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Abstract 

A central goal in sensory neuroscience is to understand the neuronal signal processing 
involved in the encoding of natural stimuli. A critical step towards this goal is the development 
of successful computational encoding models. For ganglion cells in the vertebrate retina, the 
development of satisfactory models for responses to natural visual scenes is an ongoing 
challenge. Standard models typically apply linear integration of visual stimuli over space, yet 
many ganglion cells are known to show nonlinear spatial integration, in particular when 
stimulated with contrast-reversing gratings. We here study the influence of spatial 
nonlinearities in the encoding of natural images by ganglion cells, using multielectrode-array 
recordings from isolated salamander and mouse retinas. We assess how responses to natural 
images depend on first- and second-order statistics of spatial patterns inside the receptive 
field. This leads us to a simple extension of current standard ganglion cell models. We show 
that taking not only the weighted average of light intensity inside the receptive field into 
account but also its variance over space can partly account for nonlinear integration and 
substantially improve response predictions of responses to novel images. We find that 
response predictions for salamander ganglion cell classes with large receptive fields profit 
most from including spatial contrast information. Finally, we demonstrate how this model 
framework can be used to assess the spatial scale of nonlinear integration. Our results 
underscore that nonlinear spatial stimulus integration in the salamander retina translates to 
stimulation with natural images. Furthermore, the introduced model framework provides a 
simple, yet powerful extension of standard models and may serve as a benchmark for the 
development of more detailed models of the nonlinear structure of receptive fields. 
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Author Summary 

For understanding how sensory systems operate in the natural environment, an important 
goal is to develop models that capture neuronal responses to natural stimuli. For retinal 
ganglion cells, which connect the eye to the brain, current standard models often fail to 
capture responses to natural visual scenes. This shortcoming is at least partly rooted in the 
fact that ganglion cells may combine visual signals over space in a nonlinear fashion. We here 
show that a simple model, which not only considers the average light intensity inside a cell’s 
receptive field but also the variance of light intensity over space, can partly account for these 
nonlinearities and thereby improve current standard models. This provides an easy-to-obtain 
benchmark for modeling ganglion cell responses to natural images. 

 

Introduction 

Much of our knowledge about how neurons in sensory systems operate stems from 
investigations with simplified, artificial sensory stimuli, whose properties can be specifically 
selected depending on the research question at hand [1]. Investigating the relevance of the 
inferred signal processing for real-life scenarios, however, requires examining responses of 
sensory neurons to natural stimuli [2–5]. An important step for this transition to natural stimuli 
is the design of appropriate computational models for the stimulus-response relation of 
sensory neurons in order to capture the observed signal processing operations and test them 
on responses to complex or natural stimuli [6–15]. 

A fundamental ingredient for such models is typically the receptive field, which describes the 
region in stimulus space that affects a neuron’s response. For retinal ganglion cells, the output 
neurons of the retina, spatial receptive fields are commonly used to capture how the cells 
respond to light spots of different sizes or to spatially structured visual stimuli, often by 
assuming that the cells linearly integrate signals over their receptive fields. Yet, responses 
under contrast-reversing spatial gratings have long revealed that many ganglion cells can 
display nonlinearities in their spatial signal integration [16–21]. 

It is thought that these spatial nonlinearities are also important under natural stimulation [22–
24], even though most natural stimuli have smaller spatial contrast levels than the 
high-contrast reversing-gratings that are typically used to study nonlinear integration and 
correlations in natural stimuli lead to a prevalence of low spatial frequencies and larger 
regions of fairly homogeneous illumination. In ON parasol cells of macaque retina, for 
example, spatial nonlinearities are pronounced under reversing gratings, yet nearly absent 
under natural stimuli [9]. Yet, sharp light intensity transitions occur also in natural visual 
scenes, for example, in conjunction with object boundaries, and spatial nonlinearities under 
natural stimuli have been demonstrated, for example, in different ganglion cells of monkey, 
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mouse, and rabbit retina [8,9,25,26]. 

The source of the spatial nonlinearities appears to be the presynaptic bipolar cells [10,27–29], 
which provide the excitatory input to the ganglion cells and whose neurotransmitter release 
can show partial rectification with respect to light intensity [28,30]. This rectification occurs 
despite the graded, non-spike-dependent synaptic exocytosis at bipolar-cell terminals and 
likely follows from nonlinear dependence of synaptic exocytosis on presynaptic membrane 
potential and on calcium concentration [30], which may be supported by the ribbon synapse’s 
multivesicular release [31,32]. Yet, incorporating nonlinear bipolar cell input into 
computational models has been difficult because determining the layout of bipolar cells and 
the nature of their nonlinearities either requires detailed anatomical knowledge [28] or 
data-intensive inference methods [10,12,33–37]. 

We therefore here seek a direct assessment and visualization of the importance of nonlinear 
spatial integration under stimulation with natural images and evaluate this for ganglion cells of 
the salamander retina. Based on the observed sensitivity to spatial contrast, we then 
introduce a simple model that phenomenologically incorporates effects of nonlinear spatial 
stimulus integration and whose parameters can be obtained with relatively small amounts of 
data. The approach is based on identifying the receptive field of a ganglion cell and evaluating 
not only the (weighted) mean of light intensity across the receptive field, but also the variability 
of light intensity over space, measured by the (weighted) second-order statistics of the 
stimulus. Evaluated on recordings from salamander ganglion cells under flashed natural 
images, we find that this analysis reveals nonlinear spatial stimulus integration and provides a 
simple way to improve standard receptive-field-based models of ganglion cell activity. 
Furthermore, application to a data set of mouse retinal ganglion cell recordings affirms the 
general applicability of the introduced analysis and modeling approach. 

Results 

Ganglion cell responses under stimulation with natural images 

To investigate responses of retinal ganglion cells to flashed natural images, we projected 
photographic images onto isolated salamander retinas and recorded the spiking activity of 
ganglion cells with multielectrode arrays. The images were presented individually in a 
pseudo-random sequence for 200 ms each, with an inter-stimulus-interval of 800 ms (Fig. 1A). 
Figure 1B shows an example of one of the images, overlaid with the receptive field outline of a 
sample ganglion cell, and the spike patterns of this cell measured for 13 individual 
presentations of the image. A simple measure of the response is given by the total spike count 
elicited by the image presentation. To obtain the spike count, we used a temporal window 
ranging from image onset to 100 ms after image offset. Given the response latency of around 
100 ms in these neurons [35], this window typically includes all spikes elicited by the image 
presentation, but excludes potential spikes that might be elicited by the withdrawal of the 
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image. 

