). Therefore, xCell outputs of these signatures across the cycle 
and in endometriosis likely reflect changes of endometrial NK cell abundance or 
phenotypes more than changes in the nominal cell types. However, these results do not 
conclusively suggest that these cell types are not present in endometrium with or 
without disease, especially considering Th1 involvement in cytokine secretion and Tgd 
intraepithelial presence. Rather they are likely low in abundance, and their 
transcriptomic signals may be interfered by those of the more abundant NK cells. Lastly, 
although Tregs and cDC were identified in the scRNAseq dataset of healthy 
endometrium and demonstrated moderate enrichment of associated xCell signatures 
(Fig. 3, S7A, B), their xCell signatures did not pass our permutation test. Enriching for 
aforementioned cell types/subtypes with classical markers and single cell level 
identification is warranted in future studies.  

Notable for some xCell signatures that passed our permutation analysis are the 
elevated abundance scores of eosinophils, neutrophils, basophils, NKT, and immune 
progenitors in endometrium of women with endometriosis and their absence in women 
without disease and in the annotations of scRNAseq dataset of healthy endometrium. 
Eosinophils, initiators of inflammatory responses, were enriched in all phases of the 
cycle, compared to control endometrium wherein they appear mainly during menses, 
confirmed herein and by others (46). Thus, eosinophils likely contribute to the pro-
inflammatory phenotype observed in bulk-tissue analysis of endometrium from women 
with endometriosis. Our finding of neutrophils, key participants in the innate immune 
response to foreign pathogens and enriched in endometrium of women with 
endometriosis and independent of cycle phase, compared to controls, is consistent with 
other reports, although others found cycle-dependence of this cell population in women 
with versus without disease (47, 48). Basophils also initiate inflammatory responses and 
were found herein to be enriched in endometrium of women with disease in PE and 
were significantly increased throughout the cycle. We are unaware of other reports on 
this cell type in endometrium of women with endometriosis, and this finding warrants 
further study.  

Comparison to Prior Work 

Our results generally agree with a prior deconvolution study on endometrium from 
women with and without endometriosis (49), although, fewer xCell signatures with 
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disease-associated changes (9 in total) were identified compared to our study. 
Differences may be due to our adapted usage of the deconvolution method. Additionally, 
this study (49) did not design or apply metrics for statistical significance evaluation and 
result interpretation or develop de novo identification of normal endometrial immune cell 
signatures to enrich the xCell data interpretation in the endometrial context. 

Strengths and Limitations of this Study 

There are several limitations in this study. One is the limited sample size, especially in 
the ESE phase. Another limitation of our current approach is its limited capacity in 
inferring cell type-specific phenotypic state. Although such insights can still be inferred 
for phenotype-specifying signatures, such as several immune cell subtypes mentioned 
above, for signatures without tissue-matching phenotype specifications, such as 
fibroblasts, such insights cannot be obtained directly from the deconvolution results. 
This is remarkable as the eSF changes transcriptomically across the cycle and displays 
marked abnormalities in endometriosis (8, 50) and is a key regulator of successful 
embryo implantation. Other cell type deconvolution tools such as Cibersortx (14) 
provide the possibility to infer cell type-specific gene expression profiles through 
additive combinations of input cell type signatures. Successful application of this 
approach requires that highly specific cell type signatures be used and that all potential 
cell type signatures be included (51).  

Further studies leveraging single cell technologies as well as integrating different types 
of omics measurements including proteomics, epigenetics and others will enable further 
corroboration of our findings and linking transcriptional phenotypes with endometriosis-
associated cell types. Functional studies will help elucidate the roles these cell types 
play in disease. 

Through integrated whole-tissue deconvolution and single cell analysis, we identified 
endometrial cellular compositions that are dynamic across menstrual cycle phases and 
altered in women with endometriosis. Guided by our signature evaluation metrics, we 
report cell type candidates - immune cell type/subtypes of myeloid lineage, as well as 
non-immune cells, including epithelial and endothelial cell types - that most likely 
contribute to the pro-inflammatory endometrial phenotype previously observed in 
women with endometriosis (4, 7). Our results can help guide the selection of cell types 
for functional evaluation of cellular mechanisms that contribute to or result from 
endometriosis. Moreover, our analytical framework can be used in studies of other 
tissue types. 

 

Methods  
An overview of all methods is shown in Fig. 1.  

Experimental Data 

Whole Tissue Microarray: 

Microarray data for this study were obtained from GSE51981 (4), and all analysis was 
carried out in R. Sample metadata for disease severity was used to classify all samples 
into groups of stages I-II and stages III-IV, with ambiguously mapping samples (n=1) 
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being subsequently removed in further analyses. Sample metadata for pathology was 
used to classify samples as endometriosis, no pathology (which included labels NUP 
(no uterine pathology) and NUPP (no uterine or pelvic pathology)), or “other”, with all 
“other” samples being left out, as such samples represent imperfect controls, for 
subsequent analyses. Additional samples were removed which had ambiguous lab 
source annotation (n=1) or cycle-phase annotation outside of proliferative endometrium 
(PE), early secretory endometrium (ESE), or mid-secretory endometrium (MSE) (n=1). 
In the end, this led to 105 samples total, 71 from women with endometriosis and 34 
from women with no uterine or pelvic pathology (controls) (Table 1). 

Sorted Cell Microarray: 

Microarray data from purified human endometrial cell populations (stromal fibroblasts, 
endothelial, epithelial, and mesenchymal stem cells) isolated by fluorescence-activated 
cell sorting (FACS) were from previous studies: GSE73622, GSE31152, GSE48301, 
GSE97163 (8, 32–34). These were used in artificial mixes of pure cell types in 
determining signature specificity of the xCell signatures (see below). 

