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Abstract 

A central goal in sensory neuroscience is to understand the neuronal signal processing 

involved in the encoding of natural stimuli. A critical step towards this goal is the development 

of successful computational models of this encoding. For ganglion cells in the vertebrate 

retina, the development of satisfactory models for responses to natural visual scenes is an 

ongoing challenge. Standard models typically apply linear integration of visual stimuli over 

space, yet many ganglion cells are known to show nonlinear spatial integration in natural 

stimulus contexts. We here study the encoding of natural images by retinal ganglion cells, 

using multielectrode-array recordings from isolated salamander retinas. We assess how 

responses to natural and blurred images depend on first- and second-order statistics of 

spatial patterns inside the receptive field. This leads us to a simple extension of current 

standard ganglion cell models, which are based on linear spatial integration. We show that 

taking not only the weighted average of light intensity inside the receptive field into account 

but also its variance over space yields substantially improved response predictions of 

responses to novel images. Finally, we demonstrate how this model framework can be used 

to assess the spatial scale of nonlinear spatial integration. Our results underscore the 

importance of nonlinear spatial stimulus integration in the retina in responses to natural 

images. Furthermore, the introduced model framework provides a simple, yet powerful 

extension of standard models and may serve as a benchmark for the development of more 

detailed models of the nonlinear structure of receptive fields. 
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Author Summary 

For understanding how sensory systems operate in the natural environment, an important 

goal is to develop models that capture neuronal responses to natural stimuli. For retinal 

ganglion cells, which connect the eye to the brain, current standard models often fail to 

capture responses to natural visual scenes. This shortcoming is at least partly rooted in the 

fact that ganglion cells may combine visual signals over space in a nonlinear fashion. We here 

show that a simple model, which not only considers the average light intensity inside a cell’s 

receptive field but also the spatial variance of the image, can partly account for these 

nonlinearities and thereby improve current standard models. This provides an easy-to-obtain 

benchmark for modeling ganglion cell responses to natural images. 

 

Introduction 

Much of our knowledge about how neurons in sensory systems operate stems from 

investigations with simplified, artificial sensory stimuli, whose properties can be specifically 

selected depending on the research question at hand [1]. Investigating the relevance of the 

inferred signal processing for real-life scenarios, however, requires examining responses of 

sensory neurons to natural stimuli [2–5]. An important step for this transition to natural stimuli 

is the design of appropriate computational models for the stimulus-response relation of 

sensory neurons in order to capture the observed signal processing operations and test them 

on responses to complex or natural stimuli [6–15]. 

A fundamental ingredient for such models is typically the receptive field, which describes the 

region of stimuli that affects a neuron’s response. For retinal ganglion cells, the output 

neurons of the retina, spatial receptive fields are commonly used to capture how the cells 

respond to light spots of different sizes or to spatially structured visual stimuli, often by 

assuming that the cells linearly integrate signals over their receptive fields. Yet, responses 

under contrast-reversing spatial gratings have long revealed that many ganglion cells can 

display nonlinearities in their spatial signal integration [16–21], and it is thought that these 

spatial nonlinearities are also important under natural stimulation [8,9,22–26], in particular in 

view of sharp light intensity boundaries resulting from objects in visual scenes. 

The source of these spatial nonlinearities appears to be the presynaptic bipolar cells [10,27–

29], which provide the excitatory input to the ganglion cells and whose neurotransmitter 

release – despite the graded, non-spike-dependent synaptic exocytosis at their terminals – 

can show partial rectification with respect to light intensity [28,30]. Yet, incorporating the 

nonlinear bipolar cell input into computational models has been difficult because determining 

the layout of bipolar cells and the nature of their nonlinearities either requires detailed 

anatomical knowledge [28] or data-intensive inference methods [10,12,31–35]. 
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We therefore here seek a simple model that phenomenologically incorporates effects of 

nonlinear spatial stimulus integration and whose parameters can be obtained with relatively 

small amounts of data. The approach is based on identifying the receptive field of a ganglion 

cell and evaluating not only the (weighted) mean of light intensity across the receptive field, 

but also the variability of light intensity over space, measured by the (weighted) second-order 

statistics of the stimulus. Evaluated on recordings from salamander ganglion cells under 

flashed natural images, we find that this analysis reveals nonlinear spatial stimulus integration 

and provides a simple way to improve standard receptive-field-based models of ganglion cell 

activity. 