Based on this spike count response measure, we found that stimulation with different images 

 
Figure 1. Overview of ganglion cell responses. A) Schematic of the sequence of 300 natural images 
presented individually in a pseudo-random fashion for 200 ms each, with an inter-stimulus-interval of 
800 ms. B) Left: One of the 300 natural images, overlaid with the 3-sigma outline of the receptive field 
of a sample retinal ganglion cell. Right: Raster plot of spike times recorded from the sample cell for 13 
repeated presentations of this image. Every row corresponds to one image presentation. At the bottom, 
the time line of stimulus presentation is shown, indicating the 200-ms presentation time, surrounded by 
periods of gray illumination. The vertical gray line at 300 ms marks the end of the applied window for 
counting spike numbers. C) Spike count variance (y-axis) vs. average spike count (x-axis) from the 
sample cell for each of the 300 images. The gray straight line denotes the expected relation of variance 
and average spike count for a Poisson process. Inset: Histogram of Fano factors for each image, 
excluding those with zero spikes. D) Average over images of the single-image spike count variance as 
a measure of response noise (y-axis) vs. the average spike count over all images as a measure of 
typical signal size (x-axis), shown for each recorded cell. Inset: Histogram of Fano factors for each cell, 
averaged over images. N=156 cells from 9 retinas. E) Average over images of the single-image spike 
count variance as a measure of response noise (y-axis) vs. variance over images of the average spike 
count per image as a measure of response range (x-axis), shown for each recorded cell. The sample 
cell is marked in red in D and E. 
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generated diverse, yet reliable response patterns: for a given ganglion cell, the range of spike 
counts typically varied between zero and around 10 to 15, showing that a wide range of 
response strengths was elicited. For a given image, on the other hand, spike counts were 
highly reliable, with typical standard deviations of the spike count over repeated presentations 
of around one spike. Figure 1C shows the spike count responses to all 300 images for the 
sample ganglion cell. For each image, the variance of spike count over repeated trials was 
typically small and below the variability of a Poisson process (represented by the gray solid 
line), as also reflected by the per-image Fano factors (inset), which are mostly far below unity. 
Similar sub-Poissonian response variability had also previously been observed with artificial 
stimuli [38,39]. 

The high spike-count reliability was observed for most cells. Figure 1D shows for each 
analyzed cell the average spike count variance (averaged over all images) as a measure of 
trial-by-trial noise in comparison to the average spike count over all images and trials as a 
measure of the average response strength. As for the sample cell in Figure 1C, the spike 
count variance was on average much smaller than the average spike count for most cells, as 
also indicated by the average Fano factors below unity (inset), indicating sub-Poissonian 
noise and high response reliability for individual images. Furthermore, the noise level was 
generally much smaller than the signal range covered by different images, as shown in 
Figure 1E. For nearly all cells, the trial-by-trial variability (again measured as the single-image 
spike-count variance averaged over images) was much below the signal range, as measured 
by the variance over images of the mean spike counts. 

Local spatial contrast shapes ganglion cell responses  

To assess the relation of a cell’s response to the presented natural image, we tested how the 
cell’s spike count depended on simple image statistics inside the cell’s receptive field. To do 
so, we first determined the receptive field of a cell by standard reverse correlation [40]. The 
retina was visually stimulated with spatiotemporal white noise to calculate the average 
stimulus sequence that preceded a spike (“spike-triggered average”). Then, singular value 
decomposition was used to separate the spike-triggered average into a spatial and a temporal 
component. Finally, a two-dimensional Gaussian function was fitted to the spatial receptive 
field component to determine the center, size, and shape of the receptive field. 

For a given image, we obtained the local stimulus for a cell by weighting the image with the 
2D Gaussian representation of the receptive field. We then first considered the mean stimulus 
intensity (Imean) inside the receptive field by computing the mean pixel intensity of the local 
stimulus, corresponding to a linear integration of the stimulus across the receptive field. 
Figure 2A displays the relation between Imean and the measured spike count for a sample cell, 
which can be fitted by a parameterized rectifying nonlinear function (see Materials and 
Methods). Together, the linear image filtering by the receptive field and the nonlinear function  
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constitute a classical linear-nonlinear (LN) model. To assess model performance, we used the 
coefficient of determination R2 between the spike count data and the model’s prediction for the 
images in a test set of 150 held-out images, which were not used for fitting the nonlinear 

 
Figure 2. Effect of local spatial contrast on ganglion cell responses. A) Scatter plot of spike count vs. 
Imean for all 300 images for the sample cell of Figure 1B-C. The orange line shows the nonlinearity fitted 
on the 150 training images, with the stated R2 value (obtained from the 150 test images) used as an 
evaluation of the quality of the fit. B) LSC vs. Imean for all images for the same sample cell. C) Spike 
count vs. LSC for all images for the same sample cell. D) Differences in Imean (∆Imean) vs. differences in 
spike count (∆Spikes) for pairs of images that have neighboring values in the Imean, plotted for the 
sample cell (N=299 image pairs). E) Same as D, but for differences in local spatial contrast (∆LSC) vs. 
∆Imean. F)  Same as D and E, but for ∆Spikes vs. ∆LSC. The red line is obtained by linear regression, 
and the Pearson correlation coefficient (R) is denoted in the plot. G) Distributions of the correlation 
coefficients R for ∆Imean vs. ∆Spikes (blue) and for ∆LSC vs. ∆Spikes (red) over the 156 recorded cells. 
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function. For the displayed sample cell, Imean alone already had considerable predictive power 
(R2 = 0.65), but did not completely specify the measured spike count. 

We then asked whether – beyond mean stimulus intensity in the receptive field – spatial 
contrast contributed to determining the spike count. To do so, we assessed for each image the 
local spatial contrast (LSC) inside the receptive field by computing the standard deviation of 
pixel values in the local stimulus. Concretely, we weighted the image with the Gaussian 
representation of the receptive field and then computed the standard deviation of the pixels 
within the 3-sigma contour of the Gaussian. 