Single Cell Transcriptomics: 

Endometrial single-cell RNAseq data used to evaluate xCell signatures were collected 
as endometrial biopsies from women without endometriosis or uterine or pelvic 
pathology, as previously described (26) (GSE111976 and SRP135922). For this study, 
10x data published in (26) were used. Definition of endometrial cell types and subtypes 
is described in Extended Data Figure S1 in (26). Annotations of each cell with regard to 
participant, cycle phase, and cell type or subtype are available in a supplementary file 
“GSE111976_summary_10x_day_donor_ctype.csv.gz”  under  GSE111976.  

Microarray Normalization and Batch Correction 

Background correction and quantile normalization were performed with the justRMA 
function of the affy package (52). Then batch correction was performed with ComBat (53) 
to reduce signals coming from the lab of origin, while protecting signals associated with 
disease stage and cycle phase. Direct principal components analysis (PCA) and the 
pvca package (54), which combines PCA with variance components analysis to estimate 
the proportion of variation in data that are associated with a set of potential sources, 
were used to assess the success of batch correction (Fig. S1). 

Differential Expression 

Differential expression (DE) analysis was carried out via linear modeling using the 
Limma package (55) and the log-transformed and batch corrected expression matrix as 
input. Simple, ~ single variable, formulas were used for linear model designs. When 
cutoffs for significant differential expression were used, they were FDR < 0.05, and abs 
log2 fold change > 1. Such analysis was run on various stratification of the data (Figs. 1, 
S2 & S3). For unstratified (all samples) analysis, DE was run 1) between disease 
versus control, 2) between stages I-II or stages III-IV versus control, and 3,4,5) between 
all combinations of pairwise cycle phase comparisons (PE vs ESE, PE vs MSE, ESE vs 
MSE). DE was also run between stages I-II versus stages III-IV, but zero genes met DE 
cutoffs. For stage-stratified analysis, DE was run separately on control samples only, 
stages I-II samples only, and stages III-IV samples only between all combinations of 
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pairwise cycle phase comparisons. Lastly, for phase-stratified analysis, DE was run 
separately for PE samples only, ESE samples only, or MSE samples only, 1) between 
disease versus control, and 2) between stages I-II or stages III-IV versus control. 

Gene Pathway Enrichment Analysis 

Pathway enrichment analysis was performed on the Broad’s hallmark gene sets 
(obtained via https://www.gsea-msigdb.org/gsea/msigdb/collections.jsp#H) by gene set 
enrichment analysis. This was carried out with the fgsea function of the fgsea package 
(56) on log2 fold changes of all genes (both significant and non-significant), for all 
stratifications and differential expression comparisons, with additional parameters: 
minSize = 15, eps = 0, and maxSize = 1500. Pathways with FDR corrected p-values 
below 0.05 were considered differentially enriched (Fig. S4). 

Cell Type Enrichment 

Of the numerous deconvolution and enrichment methods, those that attempt to 
deconvolve a sample into additive mixtures of reference cell type signatures have a 
strong reliance on both concordance between reference signatures and cell type 
profiles of the target tissue, as well as on the presence of reference signatures for all 
cell types which might exist in the target sample. Given that we could not be certain that 
we would include signatures for all cell types which might exist in the endometrium, and 
that many immune cells profiled from the endometrium have shown non-canonical 
transcriptional profiles, we chose to use xCell’s enrichment-based approach which is 
more robust to signature absence and inconsistencies, and includes signatures for 64 
human immune and stromal cell types (including adaptive and innate immune cells, 
hematopoietic progenitors, epithelial cells, and extracellular matrix cells derived from 
thousands of expression profiles) (25). xCell was run on the log-transformed and batch-
corrected expression data of human endometrial tissue described above. Due to 
uncertainty in the applicability of xCell signatures to endometrial tissue, only the 
rawEnrichmentAnalysis and transformScores steps were utilized for calculation of 
enrichment scores. The spillOver adjustment step was not utilized due to notable 
deviations between xCell signatures versus nominal endometrial cell profiles which 
would have been carried over into the compensation matrix derived from in silico 
mixtures of reference cells. 

Filtration of cell type signatures based on permutation analysis 

As discussed by its authors, xCell often produces non-zero scores, which may result in 
false-positive interpretation for non-existent cell types or unsuitable signatures. xCell 
signatures that might not apply well to endometrial samples were first identified based 
on comparison to a permuted background distribution (Figs. S5 & S6). A background 
distribution of enrichment scores was generated for every cell type signature, and for 
each cycle phase, by running xCell with 1000 permutations of our expression matrix 
where rownames (gene symbols) were shuffled. Significance testing was then 
performed for each cycle phase among control or disease samples individually. Median 
enrichment scores of all iterations, among the current stratification samples, formed the 
background distribution for each cell type. For a given stratification, a cell type signature 
was then considered as expressed if the “true” median enrichment score, from the non-
permuted data, was greater than the 90th quantile of its background distribution. To 
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ensure that cells present in only certain conditions might still be accurately assessed, 
this filtering procedure was run on a per-disease status and per-phase basis, and cell 
type signatures were retained for future analyses as long as the median enrichment 
score was above the background cutoff for at least one stratification. 

Evaluation of xCell signatures using single cell measurements of endometrial tissue 
from women without endometriosis 

Meanwhile, even when an xCell score is statistically significant, its contributing xCell cell 
type signature may not be specific to its nominal cell type target in the tissue of interest, 
due to inter-tissue variability of the same cell type or ambiguity in cell type naming.  