Results 

Ganglion cell responses under stimulation with natural images 

To investigate responses of retinal ganglion cells to flashed natural images, we projected 

photographic images onto isolated salamander retinas and recorded the spiking activity of 

ganglion cells with multielectrode arrays. The images were presented individually in a 

pseudo-random sequence for 200 ms each, with an inter-stimulus-interval of 800 ms (Fig. 1A). 

Figure 1B shows an example of one of the images, overlaid with the receptive field outline of a 

sample ganglion cell, and the spike patterns of this cell measured for 13 individual 

presentations of the image. A simple measure of the response is given by the total spike count 

elicited by the image presentation. To obtain the spike count, we used a temporal window 

ranging from image onset to 100 ms after image offset. Given the response latency of around 

100 ms in these neurons [33], this window typically includes all spikes elicited by the image 

presentation, but excludes potential spikes that might be elicited by the withdrawal of the 

image. 

Based on this spike count response measure, we found that stimulation with different images 

generated diverse, yet reliable response patterns: for a given ganglion cell, the range of spike 

counts typically varied between zero and around 10 to 15, showing that a wide range of 

response strengths is elicited. For a given image, on the other hand, spike counts were highly 

reliable, with typical standard deviations of the spike count over repeated presentations of 

around one spike. Figure 1C shows the spike count responses to all 300 images for the 

sample ganglion cell. For each image, the variance of spike count over repeated trials was 

typically small and below the variability of a Poisson process (represented by the gray solid 

line), similar to findings of previous studies with non-natural stimuli [36,37]. 

This reliability was observed for most cells. Figure 1D shows for each analyzed cell the 

average spike count variance (averaged over all images) as a measure of trial-by-trial noise in 

comparison to the average spike count over all images and trials as a measure of the average 

response strength. As for the sample cell in Figure 1C, the spike count variance was on 

average much smaller than the average spike count for most cell, indicating sub-Poissonian 
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noise and high response reliability for individual images. Furthermore, the noise level was 

generally much smaller than the signal range covered by different images, as shown in 

Figure 1E. The trial-by-trial variability (again measured as the single-image spike-count 

variance averaged over images, y-axis) was for nearly all cells much below the signal range, 

as measured by the variance over images of the mean spike counts (x-axis). 

 
Figure 1. Overview of ganglion cell responses. A) Schematic of the sequence of 300 natural images 

presented individually in a pseudo-random fashion for 200 ms each, with an inter-stimulus-interval of 

800 ms. B) Left: One of the 300 natural images, overlaid with the 3-sigma outline of the receptive field 

of a sample retinal ganglion cell. Right: Raster plot of spike times recorded from the sample cell for 13 

repeated presentations of this image. Every row corresponds to one image presentation. At the bottom, 

the time line of stimulus presentation is shown, indicating the 200-ms presentation time, surrounded by 

periods of gray illumination. The vertical gray line at 300 ms marks the end of the applied window for 

counting spike numbers. C) Spike count variance (y-axis) vs. average spike count (x-axis) from the 

sample cell for each of the 300 images. The gray straight line denotes the expected relation of variance 

and average spike count for a Poisson process. D) Average over images of the single-image spike 

count variance as a measure of response noise (y-axis) vs. the average spike count over all images as 

a measure of typical signal size (x-axis), shown for each recorded cell. E) Average over images of the 

single-image spike count variance as a measure of response noise (y-axis) vs. variance over images of 

the average spike count per image as a measure of response range (x-axis), shown for each recorded 

cell. 
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Local spatial contrast shapes ganglion cell responses  

To assess the relation of a cell’s response to the presented natural image, we tested how the 

cell’s spike count depended on simple image statistics inside the cell’s receptive field. To do 

so, we determined the receptive field of a cell by standard reverse correlation [38]. The retina 

was visually stimulated with spatiotemporal white noise to calculate the average stimulus 

sequence that preceded a spike (“spike-triggered average”). Then, singular value 

decomposition was used to separate the spike-triggered average into a spatial and a temporal 

component. Finally, a two-dimensional Gaussian function was fitted to the spatial receptive 

field component to determine the center, size, and shape of the receptive field. 

For a given image, we obtained the local stimulus for a cell by weighting the image with the 

2D Gaussian representation of the receptive field. We then first considered the mean stimulus 

intensity (Imean) inside the receptive field by computing the mean pixel intensity of the local 

stimulus, corresponding to a linear integration of the stimulus across the receptive field. 