Before including the local spatial contrast in a somewhat abstract model for predicting 
ganglion cell responses, we aimed at directly assessing and visualizing to what extent it 
influences ganglion cell responses to natural images. In this respect, however, it is important 
to note that the LSC is not independent of the mean stimulus intensity Imean. As depicted in 
Figure 2B, the LSC tended to be larger when Imean deviated more strongly from zero; both large 
positive and large negative deviations from mean light level favored a larger range of pixel 
intensities, as should be expected. Thus, a direct comparison of the LSC with the measured 
spike count, as shown for the sample cell in Figure 2C, is not suited to determine whether the 
LSC itself affects the cell’s response. High spike counts for large LSC values and positive 
correlations between LSC and spike count might have simply resulted from higher Imean values 
for the corresponding images. 

To test more directly for how the LSC affected the spiking response, we aimed at assessing 
whether it influenced the response beyond the effect of Imean. We therefore analyzed pairs of 
images that, for a given cell, yielded approximately equal Imean values and then computed the 
differences in spike count and in LSC for such image pairs [26]. Concretely, we ordered all 
images for a given cell according to their Imean value and compared spike count and LSC by 
calculating the differences in spike counts (∆Spikes) and local spatial contrast (∆LSC) for each 
pair of neighbors in this ordered sequence. To verify that the residual differences in Imean did 
not have a major influence in this analysis, we also calculated their difference values ∆Imean for 
the image pairs. 

The scatter plots of ∆Imean vs. ∆Spikes (Fig. 2D) and ∆Imean vs. ∆LSC (Fig. 2E) confirmed that 
the effects of mean stimulus intensity for the sample cell were abolished in this analysis. The 
residual Imean signal had no detectable influence on the spike count differences ∆Spikes and 
was not correlated with ∆LSC. We then found that the local spatial contrast systematically 
affected the spike count: ∆LSC and ∆Spikes displayed a pronounced correlation with R = 0.52 
(Fig. 2F). As evident from the plot, the systematic effect of the LSC for this cell was to increase 
or reduce responses (relative to the response determined by the mean stimulus intensity) by 
up to about three spikes over the range of images tested here. 

To test the generalizability of the findings, we performed the same analysis on all recorded 
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salamander OFF ganglion cells. ON cells were not considered, as these are much less 
frequent than OFF cells in the salamander retina [41–43] and were only rarely encountered in 
our recordings. Furthermore, the few recorded ON-OFF cells were not considered here 
because of the additional complications arising from the (nonlinear) integration of the two 
parallel input pathways [44,45] and the non-monotonic contrast-response relationship. For the 
analyzed OFF ganglion cells, the population analysis corroborated the findings obtained from 
the sample cell. When pairing images with similar mean stimulus inside a cell’s receptive field, 
the spatial contrast differences ∆LSC (but not the residual mean intensity differences ∆Imean) 
were generally positively correlated to the spike count differences ∆Spikes (Fig. 2G), 
supporting that spatial contrast in the image can boost spike count beyond the effect of mean 
stimulus intensity. 

Spatial contrast model to incorporate sensitivity to spatial structure 

Next, we analyzed whether this additional information contained in the LSC about the spike 
count can improve the response prediction over the classical LN model. To do so, we set up a 
spatial contrast (SC) model, which combines information from the mean intensity and from the 
spatial contrast inside a cell’s receptive field. The processing chain is explained in Figure 3A. 
The spatial receptive field is obtained from responses to spatiotemporal white-noise 
stimulation and fitted by a 2D Gaussian. The Gaussian provides weights for each image pixel 
to extract the local stimulus, whose distribution of pixel contrast values yields the local mean 
intensity Imean as the mean of this distribution and the local spatial contrast LSC as the 
standard deviation. The model’s linear activation is computed as a weighted sum of the Imean 
and LSC values (Fig. 3B, left). Like in the classical LN model, the activation is turned into a 
prediction of the spike count through a nonlinear rectifying function. This function is fitted to 
the relation of the weighted sum of Imean and LSC and the measured number of spikes (Fig. 3B, 
right). The weight factor that is multiplied to the LSC is an additional free parameter and is 
fitted together with the parameters of the nonlinearity on the training data. The model is 
evaluated by computing the squared correlation coefficient R2 on held-out images. 

Figure 3B (right) shows the relation between the activation of the SC model, as obtained from 
Imean and LSC together, and the spike counts of the test data for the sample cell of Figure 2. 
The nonlinear function captured the measured spike counts more accurately than in the 
classical LN model (cf. Fig. 2A). Including the spatial contrast information improved the model 
performance from R2 = 0.65 for the classical LN model to R2 = 0.76, as again assessed on the 
test set of 150 held-out images. 
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Figure 3. Modeling responses to natural images based on simple image statistics. A) Model for 
assessing the effect of simple image statistics on the spike count. Stimulation with spatiotemporal 
flicker is used to calculate a ganglion cell’s spatial receptive field, which is then fitted by a 2D Gaussian 
function. Each natural image is cropped to the 3-σ contour of the receptive field (red line) and weighted 
by the 2D Gaussian, yielding the local stimulus. The mean stimulus intensity (Imean) and the local spatial 
contrast (LSC) are obtained as the mean and the standard deviation of the pixel intensities in this local 
stimulus. Both measures are used in the prediction of the spike count response. B) Left: Schematic 
depiction of the SC model, which uses a weighted sum of the extracted values of Imean and the LSC for a 
given image. Right: Relationship between the linear signal of the SC model and the number of spikes 
recorded from the sample cell of Figure 2 for all images. The orange line shows the fitted nonlinearity, 
with the stated R2 value used as an evaluation of the quality of the fit. C) Coefficients of determination 
R2 compared for the classical LN model, which takes only Imean as input, and the SC model, which takes 
into account both Imean and LSC, for all cells (N=156). D) Relative prediction improvement of the SC 
model over the classical LN model (computed as the SC model performance normalized by the LN 
model performance) vs. model performance of the classical LN model (left), vs. the correlation 
coefficients calculated from ∆LSC and ∆Spikes (center), and vs. the optimal LSC weights found in the fit 
of the SC model. The sample cell is marked in red in C and D. 