To test sensitivity, for each of the 64 xCell signatures, a signature score was calculated 
with respect to each endometrial cell type identified in the scRNAseq dataset (26). To 
identify differentially abundant cells, Wilcoxon’s rank sum test (two.sided) was 
performed, and fold change (FC, dummy variable = 10^-2) was calculated between cells 
from an endometrial cell type and the remaining cells. P-values obtained from 
Wilcoxon’s rank-sum test were adjusted for multiple comparison by the Benjamini– 
Hochberg’s procedure to obtain p.adj. A signature score was quantified as the 
percentage of genes in the given xCell signature that were differentially expressed 
between cells in an endometrial cell type compared to the remaining cells (p.adj < 0.05, 
log2(FC) > 1). For each of the xCell signature, the resulting score was normalized by 
the median of scores of all eight endometrial cell types identified in the single cell 
dataset (Normalized si, j = si, j / Med(si,1, si,2, … si,8), where i is an xCell signature and j 
an endometrial cell type identified in the single cell dataset).  

Each xCell signature was categorized as either “reference” or “no-reference”, based on 
whether there is an endometrial cell type or subtype in the single cell dataset that the 
signature is potentially targeting. A map between each xCell signature and each 
endometrial cell type was constructed to describe this relationship (Fig. 2B, boxes). As 
shown in Fig. 1, we kept this relationship relatively broad such that a signature is 
considered targeting a single cell type/subtype if it targets directly the identified 
endometrial cell type, or a sub-category of the identified cell type, or a related category 
of the identified cell type, to account for ambiguity in naming cell types and for potential 
existence of subtypes within the annotated cell populations.  

Two specificity score metrics were then established. Given the target map, for the first 
specificity metric, “onTarget”, an xCell signature was tagged as “on-target” if the 
highest-ranking endometrial cell type from the single cell expression data matches the 
cell type targeted by the xCell signature and “off-target” otherwise. Signatures without a 
clear reference cell type within the single cell dataset were given an ‘NA’ label (Fig. 2B).  

Separately, to evaluate how specific an xCell signature is to the endometrial cell type it 
represents, we calculated a “ratioNext” score representing the ratio between the highest 
and the 2nd highest ranking signature scores. Importantly, to avoid over-penalizing, if 
subtypes exist for the highest-ranking cell type (e.g., epithelial cells), scores in the 
subtypes were ignored in determining the 2nd highest signature score (Fig. 2B). 

Identification and annotation of 13 immune cell type/subtypes from healthy human 
endometrium 
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Dimensional reduction was performed on cells from the two clusters annotated as 
“Lymphocytes” and “Macrophages” in the original analysis (26) using Seurat’s 
(v3.2.0)(57) implementation of uniform manifold approximation and projection (UMAP). 
Specifically, top 2000 variable genes among the immune cells were identified via 
FindVariableFeatures(). Principal component analysis was performed via RunPCA() on 
the top variable genes. Dimension reduction was performed on the top 20 principal 
components (PCs) via RunUMAP() based on the distribution of variances explained by 
the top PCs. Cell type/subtypes were identified using Seurat’s FindNeighbors(dims = 
1:20) and FindClusters(resolution = 0.6). For each identified cell type/subtype, 
FindNeighbors() and FindClusters() were iterated one additional round to identify further 
heterogeneity. A cluster is classified as a candidate immune cell type/subtype if it can 
be defined by statistically significant uniquely expressing markers. pDC and B cells 
were present in 4 samples, macrophages were present in 7 women and the rest of 
identified immune type/subtyes were in all 10 women.  

For each identified cell type/subtype, uniquely expressing genes were found via 
FindAllMarkers(only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25, test.use = 
"wilcox", slot = "data") and ordered based on log2FC.  

As elaborated in the text, annotation of each immune cell type/subtype was performed 
through iterative evaluation of classical marker expression, signature level scoring of 
xCell’s immune cell signatures, and RNA expression pattern of uniquely expressing 
genes identified above reported by the Human Protein Atlas (31). For signature scoring, 
we used the method reported in (30). Briefly, for each xCell’s immune signature, the 
score was quantified as the ratio between transcripts (UMI) that encode genes in the 
signature to all transcripts (UMI) detected in each single cell. We further examined the 
distribution of each signature in each identified immune cell type/subtype. 

Validation of xCell approach using artificial mixtures from sorted cells 

Microarray expression data from four cell types of FACS-purified endometrial cells (from 
participants with and without endometriosis) were used to generate 20 different artificial 
mixtures with varying proportions of each cell type. The microarray expression data 
from endothelial cells (n=11 samples), epithelial cells (n=7), mesenchymal stem cells 
(n=28), and stromal fibroblasts (n=31) were first summarized by their median 
expression for all probes. These median cell profiles were then additively combined into 
20 different mixtures in which one cell type made up 10, 30, 50, 70, or 90% of the 
mixture, and the remaining cell types made up the remaining 90, 70, 50, 30, or 10%, 
respectively. xCell was then run on these mixtures both with and without the spillOver 
step (Fig. 2C, D). 

Differential cell type enrichment analysis 

Log2 enrichment ratios (log2ER), between groups, were calculated for each cell type 
signature. P-values were generated by performing two-sided Mann-Whitney U tests 
between enrichment scores of all samples, between groups. These were then corrected 
for multiple hypothesis testing via the FDR method based on the number of signatures 
assessed. FDR < 0.05 was the sole cutoff used for differential cell type enrichment. 
Such analysis was run on the same stratifications of the samples and for the same 
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comparisons for each of those stratifications, as for differential gene expression analysis, 
described previously (Fig. 1). 
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Tables: 

Table 1: Cohort Statistics 

  

  Disease Severity Lab origin Total 

Control Stages I-II Stages III-
IV 

Giudice Burney Lessey 

Cycle-
Phase 

PE 20 10 17 31 13 3 47 

ESE 6 6 12 14 10 0 24 

MSE 8 8 18 19 11 4 34 

Total 34 24 47 64 34 7 105 
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Table 2. Enrichment of cell types in each condition and menstrual phase and their 
fluctuation throughout the menstrual cycle. 