Figure 2A displays the relation between Imean and the measured spike count for a sample cell, 

which can be fitted by a parameterized nonlinear function (see Materials and Methods). 

Together, the linear image filtering by the receptive field and the nonlinear function constitute 

a classical linear-nonlinear (LN) model. To assess model performance, we used the 

coefficient of determination R2 between the spike count data and the model’s prediction for 

the images in a test set of 150 held-out images, which were not used for the fit of the nonlinear 

function. For the displayed sample cell, we found R2 = 0.65, showing that Imean alone already 

had considerable predictive power, but did not completely specify the measured spike count. 

We then asked whether – beyond mean stimulus intensity in the receptive field – spatial 

contrast contributed to determining the spike count. To do so, we assessed for each image the 

local spatial contrast (LSC) inside the receptive field by computing the standard deviation of 

pixel values in the local stimulus that had been obtained by weighting the image with the 

Gaussian representation of the receptive field. It is important to note, though, that the LSC is 

not independent of the mean stimulus intensity Imean. As depicted in Figure 2B, the LSC tended 

to be larger when Imean deviated more strongly from zero; both large positive and large 

negative deviations from mean light level favored a larger range of pixel intensities, as should 

be expected. Thus, a direction comparison of the LSC with the measured spike count, as 

shown for the sample cell in Figure 2C, is not suited to determine whether the LSC itself 

affects the cell’s response. High spike counts for large LSC values and positive correlations 

between LSC and spike count might have simply resulted from higher Imean values for the 

corresponding images. 

To test more directly for how the LSC affected the spiking response, we aimed at assessing 

whether it influenced the response beyond the effect of Imean. To do so, we analyzed pairs of 

images that, for a given cell, yielded approximately equal Imean values and then computed the 
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differences in spike count and in LSC for such image pairs [26]. Concretely, we ordered all 

images for a given cell according to their Imean value and compared spike count and LSC by 

calculating the differences ∆Spikes and ∆LSC for each pair of neighbors in this ordered 

sequence. To verify that the residual differences in Imean did not have a major influence in this 

analysis, we also calculated their difference values ∆Imean for the image pairs. 

 
Figure 2. Effect of local spatial contrast on ganglion cell responses. A) Scatter plot of spike count vs. 

Imean for all 300 images for the sample cell of Figure 1B-C. The orange line shows the fitted nonlinearity 

cross-validated using 150 images, with the stated R2 value used as an evaluation of the quality of the 

fit. B) LSC vs. Imean for all images for the same sample cell. C) Spike count vs. LSC for all images for the 

same sample cell. D) Differences in Imean (∆Imean) vs. differences in spike count (∆Spikes) for pairs of 

images that have neighboring values in the Imean, plotted for the sample cell. E) As D, but for differences 

in local spatial contrast (∆LSC) vs. ∆Imean. F)  Same as D and E, but for ∆Spikes vs. ∆LSC. The red line 

is obtained by regression analysis, and the Pearson correlation coefficient is denoted in the plot. 

G) Distributions over all recorded cells of the correlation coefficients R for ∆Imean vs. ∆Spikes (blue) and 

for ∆LSC vs. ∆Spikes (red). 
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The scatter plots of ∆Imean vs. ∆Spikes (Fig. 2D) and ∆Imean vs. ∆LSC (Fig. 2E) confirmed that 

the effects of mean stimulus intensity for the sample cell were abolished in this analysis. The 

residual Imean signal had no detectable influence on the spike count differences ∆Spikes and 

was not correlated with ∆LSC. In the absence of the influence of Imean, we then found that the 

local spatial contrast systematically affected the spike count: ∆LSC and ∆Spikes displayed a 

pronounced correlation with R = 0.52 (Fig. 2F). Population analysis corroborated the findings 

for the sample cell. When pairing images with similar mean stimulus inside a cell’s receptive 

field, the spatial contrast differences ∆LSC (but not the residual mean intensity differences 

∆Imean) were generally positively correlated to the spike count differences ∆Spikes (Fig. 2G), 

supporting that spatial contrast in the image can boost spike count beyond the effect of mean 

stimulus intensity. 

Spatial contrast model to incorporate sensitivity to spatial structure 

Next, we analyzed whether this additional information contained in the LSC about the spike 

count can improve the response prediction over the classical LN model. To do so, we set up a 

spatial contrast (SC) model, which combines information from the mean intensity and from the 

spatial contrast inside a cell’s receptive field. The processing chain is explained in Figure 3A. 