Population analysis of the recorded OFF ganglion cells corroborated the improved model 
performance of the SC model. The SC model had overall considerably better performance for 
predicting spike counts of held-out test images than the classical LN model (Fig. 3C; average 
R2=0.53±0.21, mean±SD for LN model and 0.65±0.14 for SC model; p<10-6, Wilcoxon 
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signed-rank test), in particular when the classical LN model originally had low performance. 
This is also emphasized by plotting the prediction improvement, which we calculated as the 
ratio between R2 from SC model and R2 from the classical LN model, against the performance 
of the classical LN model (Fig. 3D, left). Furthermore, the improvement was larger when the 
analysis of spatial-contrast effects on spike count beyond the mean stimulus intensity (cf. 
Fig. 2F) revealed a sizeable correlation between ∆LSC and ∆Spikes (Fig. 3D, center). And the 
importance of the spatial contrast information for this improvement is also reflected in 
accompanying higher weights for the SC component in the model fits (Fig. 3D, right). These 
results suggest that spatial contrast inside the receptive field can exert a strong effect on 
spike responses beyond the mean stimulus intensity, and including this information can yield 
strongly superior models when the classical LN model fails. 

Dependence of SC model performance on ganglion cell response type 

The analysis of the dependence of responses on local spatial contrast and the comparison of 
model performance between the classical LN model and the SC model has shown 
considerable diversity between individual cells. This raises the question whether there are 
systematic differences between different classes of ganglion cells. For the salamander retina, 
a general classification scheme of ganglion cells is still lacking [46], and physiological 
classifications are typically based on preferred contrast (ON versus OFF) and temporal 
filtering kinetics [10,41,47,48]. Following these lines, we here divided the recorded OFF 
ganglion cells into four groups by a cluster analysis (see Materials and Methods), according to 
their receptive field size and temporal filtering kinetics (Fig. 4A). Two of the four classes had 
larger receptive field diameters than the other two classes, and the two classes with larger 
receptive fields as well as the two classes with smaller receptive field were each separated by 
the shape of the temporal filters. For both receptive field sizes, one class had faster kinetics 
with an earlier filter peak and a more biphasic filter shape. 

When separating the obtained model performances according to the four cell classes 
(Fig. 4B), we found that it was the large (fast and slow) Off cells whose response predictions 
benefitted the most from including spatial contrast information (prediction improvement 
2.3±1.5, mean±SD, for large slow Off cells and 2.2±2.0 for large fast Off cells). The two 
classes of small cells, on the other hand, often showed good LN model predictions with 
moderate improvement from spatial contrast information (prediction improvement 1.1±0.2 for 
small slow OFF cells and 1.3±0.3 for small fast Off cells). 

The stronger dependence of spatial contrast information in larger cells makes intuitive sense, 
as these cells pool information over wider spatial ranges and may therefore experience larger 
spatial variations in luminance. A similar relation of receptive field size and spatial contrast 
sensitivity is also seen in the primate retina where size as well as nonlinear effects increase 
from midget via parasol to upsilon ganglion cells [19]. 
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Application to mouse retinal ganglion cells 

To test whether the SC model is also applicable to ganglion cell data from other species, we 
analyzed an existing dataset of responses to natural images from mouse retinal ganglion cells 
[26,49]. As for the salamander recordings, 300 natural images were flashed for 200 ms each, 
and responses were measured as the elicited spike counts. Figure 5A shows for a sample cell 
that the difference in spike count for pairs of natural image with similar mean luminance signal 
in the receptive field can be strongly correlated with the difference in spatial contrast, similar 
to the results for salamander retinal ganglion cells (cf. Fig. 2F). For this particular cell, 
including information about spatial contrast in the SC model led to a slightly better fit of the 
spike count as compared to the classical LN model (Fig. 5B). 

In general, and also similar to the salamander analysis (cf. Fig. 3C), we observed a wide 
range of model performances (Fig. 5C), with some cells displaying already high LN model 
performance and little improvement by spatial contrast information and other cells showing 
much better predictions with the SC model than the LN model. The distributions of model 
performance values indicate that predictions for some ON cells already benefitted from spatial 
contrast information at intermediate LN model performances around 𝑅𝑅2 = 0.6, whereas 
predictions for OFF cells improved substantially from spatial contrast information only when 
LN model performance was low. Overall, however, model performance values between the 
two populations were similar on average (𝑅𝑅2 values for ON cells: 0.57±0.16, mean±SD, for 
LN model and 0.64±0.17 for SC model; for OFF cells: 0.55±0.23 for LN model and 0.60±0.19 
for SC model). These analyses illustrate that spatial contrast information can be useful for 
predicting responses of mouse ganglion cells to natural images and that the SC model is 
directly applicable to the mouse retina. 

 
Figure 4. Evaluation of LN and SC model separately for four functional classes of salamander ganglion 
cells. A) Scatter plot of receptive-field diameter versus the projection of the temporal filter on the first 
principal component of all temporal filters. Temporal filters were obtained from the spike-triggered 
average under spatiotemporal white-noise stimulation. The colors mark the four clusters that were 
determined by k-means clustering. B) Collection of all temporal filters (top) and display of model 
performance values for the two models separately for the four cell classes (number of cells: 66 small 
slow OFF cells, 33 small fast OFF cells, 27 large slow OFF cells, 30 large fast OFF cells). 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 7, 2022. ; https://doi.org/10.1101/2021.08.29.458067doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.29.458067
http://creativecommons.org/licenses/by/4.0/


12 
 

Assessing the relevant spatial scale of local spatial contrast 

We found that the LSC can be a useful predictor for ganglion cell spiking responses. So far, 
we have calculated this measure based on the standard deviation of image intensities at the 
level of individual pixels. This takes into account intensity variations at all available spatial 
frequencies. Yet, it should be expected that spatial pooling by photoreceptors and bipolar cells 
prevents nonlinear stimulus integration for high spatial frequencies. In other words, intensity 
values of image pixels that are close together should be integrated linearly by the ganglion 
cell without any effect of how the total intensity is distributed between these pixels. Thus, 
there should be an optimal spatial scale for calculating the LSC, and this optimal spatial scale 
should be informative about the size of the relevant nonlinear subunits inside the receptive 
field, which are thought to correspond to bipolar cell receptive fields [10,23,27,28]. 