Significant differences between: * = PE & ESE, ~ = ESE & MSE, ◊ = PE & MSE 

Abundance of the cell type = + / ++ / +++ 

Unstrat. = Unstratified 
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Figures: 

 

 
Figure 1. Analysis and Data Overview  
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Figure 2. Cell Type Specific Signature Validation for Endometrial Tissue 
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Figure 3. Identification and annotation of 13 immune cell type/subtypes in healthy 
human endometrium. 
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Figure 4. Differential analysis of Cell Type Enrichment 
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Figure 5. Deconvolution result and signature score distribution in single cell data 
of select xCell signatures  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.27.457966doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.27.457966


Figures Legends 
Figure 1: Analysis and Data Overview 

A. Experimental overview showing how endometrial tissue transcriptome microarray 
data were processed and analyzed. Data were normalized (see below) and batch 
corrected. Then, differential gene expression (DGE) analysis was performed with log-
fold change outputs run through pathway enrichment analysis. Similarly, cell type 
deconvolution of these bulk tissue samples was performed and validated and then 
analyzed for differential enrichments between sample groups. Each of these analyses 
was run for various stratifications (subsets) of the samples and targeting differences 
between distinct groupings for each stratification. These analyses were used to identify, 
with cycle phase-specific insights, pathways and cells associated with endometriosis. A 
zoom of how xCell signatures were evaluated and selected to be representative of 
endometrial tissue. (Left: Permutation test: Microarray transcriptome data were 
permutated at gene level to construct tissue-specific null distributions for xCell’s outputs 
of its 64 signatures.  Right: Microarray transcriptome data from sorted cells were 
summarized and combined at different ratios into artificial mixtures. Then xCell was run 
on these mixtures. Middle: For each of the 64 xCell signatures, a two-score schematic 
was designed to evaluate its relationship with respect to each endometrial cell type 
identified in the single-cell RNAseq dataset (26). A specificity score (ratioNext) was 
agnostically quantified and each xCell signature was categorized as either targeted or 
non-targeted (NA: no ref) based on whether there is an endometrial cell type or subtype 
that the signature is targeting, and “On Target” or “Off Target” based on whether the 
top-ranking endometrial cell type is the signature’s intended target or not, respectively. 

B. Principal Component Analysis (PCA) of samples, after batch correction, based on 
(left) transcriptome data or (right) cell type enrichment scores and colored by menstrual 
cycle phase or disease stage.  

 

Figure 2. Cell Type Specific Signature Validation for Endometrial Tissue. 
Evaluation of xCell’s 64-cell-type signature compendium and endometrial cell types 
identified via scRNAseq and artificial mixtures analysis from sorted cell types. A.  Upset 
plot showing patterns of conditions in which cell type signature scores were significantly 
higher than permuted null distributions (top), as well as the sizes of each individual set 
(left). B. Sensitivity (normalized signature score), specificity (RatioNext) and relationship 
(onTarget) between xCell’s 64 signatures with endometrial cell types identified at the 
single cell level. Shown in the heatmap are signature scores evaluated as percentage of 
genes in a given xCell signature that were differentially expressed between cells in an 
endometrial cell type compared to the remaining cells. Scores were normalized by row 
mediums. C. Scatter plots of xCell enrichment scores (y-axis) versus input percentage 
(x-axis), for each input cell type, with least-squares regression line overlaid, for artificial 
mixtures with (grey) and without (black) the SpillOver step. D. Heatmap of relative, 
normalized to the max across all mixes, enrichment scores with annotations at the top 
indicating input percentage of each cell type. 

Abbreviations: End= endothelial cells; Epi = epithelial cells MSC = mesenchymal stem 
cells; Fib = eSFs. 
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Figure 3. Identification and annotation of 13 immune cell type/subtypes in healthy 
human endometrium. A. Dimensional reduction and cluster identification of 
endometrial immune cells from women with no gynecological conditions and in natural 
menstrual cycles. In blue are cell type/subtypes that were from the “Macrophage” 
cluster and in black were from the “Lymphocyte” cluster in the original analysis. B. Top 
uniquely expressed genes for identified cell type/subtypes in (A). In magenta are 
classical cell type markers. C. Score distribution of selected immune signatures 
compiled from 6 data sources in each identified immune cell type/subtypes. (NK: natural 
killer cells, pDC: plasmacytoid dendritic cells, cDC: classical dendritic cells. CD4*: CD4 
was uniquely but sparsely expressed in the cell subtype (Fig. S8B) and hence was not 
identified as a top uniquely expressed gene in (B).) 
 

Figure 4. Differential analysis of Cell Type Enrichment. A. Heatmap showing, for all 
samples, relative (compared to the max per cell type) enrichment scores, of all cells 
determined to be differentially enriched, for any stratification analyzed. B, C. Cell type 
enrichment analysis was performed based on FDR-corrected, two-sided, Mann-Whitney 
U tests between (B) disease versus control for either all samples (Unstratified) or 
stratifications to just specific phases (PE Samples, ESE Samples, MSE Samples) or 
between Stages I-II (labeled as such) or Stages III-IV (labeled as such) versus control 
among samples from all phases or (C) between phases among case and control 
samples separately. Shown are heatmaps of log2 fold changes for enrichment scores 
where only cell types with at least one significant comparison are shown. Numbers = 
log2FC with black color for statistically significant enrichments and grey color for non-
statistically significant enrichments. 