The receptive field is found from responses to spatiotemporal flicker and fitted by a 2D 

Gaussian. The Gaussian provides weights for each image pixel to extract the local stimulus, 

whose distribution of pixel contrast values yields the local mean intensity Imean as the mean of 

this distribution and the local spatial contrast LSC as the standard deviation. The model’s 

linear activation is computed as a weighted sum of the Imean and LSC values (Fig. 3B, left). Like 

in the classical LN model, the activation is turned into a prediction of the spike count through a 

nonlinear rectifying function. This function is fitted to the relation of the weighted sum of Imean 

and LSC and the measured number of spikes (Fig. 3B, center). The weight factor that is 

multiplied to the LSC is an additional free parameter and is fitted together with the parameters 

of the nonlinearity on the training data. The model is evaluated by computing the squared 

correlation coefficient R2 on held-out images. 

Figure 3B (center) shows the relation between the activation of the SC model, as obtained 

from Imean and LSC together, and the spike counts of the test data for the sample cell of 

Figure 2. The nonlinear function captured the measured spike counts more accurately than in 

the classical LN model (cf. Fig. 2A). Including the spatial contrast information improved the 

model performance from R2 = 0.65 for the classical LN model to R2 = 0.76. 
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Figure 3. Modeling responses to natural images based on simple image statistics. A) Model for 

assessing the effect of simple image statistics on the spike count. Stimulation with spatiotemporal 

flicker is used to calculate a ganglion cell’s spatial receptive field, which is then fitted by a 2D Gaussian 

function. Each natural image is cropped to the 3-σ contour of the receptive field (red line) and weighted 

by the 2D Gaussian, yielding the local stimulus. The mean stimulus intensity (Imean) and the local spatial 

contrast (LSC) are obtained as the mean and the standard deviation of the pixel intensities in this local 

stimulus. Both measures are used in the prediction of the spike count response. B) Left: Schematic 

depiction of the SC model, which uses a weighted sum of the extracted values of Imean and the LSC for a 

given image. Center: Relationship between the linear signal of the SC model and the number of spikes 

recorded from the sample cell of Figure 2 for all images. The orange line shows the fitted nonlinearity, 

with the stated R2 value used as an evaluation of the quality of the fit. Right: Coefficients of 

determination R2 compared for the classical LN model, which takes Imean as input, and the SC model, 

which takes into account both Imean and LSC. C) Relative prediction improvement of the SC model over 

the classical LN model vs. model performance of the classical LN model (left), vs. the correlation 

coefficients calculated from ∆LSC and ∆Spikes (center), and vs. the optimal LSC weights found in the fit 

of the SC model. 

Population analysis corroborated the improved model performance of the SC model. The SC 

model had overall considerably better performance for predicting spike counts than the 

classical LN model (Fig. 3B, right), in particular when the classical LN model originally had low 

performance. This is also emphasized by plotting the prediction improvement, calculated as 

the ratio between R2 from SC model and R2 from the classical LN model, against the 
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performance of the classical LN model (Fig. 3C, left). Furthermore, the improvement was 

larger when the analysis of spatial-contrast effects on spike count beyond the mean stimulus 

intensity (cf. Fig. 2F) revealed a sizeable correlation between ∆LSC and ∆Spikes (Fig. 3C, 

center). And the importance of the spatial contrast information for this improvement is also 

reflected in accompanying higher weights for the SC component in the model fits (Fig. 3C, 

right). These results suggest that spatial contrast inside the receptive field can exert a strong 

effect on spike responses beyond the mean stimulus intensity, and including this information 

can yield strongly superior models when the classical LN model fails. 

Assessing the relevant spatial scale of local spatial contrast 

We found that the LSC can be a useful predictor for ganglion cell spiking responses. So far, 

we have calculated this measure based on the standard deviation of image intensities at the 

level of individual pixels. This takes into account intensity variations at all spatial frequencies. 

Yet, it should be expected that spatial pooling by photoreceptors and bipolar cells prevents 

nonlinear stimulus integration for high spatial frequencies. In other words, intensity values of 

image points that are close together should be integrated linearly by the ganglion cell without 

any effect of how the total intensity is distributed between these image points. Thus, there 

should be an optimal spatial scale for calculating the LSC, and this optimal spatial scale 

should approximately correspond to the size of the relevant nonlinear subunits inside the 

receptive field, which are thought to correspond to bipolar cell receptive fields [10,24,27,28]. 