 
Figure 5. Analysis of a dataset of mouse retinal ganglion cells. A) Receptive field center (3-sigma 
contour, red ellipse) of a mouse ganglion cell, overlaid on a sample image (left), spiking responses of 
the cell to the sample image for ten trials (center), and the cell’s spike-count differences versus 
differences in local spatial contrast for pairs of images with nearly equal mean luminance information in 
the receptive field (right, N=299 image pairs). B) Scatter plots of spike count versus the linear signals of 
the LN model (left) and of the SC model (right) for all 300 images for the sample cell of A. The orange 
lines show the nonlinearities, fitted on the 150 training images, with the stated R2 values (obtained from 
the 150 test images) used as evaluation of the fit quality. C) Coefficients of determination R2 compared 
for the classical LN model and the SC model, separately for mouse ON ganglion cells (left) and OFF 
ganglion cells. The data from the sample cell is marked in red. N=206 ON and 142 OFF cells from 9 
retinas. 
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Figure 6. Analysis of the optimal spatial scale for calculating the local spatial contrast. A) Sample 
image overlaid with the 3-sigma outline of a sample cell’s receptive field (red curve). Below: Local 
stimuli after smoothing with a 2D Gaussian filter with increasing spatial scale from 15 to 195 µm and 
pixel-wise weighting by the sample cell’s spatial receptive field. The first image is without smoothing. 
B) Relation between linear signal of the SC model and measured spike count, using the same Imean 
values, but LSC values derived from the different smoothed images, shown here for the original image 
and for the images with spatial scales of smoothing of 60 and 195 µm, respectively. The orange lines 
show the fitted nonlinearities, and the R2 values denote the corresponding model performance. 
C) Prediction improvement as a function of the level of smoothing for the sample cell. The optimal 
spatial scale is defined as the spatial scale at which R2 reaches its maximum (as determined by the 
2nd-order polynomial fit around the maximal data point; green line). D) Prediction improvement, 
normalized by the prediction improvement with no image smoothing, as a function of the level of 
smoothing for all cells, shown separately for the four cell classes of Fig. 4. The data from the sample 
cell is shown in black. E) Distributions of optimal spatial scales. F) Distributions of optimal scales, 
normalized by each cell’s receptive field size. 

To test for the optimal spatial scale, we varied the way in which we measured the LSC and 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 7, 2022. ; https://doi.org/10.1101/2021.08.29.458067doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.29.458067
http://creativecommons.org/licenses/by/4.0/


14 
 

searched for the highest predictive power of the SC model. Specifically, we looked at how 
spatial smoothing of the image before computing the LSC affected the response prediction. 
We expect that image predictions improve approximately as long as smoothing occurs on 
spatial scales smaller than the subunits inside the receptive field, whereas smoothing at larger 
scales should degrade the predictions. The reason for this is that the right level of smoothing 
allows contrast variations on scales below the subunits to be averaged out (as we expect 
indeed occurs inside the subunits), whereas contrast variations that span more than a single 
subunit do contribute to spike count prediction and their smoothing should deteriorate model 
performance. 

Figure 6A illustrates this analysis for a salamander retinal ganglion cell. The sample image on 
top, overlaid with the cell’s receptive-field outline, was blurred by circular Gaussian filters with 
increasing spatial scale, ranging from 15 to 195 µm, and then pixel-wise multiplied by the 
cell’s receptive field to yield the image patches shown below. In this way, we extracted for 
each image the LSC from the smoothed versions and combined this with the Imean from the 
original images to fit an SC model for each level of smoothing (Fig. 6B). As before, we 
assessed the model quality by the R2 values and evaluated the model improvement (relative 
to the performance of the classical LN model) as a function of the spatial scale of smoothing 
(Fig. 6C). The spatial scale is here defined as three times the standard deviation of the 
Gaussian, for direct comparability with our definition of receptive field size. The optimal spatial 
scale is obtained as the spatial scale of smoothing for which R2 is maximal, which we 
extracted using interpolation with a second-order polynomial fitted to the three data points 
around the maximum data point (green line in Fig. 6C). 

We performed this analysis for each recorded salamander ganglion cell. The dependence of 
the prediction improvement on spatial scale indeed typically showed a concave shape with a 
maximum somewhere between 0 and 200 µm (Fig. 6D). We extracted the optimal spatial 
scales from the maximum for each cell and compared the findings across the four 
distinguished functional classes. The distributions of optimal spatial scales (Fig. 6E) all show 
broad peaks in the range of 50-150 µm. This is consistent with the typical size of bipolar cell 
receptive fields in the salamander retina [50,51]. There were no obvious differences between 
the four functional classes (average optimal scales, mean±SD: 92±75 µm for small slow Off 
cells, 75±42 µm for small fast Off cells, 79±51 µm for large slow Off cells, 80±51 µm for large 
fast Off cells, p=0.5 two-side Kruskal-Wallis test). Thus, cell classes with larger receptive 
fields did not show larger optimal spatial scales of smoothing. For all classes, subunits may 
therefore be of comparable size, and larger cells have more subunits rather than larger ones. 
This is also emphasized when the optimal scale was normalized by the ganglion cell’s 
receptive field size (Fig. 6F). The peak positions in the distributions now differed between the 
four classes, and average values tended to be smaller for the classes with larger receptive 
fields (average relative optimal scales, mean±SD: 0.29±0.19 for small slow Off cells, 
0.25±0.19 for small fast Off cells, 0.09±0.06 for large slow Off cells, 0.13±0.17 for large fast 
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Off cells). 

Discussion 

Current models of stimulus encoding by retinal ganglion cells often start with using a cell’s 
receptive field as a spatial filter applied to incoming images. This is the case for the commonly 
applied LN model and for many of its extensions such as the generalized linear model [52,53] 
or other approaches for including spike-timing dynamics or feedback loops [54,55]. The 
single-spatial-filter approach remains popular because it is conceptually straightforward, 
amenable to simple parameter-fitting approaches [40,52,53], and remarkably successful in 
capturing ganglion cell responses under specific stimulus conditions or for certain subtypes of 
ganglion cells [6,9,26,52]. 

Yet, an underlying assumption of the simple linear spatial filtering is that all relevant 
nonlinearities of the system can be subsumed into processing at the output stage, following 
after stimulus integration over space (and time) has already taken place. This clashes with the 
wide-spread finding of nonlinear spatial integration, as revealed, for example, by reversing 
spatial gratings [16–20]. It is thought that this nonlinear spatial integration also affects 
responses of retinal ganglion cells to natural stimuli, leading to failures of the model approach 
with a single spatial filter [7–10,12,26,56]. 