 

Figure 5. Deconvolution results and signature score distribution in single cell 
data of select xCell signatures (A) with confirmed specificity to major endometrial 
non-immune cell types, (B) with confirmed specificity to endometrial immune cell types, 
(C) that are functional specifying, and (D) lack representation in healthy endometrium 
but show endometriosis-associated statistically significant abundance increase. 
Significant p-values are marked on the figure.  
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Supplemental Tables 

Table S1: Differentially Expressed Genes, Case/Stage vs Control 

Excel file with tabs: Unstratified DvC, PE sample DvC, ESE sample DvC, MSE sample 
DvC, Stages I-II vs control, Stages III-IV vs control 

 Table S2: Pathway Analysis, Case/Stage vs Control 

Excel file with tabs: Unstratified DvC, PE sample DvC, ESE sample DvC, MSE sample 
DvC, Stages I-II vs control, Stages III-IV vs control 

 Table S3: Differentially Expressed Genes, Between Phases 

Excel file with tabs: PE vs. ESE (Controls), PE vs. MSE (Controls), MSE vs. ESE 
(Controls), PE vs. ESE (Cases), PE vs. MSE (Cases), MSE vs. ESE (Cases) 
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Supplemental Figures 

 
Figure S1: Batch correction reduces contributions from samples’ lab origin 

A. Principal component Analysis (PCA) of gene expression data (left) before and (right) 
after batch correction with ComBat with samples colored by different metadata. B. Bar 
plots showing the estimated variance associated with technical variables (“lab” of origin), 
biological variables (phase & stage), or interaction terms representing combinatorial 
contributions of these variables, (left) before and (right) after batch correction with 
ComBat. 
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Figure S2. Disease versus Control Comparison on the Gene Level.  

Differential gene expression was performed between disease versus control and Stages 
I-II or Stages III-IV versus control within various stratifications of the samples. 

A. Heatmap showing, for all samples, (A) relative, z-score, expression of all genes 
determined to be differentially expressed. B, C. Venn diagrams comparing the 
composition of genes (B) up- or (C) down- regulated in disease versus control samples 
of each phase. D. Fold-fold plots comparing the log2 fold changes between disease 
versus control samples in the different phases. 
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Figure S3: Disease and Stage versus control signature comparisons 

Differential gene expression was performed between disease versus control and Stages 
I-II or Stages III-IV versus control samples. A. Fold-fold plots comparing the log2 fold 
changes between each of these comparisons. B, C. Venn diagrams comparing the 
composition of genes (B) up- or (C) down- regulated in disease/stage versus control 
samples.  
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Figure S4. Pathway analysis was performed by GSEA using log2FC as input. Heatmap 
of GSEA normalized enrichment scores (NES) for hallmark pathways where only 
pathways with at least one significant enrichment are shown, and pathways related to 
the immune system are bolded. Case vs control comparisons stratified by phase and 
disease stage. NES with black color for statistically significant enrichments, and grey 
color for non-statistically significant enrichments. 
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Figure S5: xCell Signature filtration based on a permuted background distribution 
(control samples) 
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Per-phase background distributions for cell type enrichment scores (ES) were 
generated by permuting gene symbols (row names) of the transcriptome matrix and 
then running xCell, 1000 times, then taking the median ES per phase of control and 
disease samples, in each iteration. Shown here are violin plots of these background 
distributions for each cell type signature, among control samples. Thin gray vertical lines 
represent the 90th quantile of these background distribution values. Thicker vertical 
lines represent the true median ES (from non-permuted data) for the given cell type with 
colors: Light blue = true median ES was greater than the background cutoff for this 
phase (signature retained); Dark blue = true median ES was less than the background 
cutoff for this phase, but not for another phase (signature retained); Dark red = true 
median ES was less than the background cutoff for all phases (signature filtered out for 
subsequent analyses) 
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Figure S6: xCell Signature filtration based on a permuted background distribution 
(disease samples) 
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Per-phase background distributions for cell type enrichment scores (ES) were 
generated by permuting gene symbols (row names) of the transcriptome matrix and 
then running xCell, 1000 times, then taking the median ES per phase control and 
disease samples, in each iteration. Shown here are violin plots of these background 
distributions for each cell type signature, among samples from women with 
endometriosis. Thin gray vertical lines represent the 90th quantile of these background 
distribution values. Thicker vertical lines represent the true median ES (from non-
permuted data) for the given cell type with colors: Light blue = true median ES was 
greater than the background cutoff for this phase (signature retained); Dark blue = true 
median ES was less than the background cutoff for this phase, but not for another 
phase (signature retained); Dark red = true median ES was less than the background 
cutoff for all phases (signature filtered out for subsequent analyses) 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.27.457966doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.27.457966


 
Figure S7. Deconvolution results and signature score distribution of xCell 
immune signatures of (A) myeloid lineage, (B) T cell types (C) B cell types (D) 
progenitors and (E) CD8+ T cell types. Signatures shown in Figs. 3 and 5 are not 
repeated here.  
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Figure S8. Absence of expression of classical plasma cell markers in pDC (A) and 
expression of CD4 and CD8A in CD4* T and CD8+ T cells, respectively (B), 
identified in healthy human endometrium. TPM: Transcript per million. Log is in 
natural log. CD4*: CD4 was uniquely but sparsely expressed in the cell subtype (B) and 
hence was not identified as a top uniquely expressed gene in (Fig. 3B). 
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Figure S9. Deconvolution results of select xCell signatures. Enrichment scores are on 
the y-axis. Signatures shown in Figs. 3 and 5 are not repeated here.  

 

 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.27.457966doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.27.457966


Acknowledgements 

The work has been supported in part by National Institutes of Health, The Eunice 
Kennedy Shriver National Institute for Child Health and Human Development, National 
Centers for Translational Research in Reproduction and Infertility P50 HD055764. We 
would like to thank Sally Mortlock, Grant Montgomery, Gabriela Fragiadakis and Dvir 
Aran for useful discussion. 