To test for the optimal spatial scale, we varied the way in which we measured the LSC and 

searched for the highest predictive power of the SC model. Specifically, we looked at how 

spatial smoothing of the image before computing the LSC affected the response prediction. 

We expect that image predictions improve as long as smoothing occurs on spatial scales 

smaller than the subunits inside the receptive field, whereas smoothing at larger scales 

should degrade the predictions. The reason for this is that the right level of smoothing allows 

contrast variations on scales below the subfields to be averaged out (as we expect occurs 

inside the subunits), whereas contrast variations that span more than a single subunit do 

contribute to spike count prediction and their smoothing should deteriorate model 

performance. 
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Figure 4. Analysis of the optimal spatial scale for calculating the local spatial contrast. A) Sample 

image overlaid with the 3-σ outline of a sample cell’s receptive field (red curve). Below: Local stimuli 

after smoothing with a 2D Gaussian filter with increasing spatial scale from 15 to 195 µm and pixel-wise 

weighting by the sample cell’s spatial receptive field. The first image is without smoothing. B) Relation 

between linear signal of the SC model and measured spike count, using the same Imean values, but LSC 

values derived from the different smoothed images, shown here for the original image and for the 

images with spatial scales of smoothing of 60 and 195 µm, respectively. The orange lines show the 

fitted nonlinearities and the R2 values denote the corresponding model performance. C) Prediction 

improvement as a function of the level of smoothing for the sample cell. The optimal spatial scale is 

defined as the spatial scale at which R2 reaches its maximum (as determined by the 2nd-order 

polynomial fit around the maximal data point; green line). D) Prediction improvement as a function of 

the level of smoothing for all cells (gray curves), with the sample cell of C shown as a black line. The 

red line displays an average over all cells. E) Distribution of optimal spatial scales. F) Distribution of 

optimal scales, normalized by each cell’s receptive field size. 

Figure 4A illustrates this analysis. The sample image on top, overlaid with a cell’s 

receptive-field outline, was blurred by circular Gaussian filters with increasing spatial scale, 

ranging from 15 to 195 µm, and then pixel-wise multiplied by the cell’s receptive field to yield 

the image patches shown below. In this way, we extracted for each image the LSC from the 

smoothed versions and combined this with the Imean from the original images to fit an SC model 

for each level of smoothing (Fig. 4B). As before, we assessed the model quality by the R2 

values and evaluated the model improvement (relative to the performance of the classical LN 

model) as a function of the spatial scale of smoothing (Fig. 4C). The spatial scale is here 

defined as three times the standard deviation of the Gaussian, for direct comparability with 
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our definition of receptive field size. The optimal spatial scale is obtained as the spatial scale 

of smoothing for which R2 is maximal, using interpolation with a second-order polynomial 

fitted to the three data points around the maximum data point (green line in Fig. 4C). 

We performed this analysis for each cell (Fig. 4D) and extracted the optimal spatial scales. 

The distribution (Fig. 4E) shows a broad maximum in the range of 50-150 µm. This is 

consistent with the typical size of bipolar cell receptive fields in the salamander retina [39,40]. 

When the optimal scale was normalized by the ganglion cell’s receptive field size, the 

distribution (Fig. 4F) became somewhat narrower, with most ratios lying around or below a 

value of 0.3. This suggests that subunits are typically smaller than a third of most ganglion 

cell’s receptive field, consistent with about 10 or more subunits contributing to the receptive 

field. 

Discussion 

Current models of stimulus encoding by retinal ganglion cells often start with using a cell’s 

receptive field as a spatial filter applied to incoming images. This is the case for the commonly 

applied LN model and for many of its extensions such as the generalized linear model [41,42] 

or other approaches for including spike-timing dynamics or feedback loops [43,44]. The 

single-spatial-filter approach remains popular because it is conceptually straightforward, 

amenable to simple parameter-fitting approaches [38,41,42], and remarkably successful in 

capturing ganglion cell responses under specific stimulus conditions or for certain subtypes of 

ganglion cells [6,9,26,41]. 