As the nonlinear spatial integration follows from the ganglion cell’s nonlinear pooling of 
presynaptic bipolar cells with smaller receptive fields, the most principled way of constructing 
improved models has been to explicitly include this network structure by using multiple spatial 
filters – the model’s subunits – in parallel and nonlinearly transforming the subunit signals 
before summation. This corresponds to a sequence of two LN models and is thus often 
referred to as an LNLN model. Yet, despite recent progress in inferring the layout and 
structure of the subunits [10,12,28,36,37,57–59], obtaining such models remains challenging, 
and current procedures typically require large amounts of data. 

In this work, we therefore take a different approach by assessing nonlinear spatial integration 
through a simple phenomenological model that goes beyond the standard spatial filtering by 
considering the local spatial contrast inside the receptive field. We defined the local spatial 
contrast via the variability of stimulus intensities and found that it was positively correlated to 
the spike count response of the recorded cells when effects of mean stimulus intensity were 
removed (Fig. 2). This analysis can serve as a simple and straightforward test for whether 
nonlinear spatial integration affects spike counts under natural stimuli, without the need to 
specify a concrete model of the stimulus-response relation. The measured direct effect of 
spatial contrast on spike count led us to a simple extension of the classical LN model by 
including spatial contrast as an additional model input. This yielded substantial improvements 
in predicting responses to natural images, in particular for cells where the performance of the 
classical LN model was poor (Fig. 3). Classification of cells into different functional groups 
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revealed that it is cells with large receptive fields whose response predictions profit most from 
including spatial contrast information (Fig. 4), suggesting that the model improvement 
depends on cell type. The method’s robustness to data from different species was supported 
by analyzing a data set of mouse retinal ganglion cells (Fig. 5), with similar findings as for the 
salamander retina. And finally, computing the spatial contrast measure after smoothing the 
image can further improve the model predictions and serve to test different spatial scales of 
nonlinear spatial integration (Fig. 6). 

The performance of the LN model and the improvement through the spatial contrast model 
displayed considerable variability across the analyzed population of salamander ganglion 
cells. The dependence on cell class, in particular on receptive field size, suggests that 
cell-type specificity might play a role in this variability, with larger cell types displaying stronger 
spatial nonlinearities, as has also been suggested for other species [19,30]. In the primate 
retina, for example, the smaller midget ganglion cells are more linear than the larger parasol 
cells and, in particular, the even larger upsilon cells [19]. More generally, variations of spatial 
nonlinearities with cell type are a common observation. Under natural stimuli, OFF parasol 
cells, for example, display stronger spatial nonlinearities than ON parasol cells [9], and in the 
mouse retina, spatial nonlinearities in response to natural images also varied widely, with at 
least some of this variability depending on cell type [26]. 

The spatial contrast model is phenomenological and does not provide much information about 
the layout of subunits or the nonlinearities that act on the subunit output. The strength lies in 
its simplicity, requiring only measurements of the receptive field and adding just a single free 
parameter as compared to the classical LN model. Thus, the model may serve to assess and 
partly capture effects of nonlinear spatial integration when little data is available. It may also 
be valuable for providing a simple benchmark for comparison with more complex models of 
nonlinear spatial integration when the classical LN model appears too simplistic for providing 
a baseline measure. 

Future studies may compare the performance of the spatial contrast model with full-fledged 
LNLN models, whose subunits of the first linear-filter stage are obtained by one of the 
currently developed inference techniques, including statistical analysis of spike-triggered 
stimuli [10,12], direct model fits [37,58], and applications from artificial neural networks [56,60]. 
To date, however, obtaining a full LNLN model with inferred subunits under controlled 
regularization and, ideally, with optimized subunit nonlinearities is an open challenge. Besides 
sophisticated inference techniques, it will likely require long, dedicated recordings, potentially 
using spatiotemporal white-noise stimulation, to acquire suited data for parameter fitting. We 
expect that the spatial contrast model will be a useful tool to aid these developments by 
providing informative benchmarks and by illustrating the importance of spatial nonlinearities 
for predicting responses of a given ganglion cell. 
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Structurally, the proposed model is similar to a generalized quadratic model (GQM), which 
allows for a general quadratic function of the stimulus and a subsequent nonlinear 
transformation [61–63]. For the present case of natural image encoding, the stimulus is given 
as the set of pixel intensity values, and the general quadratic function could therefore 
incorporate the mean intensity via a linear component as well as the pixel standard deviation 
via a quadratic contribution. The difference of our approach is that we here use a particular, 
simple quadratic function of pixel contrast values, which does not require extensive parameter 
fitting, and that we use the standard deviation of pixel contrast values and thus supply the 
quadratic term with a square root. This provides an equal scaling of contributions from mean 
stimulus intensity and spatial contrast with overall stimulus contrast, which may be helpful 
considering the wide range of contrast values encountered in natural stimuli. A direct 
comparison of the spatial contrast model with a fitted GQM would be an interesting endeavor. 
Similar to LNLN models, however, fitting GQMs requires sufficiently large data sets and 
dedicated methods for regularizing or otherwise avoiding overfitting. This is of particular 
concern for high-dimensional stimuli, as is the case when spatial stimuli with sufficient 
resolution to assess contrast at fine spatial scales are considered. Selecting appropriate 
stimuli and constraints for the models may benefit from knowledge gained with the simpler 
spatial contrast model. 