 

References 

1.  H. O. D. Critchley, J. A. Maybin, G. M. Armstrong, A. R. W. Williams, Physiology of the 

Endometrium and Regulation of Menstruation. Physiological Reviews. 100, 1149–1179 

(2020). 

2.  K. T. Zondervan, C. M. Becker, S. A. Missmer, Endometriosis. N Engl J Med. 382, 1244–1256 

(2020). 

3.  L. C. Kao, A. Germeyer, S. Tulac, S. Lobo, J. P. Yang, R. N. Taylor, K. Osteen, B. A. Lessey, L. C. 

Giudice, Expression profiling of endometrium from women with endometriosis reveals 

candidate genes for disease-based implantation failure and infertility. Endocrinology. 144, 

2870–2881 (2003). 

4.  J. S. Tamaresis, J. C. Irwin, G. A. Goldfien, J. T. Rabban, R. O. Burney, C. Nezhat, L. V. 

DePaolo, L. C. Giudice, Molecular Classification of Endometriosis and Disease Stage Using 

High-Dimensional Genomic Data. Endocrinology. 155, 4986–4999 (2014). 

5.  L. Zhao, C. Gu, M. Ye, Z. Zhang, W. Han, W. Fan, Y. Meng, Identification of global 

transcriptome abnormalities and potential biomarkers in eutopic endometria of women 

with endometriosis: A preliminary study. Biomed Rep. 6, 654–662 (2017). 

6.  S. E. Bulun, B. D. Yilmaz, C. Sison, K. Miyazaki, L. Bernardi, S. Liu, A. Kohlmeier, P. Yin, M. 

Milad, J. Wei, Endometriosis. Endocrine Reviews. 40, 1048–1079 (2019). 

7.  R. O. Burney, S. Talbi, A. E. Hamilton, K. C. Vo, M. Nyegaard, C. R. Nezhat, B. A. Lessey, L. C. 

Giudice, Gene expression analysis of endometrium reveals progesterone resistance and 

candidate susceptibility genes in women with endometriosis. Endocrinology. 148, 3814–

3826 (2007). 

8.  F. Barragan, J. C. Irwin, S. Balayan, D. W. Erikson, J. C. Chen, S. Houshdaran, T. T. Piltonen, 

T. L. B. Spitzer, A. George, J. T. Rabban, C. Nezhat, L. C. Giudice, Human Endometrial 

Fibroblasts Derived from Mesenchymal Progenitors Inherit Progesterone Resistance and 

Acquire an Inflammatory Phenotype in the Endometrial Niche in Endometriosis. Biol 

Reprod. 94, 118 (2016). 

9.  J. Vallvé-Juanico, X. Santamaria, K. C. Vo, S. Houshdaran, L. C. Giudice, Macrophages 

display proinflammatory phenotypes in the eutopic endometrium of women with 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.27.457966doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.27.457966


endometriosis with relevance to an infectious etiology of the disease. Fertil Steril. 112, 

1118–1128 (2019). 

10.  A. R. Abbas, K. Wolslegel, D. Seshasayee, Z. Modrusan, H. F. Clark, Deconvolution of Blood 

Microarray Data Identifies Cellular Activation Patterns in Systemic Lupus Erythematosus. 

PLOS ONE. 4, e6098 (2009). 

11.  B. Chen, M. S. Khodadoust, C. L. Liu, A. M. Newman, A. A. Alizadeh, Profiling tumor 

infiltrating immune cells with CIBERSORT. Methods Mol Biol. 1711, 243–259 (2018). 

12.  T. Gong, N. Hartmann, I. S. Kohane, V. Brinkmann, F. Staedtler, M. Letzkus, S. Bongiovanni, 

J. D. Szustakowski, Optimal Deconvolution of Transcriptional Profiling Data Using 

Quadratic Programming with Application to Complex Clinical Blood Samples. PLOS ONE. 6, 

e27156 (2011). 

13.  D. A. Liebner, K. Huang, J. D. Parvin, MMAD: microarray microdissection with analysis of 

differences is a computational tool for deconvoluting cell type-specific contributions from 

tissue samples. Bioinformatics. 30, 682–689 (2014). 

14.  A. M. Newman, C. B. Steen, C. L. Liu, A. J. Gentles, A. A. Chaudhuri, F. Scherer, M. S. 

Khodadoust, M. S. Esfahani, B. A. Luca, D. Steiner, M. Diehn, A. A. Alizadeh, Determining 

cell type abundance and expression from bulk tissues with digital cytometry. Nature 

Biotechnology. 37, 773–782 (2019). 

15.  W. Qiao, G. Quon, E. Csaszar, M. Yu, Q. Morris, P. W. Zandstra, PERT: A Method for 

Expression Deconvolution of Human Blood Samples from Varied Microenvironmental and 

Developmental Conditions. PLOS Computational Biology. 8, e1002838 (2012). 

16.  B. Schölkopf, A. J. Smola, R. C. Williamson, P. L. Bartlett, New Support Vector Algorithms. 

Neural Comput. 12, 1207–1245 (2000). 

17.  S. S. Shen-Orr, R. Gaujoux, Computational Deconvolution: Extracting Cell Type-Specific 

Information from Heterogeneous Samples. Curr Opin Immunol. 25 (2013), 

doi:10.1016/j.coi.2013.09.015. 

18.  Y. Zhong, Y.-W. Wan, K. Pang, L. M. Chow, Z. Liu, Digital sorting of complex tissues for cell 

type-specific gene expression profiles. BMC Bioinformatics. 14, 89 (2013). 