Yet, an underlying assumption of the simple linear spatial filtering is that all relevant 

nonlinearities of the system can be subsumed into processing at the output stage, following 

after stimulus integration over space (and time) has already taken place. This clashes with the 

wide-spread finding of nonlinear spatial integration, as revealed, for example, by reversing 

spatial gratings [16–20]. It is thought that this nonlinear spatial integration also affects 

responses of retinal ganglion cells to natural stimuli, leading to failures of the model approach 

with a single spatial filter [7–10,12,26,45]. 

As the nonlinear spatial integration follows from the ganglion cell’s nonlinear pooling of 

presynaptic bipolar cells with smaller receptive fields, the most principled way of constructing 

improved models has been to explicitly include this network structure by using multiple spatial 

filters – the model’s subunits – in parallel and nonlinearly transforming the subunit signals 

before summation. This corresponds to a sequence of two LN models and is thus often 

referred to as an LNLN model. Yet, despite recent progress in inferring the layout and 

structure of the subunits [10,12,28,34,35,46–48], obtaining such models remains challenging, 

and current procedures typically require large amounts of data. 

In this work, we therefore take a different approach by assessing nonlinear spatial integration 
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through a simple phenomenological model that goes beyond the standard spatial filtering 

approach by considering the local spatial contrast inside the receptive field, which we defined 

via the variability of stimulus intensities. We found that this spatial contrast was positively 

correlated to the spike count response of the recorded cells when effects of mean stimulus 

intensity were removed (Fig. 2). This analysis can serve as a simple and straightforward test 

for whether nonlinear spatial integration affects spike counts under natural stimuli. The 

measured direct effect of spatial contrast on spike count leads to a simple extension of the 

classical LN model approach by including spatial contrast as an additional model input. This 

yielded substantial improvements in predicting responses to natural images, in particular for 

cells where the performance of the classical LN model was poor (Fig. 3). Computing the 

spatial contrast measure after smoothing the image can further improve the model predictions 

and serve to test different spatial scales of nonlinear spatial integration (Fig. 4). 

The spatial contrast model is phenomenological and does not provide much information about 

the layout of subunits or the nonlinearities that act on the subunit output. The strength lies in 

its simplicity, requiring only measurements of the receptive field and adding just a single free 

parameter as compared to the classical LN model. Thus, the model may serve to assess and 

partly capture effects of nonlinear spatial integration when little data is available. It may also 

be valuable for providing a simple benchmark for comparison with more complex models of 

nonlinear spatial integration when the classical LN model appears too simplistic for providing 

a baseline measure. 

Structurally, the proposed model is similar to a generalized quadratic model, which allows for 

a general quadratic function of the stimulus and a subsequent nonlinear transformation [49–

51]. For the present case of natural image encoding, the stimulus is given as the set of pixel 

intensity values, and the general quadratic function could therefore incorporate the mean 

intensity via a linear component as well as the pixel standard deviation via a quadratic 

contribution. The difference of our approach is that we here use a particular, simple quadratic 

function of pixel contrast values, which does not require extensive parameter fitting, and that 

we use the standard deviation of pixel contrast values and thus supply the quadratic term with 

a square root. This provides an equal scaling of contributions from mean stimulus intensity 

and spatial contrast with overall stimulus contrast, which may be helpful considering the wide 

range of contrast values encountered in natural stimuli. 

The simplicity of the spatial contrast model and its structural similarity to the LN model also 

make it amenable to different extensions, such as incorporating temporal filtering of the mean 

light intensity and the spatial contrast signal (either with identical or with potentially different 

filter shapes) and to temporal feedback, such as gain control signals or post-spike filters 

[43,52]. Moreover, it might serve as a useful, spatially nonlinear front end in more complex 

cascades of cortical visual processing [53–55]. Conversely, it may help include additional, 

often neglected nonlinear effects in models of the retina itself. This could be used, for example, 
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to capture nonlinear spatial integration in the receptive field surround [56], for which subunit 

models have been difficult to set up, or nonlinear chromatic integration [57]. Similarly, using 

spatial contrast directly as an additional input channel could help include nonlinear effects in 

the outer retina, in the transmission from photoreceptors to bipolar cells [58–62]. Such a 

nonlinear front end could then be combined with the typical subunit model structure that is 

used to capture downstream nonlinear spatial integration in the connection from bipolar to 

ganglion cells at the inner retina [10,12,17,18,22,24,28,35,63–65]. 
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Materials and Methods 

Electrophysiology. We used retinas from adult axolotl salamanders (Ambystoma mexicanum; 

pigmented wild type) of either sex. All experimental procedures were performed in 

accordance with national and institutional guidelines and were approved by the institutional 

animal care committee of the University Medical Center Göttingen (protocol number T11/35). 