The simplicity of the spatial contrast model and its structural similarity to the LN model also 
make it amenable to different extensions, such as incorporating temporal filtering of the mean 
light intensity and the spatial contrast signal (either with identical or with potentially different 
filter shapes) and to temporal feedback, such as gain control signals or post-spike filters 
[54,64]. Moreover, it might serve as a useful, spatially nonlinear front end in more complex 
cascades of cortical visual processing [65–67]. Conversely, it may help include additional, 
often neglected nonlinear effects in models of the retina itself. This could be used, for example, 
to capture nonlinear spatial integration in the receptive field surround [68], for which subunit 
models have been difficult to set up, or nonlinear chromatic integration [69]. Similarly, using 
spatial contrast directly as an additional input channel could help include nonlinear effects in 
the outer retina, in the transmission from photoreceptors to bipolar cells [70–74]. Such a 
nonlinear front end could then be combined with the typical subunit model structure that is 
used to capture downstream nonlinear spatial integration in the connection from bipolar to 
ganglion cells at the inner retina [10,12,17,18,22,23,28,37,75–77]. 
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Materials and Methods 
Electrophysiology. We used retinas from adult axolotl salamanders (Ambystoma mexicanum; 
pigmented wild type) of either sex. All experimental procedures were performed in 
accordance with national and institutional guidelines and were approved by the institutional 
animal care committee of the University Medical Center Göttingen (protocol number T11/35). 
Multielectrode array (MEA) recordings of ganglion cell spiking activity were obtained as 
described previously [78]. In brief, after dark-adaptation of the animal and enucleation of the 
eyes, retinas were peeled out of the eyecup and cut in half. One retina half was placed 
ganglion-cell-side-down on a planar multielectrode array (Multichannel Systems, 252 
channels, 10-μm electrode diameter, 60-μm spacing) and perfused with oxygenated Ringer’s 
solution (110 mM NaCl, 2.5 mM KCl, 1.6 mM MgCl2, 1.0 mM CaCl2, 22 mM NaHCO3, 10 mM 
D-glucose, equilibrated with 95% O2 and 5% CO2). Recordings were performed at room 
temperature (20°C-22°C). Potential spikes were detected by threshold crossing from the 
amplified voltage signals after band-pass filtering (300 Hz to 5 kHz) and digitization at 10 kHz. 
Spike sorting was performed with a Gaussian mixture model [79]. Only well-separated units 
with a clear refractory period were used for further analysis. 

Visual stimulation. Visual stimuli were projected onto the retina from a gamma-corrected 
miniature OLED monitor (eMagin, OLED-XL series, 800x600 pixels with a refresh rate of 
60 Hz). The monitor image was focused onto the photoreceptor layer via a telecentric lens to 
a pixel size of 7.5 μm x 7.5 μm. Stimuli were generated with a custom-made software, based 
on Visual C++ and OpenGL. All stimuli had a mean light level of 2.5 mW/m2, which was also 
used as a background light level presented between stimuli. 

Receptive fields were obtained from measurements with spatiotemporal white noise on a 
checkerboard layout with squares of 30 µm x 30 µm. For each square, light intensities were 
chosen randomly at a rate of 30 Hz from a binary distribution (100% Michelson contrast). 
From the recorded spikes, we computed the spike-triggered average (STA) for each recorded 
ganglion cell [40], taking into account stimulus sequences of 660 ms before each spike. We 
used singular-value decomposition [80,81] to decompose the STA into a temporal filter and a 
spatial receptive field and normalized each to unit Euclidean norm. Finally, we fitted a 

two-dimensional Gaussian function 𝐺𝐺(𝒙𝒙) = 𝐴𝐴 1
2𝜋𝜋�|𝛴𝛴|

𝑒𝑒−
1
2

(𝒙𝒙−𝝁𝝁)𝑇𝑇𝛴𝛴−1(𝒙𝒙−𝝁𝝁) + 𝐵𝐵 to the spatial 

receptive field, where 𝒙𝒙 = (𝑥𝑥,𝑦𝑦) denotes the position in the image pixel space. The fit was 
obtained by least-squares optimization of the amplitude 𝐴𝐴, the receptive-field center position 
𝝁𝝁, the covariance matrix 𝛴𝛴, and the offset 𝐵𝐵. For further analysis (see “Models and response 
predictions” below), 𝐺𝐺(𝒙𝒙) was normalized by setting 𝐴𝐴 = 1 and 𝐵𝐵 = 0. The effective 
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diameter of the receptive field was determined as 𝑑𝑑 = √𝑎𝑎 ⋅ 𝑏𝑏, where 𝑎𝑎 and 𝑏𝑏 are the major 
and minor axes of the 1.5-sigma contour of the fitted Gaussian. 

To stimulate the retina with natural images, we selected a set of 300 natural photographs from 
the McGill Calibrated Colour Image Database [82], displaying a wide range of natural and 
artificial scenes and all consistent with spanning a field of view of around 20-40°. Each image 
had a spatial resolution of 256 x 256 pixels, covering a total area of 1920 µm x 1920 µm on 
the retina. The images were converted into grayscale by a weighted average of the RGB-color 
channels, using a ratio of R:G:B=30:59:11. Subsequently, all pixel values were shifted and 
scaled so that the mean pixel intensity of each image was equal to the background and the 
standard deviation was 50% of the mean intensity. Pixel values were clipped at 0% and 100% 
of the mean intensity to ensure compatibility with the light intensity range of the display. For 
each of the selected images, this occurred for fewer than 0.1% of the pixels. For all analyses, 
stimuli are represented by the Weber contrast 𝐶𝐶 at each pixel, 𝐶𝐶 = (𝐿𝐿 − 𝐿𝐿mean) 𝐿𝐿mean⁄ , 
where 𝐿𝐿 is the pixel light level and 𝐿𝐿mean is the average light level over the image. 

Images were presented individually for 200 ms each in a pseudo-random sequence, 
separated by 800 ms of background illumination. Responses of individual ganglion cells were 
quantified as the number of spikes over a 300-ms window following stimulus onset. Given the 
response latency of around 100 ms, this generally excludes spikes elicited by the 
disappearance of the image after 200 ms. 

Models and response predictions. To assess the relevance of spatial structure in natural 
images for shaping ganglion cell responses, we compared two models for predicting spike 
counts. The first model is a classical Linear-Nonlinear (LN) model, which takes the cell’s 
receptive field as a spatial filter that is applied to the stimulus. The model thus integrates light 
intensity signals linearly over a ganglion cell’s receptive field. The second model, which we 
call spatial contrast (SC) model, has a similar structure as the classical LN model, but takes 
an additional, second input besides the linearly filtered light intensity. This second input is a 
measure of spatial contrast inside the receptive field, which is obtained from the standard 
deviation of the (weighted) pixel intensities. 