19.  N. S. Zuckerman, Y. Noam, A. J. Goldsmith, P. P. Lee, A Self-Directed Method for Cell-Type 

Identification and Separation of Gene Expression Microarrays. PLOS Computational 

Biology. 9, e1003189 (2013). 

20.  M. Dong, A. Thennavan, E. Urrutia, Y. Li, C. M. Perou, F. Zou, Y. Jiang, SCDC: bulk gene 

expression deconvolution by multiple single-cell RNA sequencing references. Brief 

Bioinform. 22, 416–427 (2021). 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.27.457966doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.27.457966


21.  A. Frishberg, N. Peshes-Yaloz, O. Cohn, D. Rosentul, Y. Steuerman, L. Valadarsky, G. 

Yankovitz, M. Mandelboim, F. A. Iraqi, I. Amit, L. Mayo, E. Bacharach, I. Gat-Viks, Cell 

composition analysis of bulk genomics using single-cell data. Nat Methods. 16, 327–332 

(2019). 

22.  K. Kang, Q. Meng, I. Shats, D. M. Umbach, M. Li, Y. Li, X. Li, L. Li, CDSeq: A novel complete 

deconvolution method for dissecting heterogeneous samples using gene expression data. 

PLoS Comput Biol. 15, e1007510 (2019). 

23.  X. Sun, S. Sun, S. Yang, An Efficient and Flexible Method for Deconvoluting Bulk RNA-Seq 

Data with Single-Cell RNA-Seq Data. Cells. 8 (2019), doi:10.3390/cells8101161. 

24.  X. Wang, J. Park, K. Susztak, N. R. Zhang, M. Li, Bulk tissue cell type deconvolution with 

multi-subject single-cell expression reference. Nat Commun. 10, 380 (2019). 

25.  D. Aran, Z. Hu, A. J. Butte, xCell: digitally portraying the tissue cellular heterogeneity 

landscape. Genome Biology. 18, 220 (2017). 

26.  W. Wang, F. Vilella, P. Alama, I. Moreno, M. Mignardi, A. Isakova, W. Pan, C. Simon, S. R. 

Quake, Single-cell transcriptomic atlas of the human endometrium during the menstrual 

cycle. Nat Med. 26, 1644–1653 (2020). 

27.  J. N. Fung, S. Mortlock, J. E. Girling, S. J. Holdsworth-Carson, W. T. Teh, Z. Zhu, S. W. 

Lukowski, B. D. McKinnon, A. McRae, J. Yang, M. Healey, J. E. Powell, P. A. W. Rogers, G. W. 

Montgomery, Genetic regulation of disease risk and endometrial gene expression 

highlights potential target genes for endometriosis and polycystic ovarian syndrome. Sci 

Rep. 8, 11424 (2018). 

28.  J. Vallvé-Juanico, S. Houshdaran, L. C. Giudice, The endometrial immune environment of 

women with endometriosis. Hum Reprod Update. 25, 565–592 (2019). 

29.  K. E. Schwab, C. E. Gargett, Co-expression of two perivascular cell markers isolates 

mesenchymal stem-like cells from human endometrium. Hum Reprod. 22, 2903–2911 

(2007). 

30.  F. Pont, M. Tosolini, J. J. Fournié, Single-Cell Signature Explorer for comprehensive 

visualization of single cell signatures across scRNA-seq datasets. Nucleic Acids Res. 47, 

e133 (2019). 

31.  M. Uhlen, P. Oksvold, L. Fagerberg, E. Lundberg, K. Jonasson, M. Forsberg, M. Zwahlen, C. 

Kampf, K. Wester, S. Hober, H. Wernerus, L. Björling, F. Ponten, Towards a knowledge-

based Human Protein Atlas. Nat Biotechnol. 28, 1248–1250 (2010). 

32.  D. W. Erikson, F. Barragan, T. T. Piltonen, J. C. Chen, S. Balayan, J. C. Irwin, L. C. Giudice, 

Stromal fibroblasts from perimenopausal endometrium exhibit a different transcriptome 

than those from the premenopausal endometrium. Biol Reprod. 97, 387–399 (2017). 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.27.457966doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.27.457966


33.  T. T. Piltonen, J. Chen, D. W. Erikson, T. L. B. Spitzer, F. Barragan, J. T. Rabban, H. 

Huddleston, J. C. Irwin, L. C. Giudice, Mesenchymal stem/progenitors and other 

endometrial cell types from women with polycystic ovary syndrome (PCOS) display 

inflammatory and oncogenic potential. J Clin Endocrinol Metab. 98, 3765–3775 (2013). 

34.  T. L. B. Spitzer, A. Rojas, Z. Zelenko, L. Aghajanova, D. W. Erikson, F. Barragan, M. Meyer, J. 

S. Tamaresis, A. E. Hamilton, J. C. Irwin, L. C. Giudice, Perivascular human endometrial 

mesenchymal stem cells express pathways relevant to self-renewal, lineage specification, 

and functional phenotype. Biol Reprod. 86, 58 (2012). 

35.  A.-A. Delbandi, M. Mahmoudi, A. Shervin, S. Heidari, R. Kolahdouz-Mohammadi, A.-H. 

Zarnani, Evaluation of apoptosis and angiogenesis in ectopic and eutopic stromal cells of 

patients with endometriosis compared to non-endometriotic controls. BMC Womens 

Health. 20, 3 (2020). 

36.  S. Smith, Angiogenesis, vascular endothelial growth factor and the endometrium. Human 

Reproduction Update. 4, 509–519 (1998). 

37.  M. Wingfield, A. Macpherson, D. L. Healy, P. A. Rogers, Cell proliferation is increased in the 

endometrium of women with endometriosis. Fertil Steril. 64, 340–346 (1995). 