Multielectrode array (MEA) recordings of ganglion cell spiking activity were obtained as 

described previously [66]. In brief, after dark-adaptation of the animal and enucleation of the 

eyes, retinas were peeled out of the eyecup and cut in half. One retina half was placed 

ganglion-cell-side-down on a planar multielectrode array (Multichannel Systems, 252 

channels, 10-μm electrode diameter, 60-μm spacing) and perfused with oxygenated Ringer’s 

solution (110 mM NaCl, 2.5 mM KCl, 1.6 mM MgCl2, 1.0 mM CaCl2, 22 mM NaHCO3, 10 mM 

D-glucose, equilibrated with 95% O2 and 5% CO2). Recordings were performed at room 

temperature (20°C-22°C). Potential spikes were detected by threshold crossing from the 

amplified voltage signals after band-pass filtering (300 Hz to 5 kHz) and digitization at 10 kHz. 

Spike sorting was performed with a Gaussian mixture model [67]. Only well-separated units 

with a clear refractory period were used for further analysis. 

Visual stimulation. Visual stimuli were projected onto the retina from a gamma-corrected 

miniature OLED monitor (eMagin, OLED-XL series, 800x600 pixels with a refresh rate of 

60 Hz). The monitor image was focused onto the photoreceptor layer via a telecentric lens to 

a pixel size of 7.5 μm x 7.5 μm. Stimuli were generated with a custom-made software, based 

on Visual C++ and OpenGL. All stimuli had a mean light level of Imean = 2.5 mW/m2, which was 

also used as a background light level presented between stimuli. 

Receptive fields were obtained from measurements with spatiotemporal white noise on a 

checkerboard layout with squares of 30 µm x 30 µm. For each square, light intensities were 

chosen randomly at a rate of 30 Hz from a binary distribution (100% Michelson contrast). 

From the recorded spikes, we computed the spike-triggered average (STA) for each recorded 

ganglion cell [38], taking into account stimulus sequences of 660 ms before each spike. We 

used singular-value decomposition [68,69] to decompose the STA into a temporal filter and a 

spatial receptive field and normalized each to unit Euclidean norm. Finally, we fitted a 

two-dimensional Gaussian function 𝐺(𝒙) = 𝐴
1

2𝜋√|𝛴|
𝑒−

1

2
(𝒙−𝝁)𝑇𝛴−1(𝒙−𝝁) + 𝐵 to the spatial 

receptive field, where 𝒙 = (𝑥, 𝑦) denotes the position in the image pixel space. The fit was 

obtained by least-squares optimization of the amplitude 𝐴, the receptive-field center position 

𝝁, the covariance matrix 𝛴, and the offset 𝐵. For further analysis (see “Models and response 

predictions” below), 𝐺(𝒙) was normalized by setting 𝐴 = 1 and 𝐵 = 0. The effective 

diameter of the receptive field was determined as 𝑑 = √𝑎 ⋅ 𝑏, where 𝑎 and 𝑏 are the major 

and minor axes of the 1.5-sigma contour of the fitted Gaussian. 
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To stimulate the retina with natural images, we selected a set of 300 natural photographs from 

the McGill Calibrated Colour Image Database [70], displaying a wide range of natural and 

artificial scenes and all consistent with spanning a field of view of around 20-40°. Each image 

had a spatial resolution of 256 x 256 pixels, covering a total area of 1920 µm x 1920 µm on 

the retina. The images were converted into grayscale by a weighted average of the RGB-color 

channels, using a ratio of R:G:B=30:59:11. Subsequently, all pixel values were shifted and 

scaled so that the mean pixel intensity of each image was equal to the background and the 

standard deviation was 50% of the mean intensity. Pixel values were clipped at 0% and 100% 

of the mean intensity to ensure compatibility with the light intensity range of the display. For 

each of the selected images, this occurred for fewer than 0.1% of the pixels. For all analyses, 

stimuli are represented by the Weber contrast 𝐶 at each pixel, 𝐶 = (𝐿 − 𝐿mean) 𝐿mean⁄ , 

where 𝐿 is the pixel light level and 𝐿mean is the average light level over the image. 