Concretely, both models start with filter signals 𝐹𝐹LN and 𝐹𝐹SC, respectively. For a given image, 
𝐹𝐹LN was the mean stimulus intensity 𝐼𝐼mean, given by the average Weber contrast as seen 
through the cell’s receptive field. This was obtained by filtering the image with the 
receptive-field fit 𝐺𝐺(𝒙𝒙): 

𝐹𝐹LN = 𝐼𝐼mean =
1
𝑁𝑁
�𝐺𝐺(𝒙𝒙𝑖𝑖) ⋅ 𝐶𝐶(𝒙𝒙𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

 

where 𝑖𝑖 enumerates all pixel locations 𝒙𝒙𝑖𝑖 within the 3-sigma contour of 𝐺𝐺(𝒙𝒙), 𝑁𝑁 is the 
number of these pixels, and 𝐶𝐶(𝒙𝒙𝑖𝑖) is the corresponding pixel contrast. 
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𝐹𝐹SC, on the other hand, received an additional input, given by the local spatial contrast (LSC), 
which was computed as the standard deviation of the weighted pixel intensities: 

LSC = �
1

𝑁𝑁 − 1
�(𝐺𝐺(𝒙𝒙𝑖𝑖) ⋅ 𝐶𝐶(𝒙𝒙𝑖𝑖) − 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)2
𝑁𝑁

𝑖𝑖=1

 

where 𝑖𝑖 and 𝑁𝑁 are defined as above. Note that the pixel contrast values 𝐶𝐶(𝒙𝒙𝑖𝑖) are again 
weighted by the Gaussian profile 𝐺𝐺(𝒙𝒙𝑖𝑖) of the receptive field, so that the LSC is the pixel 
standard deviation of the filtered image. Alternatively, the local spatial contrast could be 
computed as the weighted standard deviation of the original image [26], but the difference 
between these measures is small. 

The obtained measure of local spatial contrast was added to the filtered image signal with a 
weight 𝑤𝑤 as a free parameter: 

𝐹𝐹SC = 𝐼𝐼mean + 𝑤𝑤 ⋅ LSC. 

To turn 𝐹𝐹LN and 𝐹𝐹SC into predictions for natural images, we computed nonlinearities for both 
models from the natural images. For each model, the average responses to a training set of 
150 of the natural images were used to fit a nonlinear “softplus” function of the form 
𝑟𝑟(𝐹𝐹X) = 𝑎𝑎1 ⋅ 𝑙𝑙𝑙𝑙�1 + 𝑒𝑒𝑚𝑚2⋅ (𝐹𝐹X+𝑚𝑚3)�, where 𝐹𝐹X stands for 𝐹𝐹LN or 𝐹𝐹SC. The parameters 𝑎𝑎1, 𝑎𝑎2, 
and 𝑎𝑎3 (together with the weight 𝑤𝑤 in the case of the SC model) were optimized according 
to a least-squares criterion, using the Matlab function “fminsearch”. In case of the SC model, 
the parameters of the nonlinearity were fitted together with the weight 𝑤𝑤 by repeatedly 
alternating the least-squares optimizations of the nonlinearity and of the weight until 
convergence or a maximum of 500 iterations were reached. To avoid local minima, the fit was 
performed several hundred times with different initial values, and the solution with the 
minimum residual error was selected. The fitted functions were then used to obtain response 
predictions for the test set of another 150 held-out natural images. To quantify model 
performance, we computed for each model the correlation coefficient R between prediction 
and measured firing rate and reported the explained variance R2. 

We recorded 9 retinas to collect 215 cells. Using the spike numbers 𝑁𝑁sp(𝐵𝐵) and 𝑁𝑁sp(𝑊𝑊) in 
response to full-field black and white stimuli (±100% contrast), respectively, we classified cells 
into 169 OFF cells with 𝑁𝑁sp(𝐵𝐵) 𝑁𝑁sp(𝑊𝑊)⁄ > 3, 9 ON cells with 𝑁𝑁sp(𝑊𝑊) 𝑁𝑁sp(𝐵𝐵)⁄ > 3, and 37 
ON-OFF cells otherwise. For consistency, we only selected OFF cells for further analyses and 
excluded cells if the maximum average response to any of the 300 natural images was 
smaller than 5 spikes, leaving us with 156 cells for the final analysis. 

For classifying the cells into functional groups, we compared their receptive field sizes 
(measured by the effective diameter of the receptive field as explained above) and the kinetics 
of their temporal filters (quantified by the projection of the temporal filter obtained under 
statiotemporal white-noise stimulation) onto the first principal component of all temporal 
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filters). The four groups of Fig. 4A were then obtained by k-means clustering in this 
two-dimensional space. 

Analysis of mouse retinal ganglion cells. The analyzed data of mouse retinal ganglion cells 
come from a publicly available data set [49]. Details about the applied stimuli and data 
acquisition can be found in the corresponding publication [26]. Here, we used information 
about the cells’ receptive fields, which were obtained by measuring the spike-triggered 
average (STA) under spatiotemporal white noise and separating the STA into a spatial and 
temporal component by fitting a parameterized model (see [26]) and extracting the Gaussian 
fit of the receptive field center from the model. 

Natural images here had a spatial resolution of 512 x 512 pixels and had been presented in 
randomized order for 200 ms each, separated by 800 ms of homogeneous illumination at 
background light level. Responses were measured as the spike count between image onset 
and 50 ms past image offset. To classify cells into ON, OFF, and ON-OFF classes, we 
assessed their average spike count 𝑅𝑅on over all images with a net positive contrast signal 
𝐼𝐼mean in the receptive field and the average spike count 𝑅𝑅off over images with negative 𝐼𝐼mean. 
ON cells were defined as cells with 𝑅𝑅on > 2 ∙ 𝑅𝑅off, OFF cells as cells with 𝑅𝑅off > 2 ∙ 𝑅𝑅on, and all 
other cells as ON-OFF cells. 

We excluded one experiment from the data set, for which fewer than 300 images were 
presented. We furthermore excluded cells for which none of the images elicited at least 6 
spikes on average and for which responses to images were noisy, as detected by a 
symmetrized coefficient of determination of less than 0.5 between average image responses 
for odd versus even trials [26]. We also excluded ON-OFF cells, which would require refined 
models to account for the convergence of pathways and the non-monotonic 
contrast-response function. This yielded a data set of 206 ON and 142 OFF cells from 9 
retinas. 

Data availability. The salamander retinal ganglion cell spike-train data recorded for this work 
have been made available at 
https://gin.g-node.org/gollischlab/Liu_Gollisch_2021_RGC_spiketrains_spatial_contrast_mod
el [83]. 
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