38.  R. W. S. Chan, C. E. Gargett, Identification of label-retaining cells in mouse endometrium. 

Stem Cells. 24, 1529–1538 (2006). 

39.  H. Masuda, S. S. Anwar, H.-J. Bühring, J. R. Rao, C. E. Gargett, A Novel Marker of Human 

Endometrial Mesenchymal Stem-Like Cells. Cell Transplant. 21, 2201–2214 (2012). 

40.  R. Vento-Tormo, M. Efremova, R. A. Botting, M. Y. Turco, M. Vento-Tormo, K. B. Meyer, J.-

E. Park, E. Stephenson, K. Polański, A. Goncalves, L. Gardner, S. Holmqvist, J. Henriksson, A. 

Zou, A. M. Sharkey, B. Millar, B. Innes, L. Wood, A. Wilbrey-Clark, R. P. Payne, M. A. 

Ivarsson, S. Lisgo, A. Filby, D. H. Rowitch, J. N. Bulmer, G. J. Wright, M. J. T. Stubbington, M. 

Haniffa, A. Moffett, S. A. Teichmann, Single-cell reconstruction of the early maternal-fetal 

interface in humans. Nature. 563, 347–353 (2018). 

41.  A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, M. A. Gillette, A. 

Paulovich, S. L. Pomeroy, T. R. Golub, E. S. Lander, J. P. Mesirov, Gene set enrichment 

analysis: A knowledge-based approach for interpreting genome-wide expression profiles. 

PNAS. 102, 15545–15550 (2005). 

42.  D. A. Chistiakov, A. N. Orekhov, I. A. Sobenin, Y. V. Bobryshev, Plasmacytoid dendritic cells: 

development, functions, and role in atherosclerotic inflammation. Front Physiol. 5, 279 

(2014). 

43.  X. Tan, J. Lang, D. Liu, [Expression of monocyte chemotacticp protein-1 in the eutopic 

endometrium of women with endometriosis]. Zhonghua Fu Chan Ke Za Zhi. 36, 89–91 

(2001). 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.27.457966doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.27.457966


44.  C. Z, L. Q, S. Z, [Study on association of vascular endothelial growth factor with the 

pathogenesis of pregnancy induced hypertension]. Zhonghua Fu Chan Ke Za Zhi. 36, 72–75 

(2001). 

45.  P. Kuivasaari, M. Hippeläinen, M. Anttila, S. Heinonen, Effect of endometriosis on IVF/ICSI 

outcome: stage III/IV endometriosis worsens cumulative pregnancy and live-born rates. 

Hum Reprod. 20, 3130–3135 (2005). 

46.  M. Jeziorska, L. A. Salamonsen, D. E. Woolley, Mast cell and eosinophil distribution and 

activation in human endometrium throughout the menstrual cycle. Biol Reprod. 53, 312–

320 (1995). 

47.  J. Donnez, P. Smoes, S. Gillerot, F. Casanas-Roux, M. Nisolle, Vascular endothelial growth 

factor (VEGF) in endometriosis. Hum Reprod. 13, 1686–1690 (1998). 

48.  J. Y. Song, P. Russell, R. Markham, F. Manconi, I. S. Fraser, Effects of high dose 

progestogens on white cells and necrosis in human endometrium. Hum Reprod. 11, 1713–

1718 (1996). 

49.  O. B. Poli-Neto, J. Meola, J. C. Rosa-e-Silva, D. Tiezzi, Transcriptome meta-analysis reveals 

differences of immune profile between eutopic endometrium from stage I-II and III-IV 

endometriosis independently of hormonal milieu. Scientific Reports. 10, 1–17 (2020). 

50.  L. Aghajanova, K. Tatsumi, J. A. Horcajadas, A. M. Zamah, F. J. Esteban, C. N. Herndon, M. 

Conti, L. C. Giudice, Unique transcriptome, pathways, and networks in the human 

endometrial fibroblast response to progesterone in endometriosis. Biol Reprod. 84, 801–

815 (2011). 

51.  F. Avila Cobos, J. Alquicira-Hernandez, J. E. Powell, P. Mestdagh, K. De Preter, 

Benchmarking of cell type deconvolution pipelines for transcriptomics data. Nat Commun. 

11, 5650 (2020). 

52.  L. Gautier, L. Cope, B. M. Bolstad, R. A. Irizarry, affy—analysis of Affymetrix GeneChip data 

at the probe level. Bioinformatics. 20, 307–315 (2004). 

53.  W. E. Johnson, C. Li, A. Rabinovic, Adjusting batch effects in microarray expression data 

using empirical Bayes methods. Biostatistics. 8, 118–127 (2007). 

54.  P. Bushel, pvca: Principal Variance Component Analysis (PVCA) (2020). 

55.  M. E. Ritchie, B. Phipson, D. Wu, Y. Hu, C. W. Law, W. Shi, G. K. Smyth, limma powers 

differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids 

Res. 43, e47 (2015). 

56.  G. Korotkevich, V. Sukhov, N. Budin, B. Shpak, M. N. Artyomov, A. Sergushichev, Fast gene 

set enrichment analysis. bioRxiv, 060012 (2021). 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.27.457966doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.27.457966


57.  T. Stuart, A. Butler, P. Hoffman, C. Hafemeister, E. Papalexi, W. M. Mauck, Y. Hao, M. 

Stoeckius, P. Smibert, R. Satija, Comprehensive Integration of Single-Cell Data. Cell. 177, 

1888-1902.e21 (2019). 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.27.457966doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.27.457966


(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.27.457966doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.27.457966


(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.27.457966doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.27.457966


(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.27.457966doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.27.457966


(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.27.457966doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.27.457966


(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.27.457966doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.27.457966