Images were presented individually for 200 ms each in a pseudo-random sequence, 

separated by 800 ms of background illumination. Responses of individual ganglion cells were 

quantified as the number of spikes over a 300-ms window following stimulus onset. Given the 

response latency of around 100 ms, this generally excludes spikes elicited by the 

disappearance of the image after 200 ms. 

Models and response predictions. To assess the relevance of spatial structure in natural 

images for shaping ganglion cell responses, we compared two models for predicting spike 

counts. The first model is a classical Linear-Nonlinear (LN) model, which takes the cell’s 

receptive field as a spatial filter that is applied to the stimulus. The model thus integrates light 

intensity signals linearly over a ganglion cell’s receptive field. The second model, which we 

call Spatial Contrast (SC) Model, has a similar structure as the classical LN Model, but takes 

an additional, second input besides the linearly filtered light intensity. This second input is a 

measure of spatial contrast inside the receptive field, which is obtained from the standard 

deviation of the (weighted) pixel intensities. 

Concretely, both models start with filter signals 𝐹LN and 𝐹SC, respectively. For a given image, 

𝐹LN was the mean stimulus intensity 𝐼mean, given by the average Weber contrast as seen 

through the cell’s receptive field. This was obtained by filtering the image with the 

receptive-field fit 𝐺(𝒙): 

𝐹LN = 𝐼mean =
1

𝑁
∑ 𝐺(𝒙𝑖) ⋅ 𝐶(𝒙𝑖)

𝑁

𝑖=1

 

where 𝑖 enumerates all pixel locations 𝒙𝑖 within the 3-sigma contour of 𝐺(𝒙), 𝑁 is the 

number of these pixels, and 𝐶(𝒙𝑖) is the corresponding pixel contrast. 

𝐹SC, on the other hand, received an additional input, given by the local spatial contrast (LSC), 

which was computed as the standard deviation of the pixel intensities: 
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LSC = √
1

𝑁 − 1
∑(𝐺(𝒙𝑖) ⋅ 𝐶(𝒙𝑖) − 𝐼𝑚𝑒𝑎𝑛)2

𝑁

𝑖=1

 

where 𝑖 and 𝑁 are defined as above. Note that this is the pixel standard deviation of the 

filtered image; alternatively, the local spatial contrast could be computed as the weighted 

standard deviation of the original image [26], but the difference between these measures is 

small. 

The obtained measure of local spatial contrast was added to the filtered image signal with a 

weight 𝑤 as a free parameter: 

𝐹SC = 𝐼mean + 𝑤 ⋅ LSC. 

To turn 𝐹LN and 𝐹SC into predictions for natural images, we computed nonlinearities for both 

models from the natural images. This was done by relating 𝐹LN and 𝐹SC to the average 

evoked spike count in a histogram fashion: For each model, the filter signal (𝐹LN or 𝐹SC) was 

binned into 40 bins with equal numbers of data points, and the average filter signal and 

average of corresponding spike counts were computed for each bin. The histograms were 

fitted with nonlinear “softplus” functions of the form 𝑟(𝐹X) = 𝑎1 ⋅ 𝑙𝑛(1 + 𝑒𝑎2⋅ (𝐹X+𝑎3)), where 𝐹X 

stands for 𝐹LN or 𝐹SC, by optimizing the parameters 𝑎1, 𝑎2, and 𝑎3 (together with the weight 

𝑤 in the case of the SC model) according to a least-squares criterion. The fitted functions 

were obtained with 150 natural images and used to obtain response predictions for another 

150 held-out natural images. To quantify model performance, we computed for each model 

the correlation coefficient R between prediction and measured firing rate and reported the 

explained variance R2. 

We recorded 9 retinas to collect 215 cells. Using the spike numbers 𝑁sp(𝐵) and 𝑁sp(𝑊) in 

response to full-field black and white stimuli (±100% contrast), respectively, we classified cells 

into 169 OFF cells with 𝑁sp(𝐵) 𝑁sp(𝑊)⁄ > 3, 9 ON cells with 𝑁sp(𝑊) 𝑁sp(𝐵)⁄ > 3, and 37 

ON-OFF cells otherwise. For consistency, we only selected OFF cells for further analyses and 

excluded cells if the maximum average response to any of the 300 natural images was 

smaller than 5 spikes, leaving us with 156 cells for the final analysis. 

Data availability. The spike-train data recorded for this work have been made available at 

https://gin.g-node.org/gollischlab/Liu_Gollisch_2021_RGC_spiketrains_spatial_contrast_mod

el [71]. 
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